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0. Introduction

This paper is an attempt to understand what happens to the Hilbert fuAbtidni)

of a homogeneou& -algebraR after reduction modulo a homogeneous generic
form h of arbitrary degree. In other words, we want to compidie? /h R, d) with
H(R,d).

There are several motivations to study this question. The same problem was
studied by M. Green for a generic linear forim and applied to give short and
nice proofs of Macaulay’s theorem and the Gotzmann theorems; see [14] and [5].
Green'’s theorem says thBt(R/hR,d) < H(R,d) for all d. Here the operator
a(qy is defined for integers as follows: consider théth Macaulay expansion of
a, that is, the expansion

(k@) (k1) k()
() () e ()

with k(d) > k(d —1) > --- > k(j) > j > 1. Such an expansion exists and is
unique. Then one defines

k(d) — k(d—1)—1 k(j) — 1
() (e )

(Kb. 6) INTERPRINT: S.A. PIPS Nr.: 140863 MATHKAP
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There are similar operators defined using Macaulay expansions, and indeed, the
theorem of Macaulay as well as the Kruskal-Katona theorem on the possible
f-vectors of a simplicial complex are described by such operators, cf. [1].

In order to formulate the main result of the paper we have to introduce still some
more of these operators. So fdr> 7 > 0 we define

k(d) —1—1 k(d—1)—i—1 k(t)—1—1
a@i):(()d_i >+<(d_1_1 )*"'+<(t)t_¢ )

wheret = j if j >4andt =4+ 1if j <. Finally we set

k(i) — i
G((di)) = Md,i) + 0 ,

where as usudf) ™) = 1if k(i) > and 0 otherwise.
Now the main result of this paper is the following

THEOREM. Let R be a homogeneous-algebra whereK is a field of character-
istic 0, and leth € R, be a generic homogeneous form. Then

s—1
=0

forall d > s.

Unfortunately we have to require in our theorem tRais a field of characteristic

0. We believe however that the theorem is true in all characteristics. The reason for
this unpleasant hypothesis is the method of our proof. It follows very closely the
arguments of Bigatti [3] who, in her thesis, proved among other theorems, Green’s
theorem along the following lines: One first proves it for lexsegment ideals, then
compares with strongly stable ideals which, and this is only true in characteristic
0, are generic initial ideals of arbitrary ideals. A direct generalization of Green’s
original proof seems to be not possible since the numerical identities which we
would need are not valid, as shown in Remark 3.9.

Another remark concerning the theorem s that the right hand sum of the inequal-
ity could as well be expressed as a difference of two terms. But in our opinion sums
are easier to control, so that we prefer this presentation.

As applications we have some results about Gotzmann spaces in a polynomial
ring R which are related to results of Gasharov [12]. In particular we show tliat if
is an ideal generated by a Gotzmann spacefaisda generic linear form foR/1,
then all the powers of are generic foR/1, a fact which fails badly for arbitrary
homogeneous ideals.
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Even more interesting may be the application to the Eisenbud-Green—Harris
Conjecture [7] and [8] which in algebraic terms states thdt i the quotient ring
of the polynomial ringK [z1, . . ., z,,] by m quadratic forms which ar& -linearly
independent and such that diml < oo, and if () + b is the dth Macaulay
expansionofi (4, 2) = ("szl) —m, thendimg A < 2°42°+n—a— 1. We prove
the conjecture in cask is of characteristic 0, the first quadrics form a regular
seqguence and remaining quadrics are generic. The proof is an easy consequence
of the following slightly more general result which is a special case of Conjecture

(V) Oof [7]:

PROPOSITION. Let B a zero dimensional complete intersection defined by
guadric forms,A a factor ring of B defined by generic quadratic forms df
and letH(A,2) = (3) + bwitha > b. Then

a b
< > 2.
H(A,d)\(d>+(d_l> foralld > 2

With the same methods we prove Conject(ltg;, ;) of [7] which is a generalized
Cayley—Bacharach theorem, again only under some assumption on genericness.
This result would also follow from a theorem of Stanley, but he uses the Hard
Lefshetz theorem whose proof is non-algebraic.

Our theorem however does not give very good results for thiedfg Conjecture
[10] on generic algebras. For example, the generic algebra defined by 6 quadrics in
K|[z1, 2, ..., zs5) should have the Hilbert function-d5¢ 4 9¢2 4+ 5t3. But from our
theorem it follows only that the Hilbert function of the algebra is coefficientwise
bounded by the polynomial-4 5¢ 4 9t% + 7t2 + 2t*. Nevertheless we hope that the
methods presented in our paper can be used in the future to give some contribution
to Froberg’s conjecture.

