
JFP 23 (4): 355–356, 2013. c© Cambridge University Press 2013

doi:10.1017/S0956796813000129
355

Special Issue Dedicated to ICFP 2011
Editorial

K E N I C H I A S A I
Department of Information Science, Ochanomizu University, Tokyo, Japan

(e-mail:)asai@is.ocha.ac.jp)

B E N J A M I N C. P I E R C E
Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA

(e-mail:)bcpierce@cis.upenn.edu)

The 16th ACM SIGPLAN International Conference on Functional Programming (ICFP)
took place on September 19–21, 2011 in Tokyo, Japan. After the conference, the pro-
gramme committee, chaired by Olivier Danvy, selected several outstanding papers and
invited their authors to submit to this special issue of the Journal of Functional Program-
ming. Kenichi Asai and Benjamin C. Pierce acted as editors for these submissions. This
issue includes the three accepted articles, each of which provides substantial new material
beyond the original conference version. The selected papers represent the importance of
various aspects of proof techniques, from theory to practice, all of which aim at verifying
realistic programs.

In How to make ad hoc proof automation less ad hoc, Gonthier et al. present a novel
application of Coq’s canonical structures to automate proofs. Their technique enables us
to specify the customized behaviour of proof search concisely within Coq’s type system,
which has been previously done by tactics. The technique is simple and is illustrated with
a number of examples. This pearl-like paper is another instance showing how one simple
idea can be pushed through all the way to impact practical verification.

In Secure distributed programming with value-dependent types, Swamy et al. present F�,
a dependently typed programming language with an advanced type system for secure dis-
tributed programming. While maintaining a logically consistent core, F� includes arbitrary
recursion for general programming as well as affine types for modular reasoning about
effects. Despite the complexity of the type system, the paper clearly and elegantly explains
it with many examples. F� has been successfully used to program and verify a number of
realistic examples, including new schemes for multi-party sessions, showing that F� is near
a sweet spot in dependently typed language design.

In Modular verification of preemptive OS kernels, Gotsman and Yang propose a logic
for the verification of preemptive multiprocessor OS kernel code. One of the difficulties of
verifying preemptive kernel code is the interaction between the scheduler and the kernel:
at every program point, a process running in the kernel mode can be descheduled and
rescheduled later possibly on a different CPU. Verifying all the possible interactions is
simply unrealistic. Based on the concurrent separation logic, the paper presents a logic
that can verify the scheduler and the rest of the kernel separately. While the reader may
consider the topic outside the scope of functional programming, the program committee of

https://doi.org/10.1017/S0956796813000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000129


356 K. Asai and B. C. Pierce

ICFP 2011 decided to accept this paper because it solves a difficult and important problem
that is of interest to the functional programming community. In fact, the paper can be
regarded as constructing a nice functional reasoning layer on top of low-level scheduler
code.

We thank the authors and referees of these articles for their efforts producing and re-
viewing these articles within the strict time limits imposed by the special issue publication
constraints. We are also grateful to Olivier Danvy for the initial leadership on this special
issue and to Matthias Felleisen and David Tranah for general support and editorial advice.

Kenichi Asai and Benjamin C. Pierce
Special Issue Editors

https://doi.org/10.1017/S0956796813000129 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796813000129

