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We study stationary solutions to the Keller–Segel equation on curved planes.
We prove the necessity of the mass being 8π and a sharp decay bound. Notably, our
results do not require the solutions to have a finite second moment, and thus are
novel already in the flat case. Furthermore, we provide a correspondence between
stationary solutions to the static Keller–Segel equation on curved planes and
positively curved Riemannian metrics on the sphere. We use this duality to show the
nonexistence of solutions in certain situations. In particular, we show the existence
of metrics, arbitrarily close to the flat one on the plane, that do not support
stationary solutions to the static Keller–Segel equation (with any mass). Finally, as
a complementary result, we prove a curved version of the logarithmic
Hardy–Littlewood–Sobolev inequality and use it to show that the Keller–Segel free
energy is bounded from below exactly when the mass is 8π, even in the curved case.
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1. Introduction

The Keller–Segel type equations describe chemotaxis, that is the movement
of organisms (typically bacteria) in the presence of a (chemical) substance.
The simplest Keller–Segel system is a pair of equations on the density of the organ-
isms, �, and the concentration of the substance, c, both of which are functions on
[0, T ) × R

n. Furthermore, � is assumed to be nonnegative and integrable. Together
they satisfy the (parabolic-elliptic) Keller–Segel equations:

(∂t + Δ) � = d∗ (�dc) , (1.1a)

Δc = �, (1.1b)

where d is the gradient, d∗ is its L2-dual (the divergence), and Δ = d∗ d. The mass
of � is

m ..=
∫

Rd

�(x) dnx ∈ R+,

is a conserved quantity.
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Stationary solutions to equations (1.1a) and (1.1b) satisfy

Δ� = d∗ (� dc) , (1.2a)

Δc = �. (1.2b)

There is some ambiguity in the choice of c in equations (1.2a) and (1.2b), and the
standard choice is to use the Green’s function of the Laplacian to eliminate c and
Eqn (1.2b) via

c�(x) ..= − 1
2π

∫
R2

ln (|x − y|) �(y) d2y,

and use the single equation

Δ� = d∗ (�dc�) . (1.3)

There is a well-known family of solutions to equation (1.3): Let λ ∈ R+ and x� ∈ R
2

be arbitrary, and define

�λ,x�
..=

8λ2

(λ2 + |x − x�|2)2
. (1.4)

Then �λ,x�
is a solution to equation (1.3) with m = 8π.

When the metric is the standard, euclidean metric on R
2, the literature of equa-

tions (1.1a), (1.1b) and (1.3) is vast; the Reader may find good introductions in
[2, 5, 6]. Very little is known about the curved case, that is, when the underlying
space is not the (flat) plane. We remark here the work of [8], where the authors
considered equation (1.1a) and (1.1b) on the hyperbolic plane.

In this paper, we study the case when the metric is conformally equivalent to
the flat metric and the conformal factor has the form e2ϕ, where ϕ is smooth and
compactly supported. Let us note that some of our results are novel already in
the flat (ϕ = 0) case. In particular, we prove that (under very mild hypotheses),
solutions to equation (1.3) have mass 8π.

Outline of the paper

In S 2, we introduce the static Keller–Segel equation on the curved plane
(R2, e2ϕg0). In S 3, we prove in theorem 3.1 that, under mild hypothesis of the
growth of �, the static Keller–Segel equation can be reduced to a simpler equation
(see in equation (2.2)). Furthermore, in corollary 3.4, we give sharp bounds on the
decay rate of � and in theorem 3.7 we show that a (nonzero) solution must have
m = 8π. In S 4, we explore a connection between solutions to the (reduced) static
Keller–Segel equation and Kazdan–Warner equation on the round sphere. As an
application, we prove the nonexistence of solutions for certain conformal factors in
theorem 4.2. Finally, in S 5.1, we prove the logarithmic Hardy–Littlewood–Sobolev
for (R2, e2ϕg0) and in S 5.2, as an application, we show that, as in the flat case, the
Keller–Segel free energy on (R2, e2ϕg0) is bounded from below only when m = 8π.
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2. The curved, static Keller–Segel equation

Let g0 be the standard metric on R
2, let ϕ ∈ C∞

cpt(R
2), let gϕ

..= e2ϕg0.
Let Lp

k(R2, gϕ) be Banach space of functions on R
2 that are Lp

k with respect to gϕ.
Note that the properties of being bounded in L2

1,loc are independent of the chosen
metric. Finally, let L1

+(R2, gϕ) ⊆ L1(R2, gϕ) be the space of almost everywhere
positive functions.

The area form and the Laplacian behave under a conformal change via

dAϕ = e2ϕ dA0 & Δϕ = e−2ϕΔ0.

Thus the Green’s function is conformally invariant:

G(x, y) = − 1
2π

ln (|x − y|) .