1. Stable ideals and homogeneous generic forms

In this introductionary section we recall the notion of stable, strongly stable and
lexsegment ideals, and prove some basic facts needed in later sections.
Let K be an infinite field and® = KJz1,...,z,] the polynomial ring with
the standard grading = ®4-0R,; Where R, is the linear space spanned by all
monomials of degred. Throughout the paper we consider the deglex oxden
the set of monomials ak.
Givenamonomiat®, a = (as,. .., a,), we denote byn(z*), following Bigatti
(cf. [3], or [4]) the greatest, 1 < ¢ < n such thaw; > 0.
LetJ C R,;be asetof monomials, and let) be theK -subspace ok spanned
by J. Recall the following

DEFINITION 1.1. The set/ of monomials is called
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(1) stable if z;(u/zp ) € J foranyu € J and 1< i < m(u);

(2) strongly stableif z;(u/z;) € J foranyu € J and 1< ¢ < j < n such that
z; dividesu;

(3) lexsegmerit for all v € J and allv € Ry with v > w it follows thatv € J.

We will say that(J) has one of the above properties.jfdoes. Finally, a
monomial ideal is said to be (strongly) stable or lexsegment, if all its homogeneous
componentd,; have this property.

LEMMA 1.2. Let] C R be a stable ideal anela positive integer. ThefY : z;) =
(I: Ry).

Proof. Letd > s,d € N, u € R;_s be such thatfu € I;. Then for each
i, 1 < i < n, we haver;z3~tu € I; becausd is stable. ThusRyzs 1u C I,.
Using induction ors we obtainRsu C Iy, thatis,(I : zf) C (I : Rs). The other
inclusion is obvious. O

LEMMA 1.3. Let I C R be a graded ideald and s two positive integers with
d > s, andh a homogeneous form &;. Then

() dimg(Iy: h)g_s =dimg(I;NhRy s);
(i) dimg(IgNhRy—_s) > dimg(Iy N x%Rd—s)’ if I is stable.
Proof. (i) The map(ly : h)g—s — Iz N hRy_s given byv — hv is clearly a
linear K -isomorphism.
(i) By Lemma 1.2 we havél, : zf)4—s C (I : h)a—s. Thus, using (i) we get

dlm[(([d N meRd,s) = dImK(Id : xfl)d,s < dImK(Id : h)dfs
= dimg (IgNhRy—_s).

PROPOSITION 1.4Let I be a stable ideal. Then with the assumptions and the
notation of 1.3 we have

dimg (Ig+ hRg—s) < dimg (g + =) Rg—s).
In particular, z; is generic for/ and
H(R/(I,zy,),d) < H(R/(I, h),d).

Here H(R/I,—) denotes the Hilbert function associated with the gradéd
algebraR/I.
Proof. By Lemma 1.3 (ii) we have

dimg (I + hRy—s) = dimg I; + dimg Ry — dimg (Ig N hRg—s)

IN

dimg I; + dimg Ry s — dimg (I N :EfLRd,s)

= dImK(Id + ,’L‘fLRd,s).
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LetJ C Ry be a set of monomials. Following [4] we set O

JI% = (J: :Efl) N{z,... ,xn_l}dﬂ-

for all 0 < i < d, where{zy,...,z, 1}~ denotes the set of monomials in
r1,...,2n—1 Of degreal —i. By abuse of notation we set al$d),; = J,i .

Note that/ = J%_, xflJm;-L. If .J is stable ther,o is stable and if/ is strongly
stable (resp. lexsegment) thdp: is strongly stable (resp. lexsegment) for all
0< i< d(see[3, Prop.1.4],or[4,(6.2.3)]).

The following result will be needed in Section 3.

COROLLARY 1.5.Let I C R be a stable idealg a positive integer and a
homogeneous generic form Bf. Then

H(R/(I,h),d) = H(R/(I,53),d) = (

n+d—s—1 st
— — 1),
( o ) > [ta)s,

n+d-—1
d

for all integersd > s.
Proof. By Proposition 1.4 we may suppoke= z$ . But

s—1
(Lap)a=Ta+aRa s = 2 ((Ia)yi ) + 5 Ra s,
=0

which yields the desired equality. O

Remark 1.61f I is monomial but not stable, then there may exist no generic
monomial of degree for I. Indeed, letn = 3,d = 3,s = 1 and] = (z1x2x3).
ThenH(R/(I,x;),3) > 4 for anyi, 1 < i < 3, becausejzxz € x;Ry. On
the other hand, by Green’s Theorem (see [14], or [5, (4.2.18)|]R/(I,h),3) <
H(R/I,3)3 = 93 = 3 for any generic linear form; see the next section for
notation. Indeed, choosing for example= z1 + =, we see that (R/(I, h),3) =
3.

2. Some numerical Lemmas

In this section we introduce some numerical functions. Given positive integers
d>1i,let

G
a—<d>+

+ (k(11)> with k(d) > ---> k(1) >0

comp4157.tex; 15/07/1998; 10:12; v.7; p.5

https://doi.org/10.1023/A:1000461715435 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000461715435

6 JURGEN HERZOG AND DORIN POPESCU

be thedth Macaulay expansion af. Then set

a(d,i) — (k(dd:_—i; Z) NI (k(zlj__{]t i>’

i _ (k(dd)_ —Z z) . (k(z' +11) —~ z)

anda{(®=) = g — a4, where as usual

k(d) — k(1) -1
a<d>:<()d >+ +<()1 >

Fori > 1, we then define inductively

o)) = (ql(d=D)y((d-1,-i+1)

We will need a formula for(‘%:~, and for this purpose we will compaag'® %)
with {47, We adopt the usual conventioff) = 1 if k¥ > 0, and(¥) = 0 if
k <d.

LEMMA 2.1. With the notation introduced one has
(a4 1)) = gld—0 4 1

Proof. We have(a + 1){4=1) = (a + 1) — (a + 1)4). [9, Property 1.3] says

that(a+1) 4 = aggy + (B, sothatia+1){ = a—ayy +1- (B =

a!%=1 4+ 1 since

k(d) —1 k(1) -1
e = (K07 s (4

= {4V 4 (k(l) B 1). (1)

Now we are in the position to prove the desired formuladféf:—).

LEMMA 2.2. With the notation introduced one has

A=) _ gld—i) (k(z) — z) ns (k(z +g) - z>‘
0
i=0 J
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Proof. We prove the assertion by induction©ihe casé = 1 is just equation

(1) in the proof of Lemma 2.1.
Suppose now thdt> 1. Then

B (d—1,—i+1))
ol = (g — g )(C-Lmi+D) — <a<d’_1> N (k(l)o 1)) |

If k(1) = 0O, then by induction hypothesis it follows that

al(d=1)) _ (a<dﬁl>)(<d*1ﬁi+1>>

k(d) — 1 K(2) -1 ((d—1,~i+1))
(0 e (1)

_ i ((k(z‘) - 1)0 — (i~ 1)) _ gl (mz)o - Z>

If k(1) > 1, thenk(j) > j forall j > 1, and by the case= 1, Lemma 2.1 and
our induction hypothesis we obtain

(d-1-i41))
o) (awf4>+_(k(1£"1>>

_ (0D o ) (d-1-1) ) (d-2—i+2))
((a +1) )

(d,-2) 4 1){(d—2,-i+2))
(a +1)

e ] ]

Now we Seh“d’i» = (a’<<d’_i>>)<d7i)1 and

L k(d) —i—1 k(i+1)—i—1

Remark 2.3By definition one has
() (@YY 151y = agai

(i) aqa,0) = a(a,
(iii) if @ = b4~ for a certain positive integer thena, 4.1y, = a(a,1)-

There is a formula fot (4, similar to that ofa!(4=).
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LEMMA 2.4. With the notation introduced one has
k(i) —1 .
a(d,iy) = O(d,i) + ( ( )0 > for 7 > 0.
Proof. By Lemma 2.2 we have,, = (alh= 4 (RO .
If k(i) <, thena«d,i» = (a<d’72>)<d_i> = Q(d,i)s and ifk(7) > ¢, then

—i —i k(i+1) —i—1
aaiy = (@7 + Damgy = (@) + ( ( )o >
= a’(d,i) + 1,
by [9, Prop. 1.3]. Here we used thati + 1) > i + 1 sincek(i) > 1. -

3. An extension of Green’s Theorem

In this section we study the behaviour of the Hilbert function of a homogeneous
gradedk -algebra after reduction modulo a generic homogeneous form of arbitrary
degree. In the first step we consider the special case that the defining ideal of the
algebra is lexsegment.

PROPOSITION 3.1Let . C R be a lexsegment ideal anda positive integer.

Then
s—1
H(R/(L,x}),d) = H(R/(L,h),d) = H(R/L,d)(a,
i=0

for all integersd > s and every homogeneous generic farmof R,.
Proof. By Corollary 1.5 we have

H(R/(L,zp),d) = H(R/(L,h),d)

n+d—-1 n+d—s—1 st
= — — Lg),.i
(Y S
s—1 .
=Z((”+j_i 2>—|(Ld>x@|>

=0

s—1

= > (o1, Tt} = [(Ld) s |)

1=0

s—1

= > H(R/L,d)y4;-
=0
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The last equality follows from the next Lemma. O

LEMMA 3.2. Let L. C R be a lexsegment ideal antland be two integers with
d>1>0andd > 0. Then

{1, o1} (La)gi | = H(R/L, d) (4,3))-

Proof. We apply induction ori. The casé = 0 has been done in [4, (7.3.1)]
(or use Green'’s theorem [14] in connection with 1.4). Suppose now th&t The
set of monomials

d .
U x;L_l(Ld)z%

=1

is alexsegmentifizy, ..., z, }¢~1. We denote by, ,theK-vector space spanned
by this set. Notice thal’ = 3~ L is a lexsegment ideal, and we have

(Lg-1)yi-r = (La)as -
By induction hypothesis we obtain
o1, on 1} 7N\ (La)ar | = Hon, o2} 7\ (Lsg) il ()
= H(R/L',d — 1)(g-1,-1))-

But dimg L, = dimg L:i—l + |(Ld)z%| and |(Ld)z%| = |{:E1, Ce ,xn_l}d| —
H(R/L,d)q bythe casé = 0. Itfollows thatdim Ly = dimy L}, _+ ("%~
H(R/L,d)qy, and so

H(R/L,, d— 1) = dImK Rd,]_ — dImK L:i—l (3)
+d-2 .
— (nd—l > —dimg Ly (4)

+ (” * Z - 2) — H(R/L,d)

= H(R/L,d) — H(R/L,d)4 = H(R/L,d)"*=,
Substituting (3) in (2) we obtain
{o1, s B} (La)ys | = (H(R/L,d) ™) g 1m0y,
= H(R/L,d)(a),
by Remark 2.3. O
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COROLLARY 3.3.LetL C R be a lexsegment ideal,> s two positive integers
and

H(R/L,d) = (’“(dd)> - (’“5”) Ed) > > EG) >

be thedth Macaulay expansion df (R/L,d). Then

s—1 o
H(R/(L,a}),d) = 3 H(R/L,d);) + ( . J>.
1=0

The proof follows from Proposition 3.1 and Lemma 2.4.
The next result yields the crucial comparision between a lexsegment ideal and
a strongly stable ideal.

PROPOSITION 3.4Let L be alexsegmentideal addC R a strongly stable ideal
such thadimy L, < dimg I; for a certain positive integed. Then

t
D (L | ZI L)z, |
i=0

for any integert, 0 < t < d.

Proof. By [2], [3, Th. 2.1]B or [4, Th. (6.3.2)] we see that the inequality holds
for ¢ = 0. Suppose the inequality does not hold for a certalh< ¢ < d, which
we may consider to be the smallest possible. Set

J
aj = |(Ig)yi| Z|Ldmz 0<j<d
=0

Thena;_1 is not negative but;, is. Set

L0 = Yk (L.

it

Note thatZ(®) is a lexsegment ofz1, . .., z, }4*, becausd.(t) generate$L :
xt)g_s. LetJ; C {z1,..., 7, 1}%" be the unique lexsegment such th&{ =
|(Za)a: 1,0 < i < d By[3,Lem. 1.6 andits Remark, Th. 2. 1] or[4,(6.2.9),(6.2.10),
(6.3.2)] the sey®) Uz>t zi=t J; is strongly stable sinc&®) Uma: (Id)mg
generate§! : z!)q_, which is strongly stable. (In facf(®) is the Iexsegmentdl(t)
with respectta:,, in the terminology of [3], or [4]). Let/} be the unique lexsegment
of {z1,...,z, 1} such thatJj| = |(I4), | + a;—1. Such a lexsegment exists
becaus®(Lq),: | — [(14)st | — ar-1 = —a; > 0 —in fact, evens; C (Lg),: - Using
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[3, Lem. 1.5], or [4, (6.2.6)] we see also th#t = J/ U UL, z% '.J; is strongly
stable becausé) is so. But we have

t
'] = ||+ dimg Ig = Y 1(J5)]
=0

t
= |(Ia)at | + ar—1 + dimg Iy — Z |(1d)a |

i=0
t—1
= a1+ dlmK Id — Z |(Id)x%|
i=0
t—1
> dimg Ly — Y |(La)i | = |21].
i=0

Using again the cage= 0, it follows that
t
[(La)at | = [L3) < 130 | = 171] = |(Ta)ay | + a1,
thatisa; > 0, a contradiction. ]

We would like to remark that the inequality of 3.4 is only valid for the whole
sum and not necessatrily for the single summands. In other words, it does not hold
in general that(Lq),: | < [(Ia),: | for i > 0. Indeed, letv = 3,d = 2, I =
(22, 2122, 73), L = (22, 122, z123). ThenI is strongly stablel is a lexsegment
ideal, dimy Ly = dimg I, Ly, = {z1} andl,, = 0, thatis|L,| > |I,].

In the next steps we prove the desired inequality of Hilbert functions by a
comparison of the general graded ideals with their initial ideals.

LEMMA 3.5. LetI C R be a graded ideals a positive integer anét a homoge-
neous generic form ak,. Then

H(R/(I,h),d) < H(R/(in(I), z7,), d)

for all integersd > 0.
Proof. If his generic, the (R/(1,h),d) < H(R/(I,h'),d) foranyh’ € R,
andd € N. In particular, this inequality holds fdr' = z£. Thus

H(R/(I,h),d) < H(R/(I,zy),d) = H(R/in(I, z),d)
< H(R/(in(I),2;,),d),

by Macaulay's Theorem (see [15], [6, Th. 15.3], or [5, (4.2.10)]) and because
(in(I),z3) Cin(I,zy). O

comp4157.tex; 15/07/1998; 10:12; v.7; p.11

https://doi.org/10.1023/A:1000461715435 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000461715435

12 JURGEN HERZOG AND DORIN POPESCU

PROPOSITION 3.6LetI C Rbe agradedideal suchthat(7) is strongly stable,
s a positive integer and a homogeneous generic form®f. Then

s—1

H(R/(I,h),d) <Y H(R/I,d)(a,)
=0

for all integersd > s.
Proof. SetJ =in(I). By Lemma 3.5 we have

H(R/(I,h),d) < H(R/(J,z,),d) forallintegersd > O.
Let L C R be alexsegmentideal such that dimh; = dimg J; for all d € N. Fix

d > s. Then
s—=1
Lig+ xRy s = <U :Efl(Ld)m%> + 2z, Rq_s,
1=0
s=1
Jg + (L‘fLRd,s = <U x%(Jd)%> + ,’L‘fLRd,s, (5)
=0

the unions being disjoint. By Lemma 3.4 we haBEg|(La),i | < Si251(Ja) s |
and using (5) it follows
H(R/(J,=y,),d) < H(R/(L,zy,), d). (6)
By Proposition 3.1 we have
s—1

H(R/(L,x}),d) = Y H(R/L,d)(q,)
=0

s—1

= > H(R/J,d)a
=0

s—1

= Y H(R/I,d)(a,- (7)
=0

The last equality follows from Macaulay’s Theorem. The proof ends combining
(4), (6) and (7). O

We are now ready to prove the main result of this paper.
THEOREM 3.7.SupposeharK = 0. Let] C R be a graded ideals a positive
integer andh a homogeneous generic form of degse@hen

s—1

H(R/(I,h),d) <Y H(R/I,d)(a,)
=0

for all integersd > s.
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Proof. By Galligo’s Theorem (see [11], or [6, Th. 15.20]) the generic initial
ideal in(I) is Borel-fixed, and so strongly stable because didae= O (see [6,
Th. 15.23]). Now we may apply Proposition 3.6. O

COROLLARY 3.8.SupposeharK = 0. Let] C R be a graded ideal] > s two
positive integersh a homogeneous generic form®f and

H(R/I,d) = (’“j’) bt (’“j’) Ed) > > k() >

thedth Macaulay expansion df (R/I,d). Then

s—1 .
H(R/(I,h),d) < " H(R/T,d)ay + ( . ‘7>.
1=0

For the proof apply Theorem 3.7 and Lemma 2.4.

Remark 3.9(i) The bound given by Theorem 3.7 and Corollary 3.8 is reached
whenlI is a lexsegment ideal (see Proposition 3.1).

(i) The proof of Green’s theorem in the case= 1 is much easier than our
proof (see [14], or [5, Th. 4.2.12]. One could hope to give a proof of 3.7 along
those lines. Setting = H(R/I,d) andb = H(R/(I, h),d) one can derive, using
Green’s arguments, the following inequality

s—1 s—1
<D buaiy + Y@ =) siy)-
=0 =0

We now would need that this inequality impliés<g Zf;ga«d,i». Fors = 1,
this was shown by Green. However, 4f= 2 the second inequality does not
follow from the first. Take for examplé = 4,a = 44= () + (3 + ) + (D,

b=32= (9)+(3)+(2)+ (1) Thenay = 18,ai41) = 13,(a=b)z = 12 =7,
(a— b)((2,1)> =4, b<4) = 12,b(<4,1>> = 10. Thus

b < 33= by + byay + (@ — )z + (a —b) 2,1y,
butb > 31= a4 + a(a1y)-

COROLLARY 3.10.Let (A4, m) be a Noetherian local domain of characterisiic
R = Alzs,...,z,) the polynomial ring,/ C R a homogeneous ideal, arida
homogeneous form of degrevhich is generic i) (A)[z1, . .., z,]. Then

s—1

e(R/(I,h),d) < Z e(R/I, d)((d,z)) :
1=0
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14 JURGEN HERZOG AND DORIN POPESCU

For the proof we apply Theorem 3.7 for the quotient fielddpfand use that
ea((R/I,d) = e(A)ranka(R/I)4.

4. Some applications

Throughoutthis sectioR will be a field of characteristic 0, arfl = K|z, ..., z,]
the polynomial ring ovek .

The first applications we have in mind are related to the Eisenbud—-Green—Harris
Conjecture. We shall need the following

LEMMA4.1. Letb > a, thenb<<d’i>> 2 Q((d,i)) foralld >i > 0.

Proof. It suffices to show the assertion for= a + 1. Leta = E;-lzl(’“(jj)) be
thedth Macaulay expansion af. We will use induction or in order to prove the
lemma. For = 0 we have

k(1) — 1
(@+Daoy = (a+D)w = a) +< ( )o )

\Y

Q(d) = 4((d,0)-

Lets > 0. We have
(a+ Dy = (@ + DDy g5 g,

Applying the induction hypothesis it suffices to show that
(a + 1){&=1) 5 g{d—1)

But

(a+ DD = g+ 1— (a+1) 4

k(1) —1
= a—a<d>+1_( ()O >>a—a<d>:a<<d’l>>,

We have the following result about algebras defined by generic quadrics

PROPOSITION 4.2Let B be a zero dimensional complete intersection defined by
quadratic formsA a factor ring of B defined by generic quadratic forms®f and
let (%) + () be the2-Macaulay expansion dff (4, 2). Then

a b
H(A,d) < (d) + (d—l) ford > 2.
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Proof. We denote bw,,, the factor ring ofB which is defined byn quadrics.
If m = 0, thenA,, is a complete intersection, and B¢ A, d) = ({), as required.

Now letrm > 0 and assume the inequality is already showndgr. Let (5) +b
be the 2-Macaulay expansion Hf( A,,, 2). We will distinguish two cases.

First assume that > 1. Then($) + b — 1 is the 2-Macaulay expansion of
H(Ap+1,2). Ford > 3 we have

H(Amy1,d) < H(Ap,d)a0) + H(Am, d) (1)

< a—1 N b—1 N a—2 N b—2
= d d—1 d—1 d—2)"
This sum should be less than
a n b—1 B a—1 n a—1 N b—1
d d—1) d d—1 d—1)’

which is obviously true.
In the second case we hal#A,,,2) = (). Then ford > 3,

H(Amy1,d) < H(Ap,d)q0) + H(Am, d) (1)

< (- 1 n a—2
D d d—1)
This is what we wanted to show, Sing&(A,,,11,2) = (“,%) + (1. O
Remark 4.3Using the same ideas as in the proof of 4.2 we get the following
stronger form which is very much connected with Conjectlitg) from [7]. Let

B be a zero dimensional complete intersection of quadrca,factor ring of B
defined by generig-forms of A, and let

H(A,s) = (kis)> +- (k(11)>

be thes-Macaulay expansion dff (4, s). Then

o< (49 e (49 )

ford > s.

From the above propaosition the following version of the Eisenbud—Green—Harris
Conjecture [7] follows quite easily:
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16 JURGEN HERZOG AND DORIN POPESCU
COROLLARY 4.4.With the notation and assumptions of Proposi#Bone has

dimg A<2°+2" +n—a—1.

Proof. It follows from 4.2 that
dimg A = > H(Ai) <1+n+ Y H(A)

i>0 i>2
“ fa b (b
=1
+n+z<l>+z<z>
=2 i=1
=204+ 4n—aq-1 O

The next application is of a similar nature. We shall prove the following version
of Conjecture(lll 4, ,.) of [7].

PROPOSITION 4.5Let B = K]Jz1,...,z,]|/I be a complete intersection of
dimensionO defined by quadrics, and let € B be a generic form of degree
j. SetA = B/fB; then

dimg A < 2" — 2777,

Proof. We have dimx A4 = () for d < j, while ford > j we have
j—1 j—1 .
. n n—i—1
dImKAd<Z<d> - —Z( d—i )
=0 ((d,i)) 1=0

Thus

dimkA<2”+dZ; (]z; (n;:1> - (Z>>

The assertion follows since

EEC()-50)-e o

The following applications concern Gotzmann spaces. Recall that a linear sub-
spaceP C Ry is called &Gotzmann spadé R1 P C R, hasthe smallest possible
dimension, that is, if

dimg Rd+1/R1P = (dImK Rd/P)<d>

LEMMA 4.6. Letd, ¢t be two positive integers anB C Ry a linear subspace.
Then
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(i) dimg Ryyy /R P < (dimg Rq/P)(dt),
(i) If equality holds in(i), thenP is Gotzmann

Proof. Applyinductionor.If ¢t = 1, then (i) follows from Macaulay’s Theorem
(see [15], or [5, (4.2.10)], and (ii) holds by definition. Supposel. Then

dimg Rd+t/RtP < (dImK Rd+t,1/Rt_1P)<d+t71>

(8
< ((dlm[( Rd/P)<d’til>)<d+til> = (dImK Rd/P)<d’t>,

where the first inequality follows from Macaulay’s Theorem and the second one
from the induction hypothesis and [5, (4.2.13)]. If the ends of (8) are equal then the
inequalities of (8) are in fact equalities and Banust be Gotzmann by induction
hypothesis. O

LEMMA 4.7. Letd, ¢ be two positive integerd; C Ry a linear subspace and
the ideal generated b¥. Then the following statements are equivalent:

(i) P is Gotzmann

(ii)
H(R/I,d+j+1) = (H(R/I,d + j)){@9)
forall j,0< 5 <t
(iii) dim g Ry.;/RyP = (dimg Ry/P){%1,
(iv)
t
H(R/I,d+1t)— H(R/I,d) => H(R/I,d+ j)(4+j)-
j=1
Proof. Note that (i)=- (ii), by Gotzmann’s Persistence Theorem (see [13]),
(i) = (i) by recurrence sincé;, ; = R; P, and (iii) = (i), by Lemma 4.6. Since
we have
t—1
H(R/I,d+t)— H(R/I,d) = Z(H(R/I,d+i+ 1) — H(R/I,d + 1))
i=0
t—1

STH(R/I,d+ i) — H(R/I,d + 1))
=0

IN

t—1

= S (H(R/I,d + )Y g 41
i—0

t

= > H(R/L,d+ j) i),
j=1
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18 JURGEN HERZOG AND DORIN POPESCU
it is clear that (ii) is equivalent with (iv). O

PROPOSITION 4.8Let ¢ > s be two positive integers? C R, a Gotzmann
subspace] the ideal generated b, z a generic element ad®; andh a homoge-
neous generic form ak,. Then

s—1

=0
s—1
= > H(R/I,d) 4,
=0

forall d > q + s. In particular z*° is generic forl.
Proof. We have

H(R/I,d) — H(R/I,d — s) < H(R/(I,h),d) < H(R/(I, "), d)
s—1

< Z(H(R/(I,Z),d—i)

i=0
s—1
< D H(R/T,d —1i)(q—)
i=0
for any integel > s. The last inequality follows from Green’s Theorem (we may

also apply Theorem 3.7 far = 1). For the third inequality apply induction o
the case = 1 being trivial. Suppose > 1. Note that

H(R/(I,z),d) = H(R/(I,z*),d) — H(R/((I,2°) : 2),d — 1)
> (R/(L,2"),d) — H(R/(I,z"""),d - 1).

Now, it is enough to apply the induction hypothesis.
By Lemma 4.7 (iv) we see that the above inequalities are in fact equalities.
Moreover we have

H(R/I,d)ay = (HR/I,d— 1))y = HR/T,d - 1)4_1,_1
= - =H(R/I,d—1i)q

for 0 < 7 < s. Since by Remark 2.3 (iii),

(H(R/T,d— )9 q_jy11y = HR/T,d — §)a_j,
for 1 < j < s, we similarly obtain

H(R/I,d)azy = HR/I,d—1)g_- O
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The next result generalizes part of [12, Th. 2.1].

PROPOSITION 4.9Letd > s be two positive integers? C R; a Gotzmann
subspace/ the ideal generated by andh a homogeneous generic form Bf.
Then(I, : h)g—s = I,—s for anyq > d + s.

This follows from the next lemma and 4.7(ii).

LEMMA 4.10. Let] C R be a graded ideald > s two positive integers and a
homogeneous generic form Bf. Then

dimg[(Zy : h)a—s/Ta—s) < H(R/I,d — s) — (H(R/I,d)){ %D,
Proof. By Theorem 3.7 we obtain
dlmK[(Id . h)dfs] = H(R/(I, h), d) — H(R/I, d) +dimg Ry_s

s—1
< Z H(R/I, d)((d,z)) — H(R/I, d) +dimg Ry_s.
=0

It follows that
dlmK[(Id . h)dfs/Idfs] < H(R/I,d — S) — H(R/I, d)

s—1
+ Y H(R/I,d) g 9)
i=0
Note that
s—1
> H(R/I,d)ay — H(R/I,d)
i=0
s—1
= > H(R/T,d) (4 — H(R/T, )"
i=1
s—1
=" H(R/I,d) ) + (H(R/T,d)"> 1)) gy — H(R/T, )4~
i=2
s—1
= > H(R/I,d)az, — H(R/I,d)"" )
i=2
= ... = —H(R/I,d){d=) (10)
by recurrence. Substituting (10) in (9) we are done. O
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We end our paper with the following

PROPOSITION 4.11Let d, s be two positive integers? C R; a Gotzmann
subspaceh a homogeneous generic form®f, and

dimg Ry/P = (k(dd)> + -+ (k(ll)>,

the dth Macaulay expansion afimg R,;/P. Suppose that(j) < j forall j < d.
Then(R; 4P,hR;_s) C Ry is a Gotzmann subspace for al d + s.
Proof. Let I be the ideal generated I®;_,; P in R. By Proposition 4.8 we have

s—1
H(R/(Ia h)at) = H(R/(Ia zs)at) = ZH(R/Iat - Z)(tfz>
1=0

But H(R/I,t — i) = (dimg Ry/P)%t=4=% and so

t—1

R — ) — (k(d) +t—d—i— 1>’

becausé(j) +t—d—i—1<t—d—i+ jforallj <d. Thus

s—1 —d—i—
H(R/(Iah)at)ZZ(k(d)Ht_i 1)

1=0

is exactly thetth Macaulay expansion df (R/ (I, h), t). It follows

H(R/(I,h), )" =" t—i+1

it (k(d)+t—d—z’
i=0

) = H(R/(I,h),t + 1),

thatis,I; + hR;_, is Gotzmann. ]

EXAMPLE 4.12. LetP = Kxz1 C R;. Thendink Ry/R1P = ("erl) —n = (3)
and dimg R1/P = (”Il). Clearly P is Gotzmann. By Lemma 4.7R; 1z1,
hR;_s) C R, is a Gotzmann subspace for any homogeneous generic fiorm

of R,.

Remark 4.13Let P C R, be a Gotzmann subspace:Ifs a generic element
of Ry thenR;_,P + zR; 1 C R; is a Gotzmann subspace for ahy> d by
[12, Th. 2.1]. Then we may ask if the conditions of Proposition 4.11 are not too
restrictive. This is not the case since there are Gotzmann subspaces, such
that (P,h) C Ry is not Gotzmann for a homogeneous generic férra R, as
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shown in the following example. Roughly speaking the reason is that the operation
‘() does not commute in general with the integer addition.

EXAMPLE 4.14. LetP = Kz2 C Ry, I be the ideal generated by andh a
homogeneous generic form 8. We have

dimg Rp/P = (”erl> 1= (’;) + (”Il>

. 2 1 .
dImKRg/Rlpz (n;— ) —n = (n:,: ) + (Z) = (dlmKRz/P)<2>,

that is, P is Gotzmann. Then

H(R/I,t) = <n+;—2> N <n—t+—_t13>

forall ¢ > 2, and so

and

H(R/(I,h),t) = H(R/I,t)y + H(R/I,t — 1)1

_ [(n+t-3 L2 n+t—4 N n+t—5
B t t—1 t—2
for all t > 4 by Proposition 4.8. Fat = 4 we have

H(R/(I,h),5) = 20< 22 =16 = H(R/(I, h),4)*

(note that 16= (2) + (g) is the 4-Macaulay expansion of 16). Thusnif= 4
thenR2(P, h) C Rq4is not Gotzmann and s@, k) cannot be Gotzmann, too (see
Lemma4.7).
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