For any � ∈ L1
+(R2, gϕ), let

cϕ,�
..=
∫

R2
G(·, y)�(y) dAϕ(y),

when the integral exists. Assume that the function � ∈ L1
+(R2, gϕ) ∩ L2

1,loc is such
that cϕ,� is defined on R

2. Then � is a solution to the static Keller–Segel equation
on (R2, gϕ) if it solves (the weak version of)

Δϕ� − d∗ (�dcϕ,�) = 0. (2.1)

In the next section we prove that, under mild hypotheses, equation (2.1) is
equivalent to the simpler

d (ln (�) − cϕ,�) = 0. (2.2)

We call equation (2.2) the reduced, static Keller–Segel equation.
In applications it is always assumed that � has finite mass. Furthermore, the

minimal regularity needed for the weak version of equation (2.1) is L2
1,loc and the

fact that cϕ,� is defined. Finally, we impose the finiteness of the entropy: � ln(�) ∈
L1(R2, gϕ). This is implied by, for example, the finiteness of the Keller–Segel
free energy; cf S 5.2. With that in mind, we define the (curved) Keller–Segel
configuration space as:

CKS(m,ϕ) ..=

⎧⎨⎩ � ∈ L1
+

(
R

2, gϕ

) ∩ L2
1,loc

∣∣∣∣∣∣
� ln (�) ∈ L1

(
R

2, gϕ

)
,

‖�‖L1(R2,gϕ) = m,
cϕ,� is defined everywhere.

⎫⎬⎭ . (2.3)

Let r(x) ..= |x| be the euclidean radial function. First we prove a bound on cϕ,�.

Lemma 2.1. Let � ∈ CKS(m, ϕ) be a solution of the static Keller–Segel equation
(2.1). Then the function cϕ,� + m

4π ln(1 + r2) is bounded.

Proof. As Δϕcϕ,� ∈ L1(B1(0), gϕ), it is enough to prove, without any loss of
generality, the boundedness of cϕ,� + m

2π ln(r), when r � 1.
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Since cϕ,�(0) = − 1
2π

∫
R2 � ln(r) dAϕ is finite, we have that

cϕ,�(x) � o(1) − 1
2π

∫
B|x|/2(x)

ln (|x − y|) �(y) dAϕ(y)

� o(1) − 1
2π

ln (|x|)
∫

B|x|/2(x)

� dAϕ

� O(1) − m

2π
ln (|x|) +

1
2π

∫
R2−B|x|/2(x)

ln(r)� dAϕ

� O(1) − m

2π
ln (|x|) .

This proves the upper bound.
In order to get the lower bound, let us use Jensen’s inequality to get

cϕ,�(x) − cϕ,�(0) = − m

2π

∫
R2

ln
( |x − y|

|y|
)

�(y) dAϕ(y)
m

� − m

2π
ln
( ∫

R2

|x − y|
|y| �(y) dAϕ(y)

)
+

m

2π
ln(m).

Since � ∈ L2
1,loc, we get that there exists δ > 0, such that for all p > 1, � ∈

Lp(Bδ(0)). We can assume that δ � 1. Since for all q ∈ [1, 2), r−1 ∈ Lq(Bδ(0))

and |x−y|
|y| �

√
|x|2+δ2

δ on R
2 − Bδ(0), we get that, for any p > 1, that∫

R2

|x − y|
|y| �(y) dAϕ(y)

=

( ∫
Bδ(0)

+
∫

R2−Bδ(0)

)
|x − y|
|y| �(y) dAϕ(y)

�
(
e
2‖ϕ‖L∞(Bδ(0))‖�‖Lp(Bδ(0))‖r−1‖

L
p

p−1 (Bδ(0))
+ m

) √|x|2 + δ2

δ
.

Thus, when r � 1, we get that

cϕ,� +
m

2π
ln (r) � C(ϕ, �),

which completes the proof. �

3. Reduction of order and the necessity of m = 8π

Theorem 3.1. Let � ∈ CKS(m, ϕ) be a solution of the static Keller–Segel equation
(2.1). Furthermore assume the following bound: there exists a positive number C,
such that on R

2 − BC(0), we have

� � CrCr2
. (3.1)

Then the reduced, static Keller–Segel equation (2.2) holds, that is
d(ln(�) − cϕ,�) = 0.
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Remark 3.2. If � ∈ L∞(R2), then equation (3.1) is trivially satisfied with C =
max(1, ‖�‖L∞(R2)). We conjecture that equation (3.1) is not necessary in general
for the conclusion theorem 3.1 to hold.

Remark 3.3. A corollary of the reduced, static Keller–Segel equation (2.2) is that
the (nonreduced) static Keller–Segel equation (2.1) is no longer nonlocal, as c�,ϕ

can be eliminated using dcϕ,� = d(ln(�)) = d�
� , and get

d∗ (�dcϕ,�) = −gϕ (d�,dcϕ,�) + �Δϕcϕ,� = −gϕ

(
d�, d�

�

)
+ �2 = −|d�|2ϕ

�
+ �2.

Thus the static Keller–Segel equation (2.1) becomes

Δϕ� +
|d�|2ϕ

�
− �2 = 0.

Proof of theorem 3.1. Let f ..= ln(�) − cϕ,�. The static Keller–Segel equation (2.1)
implies that

∀R ∈ R+ : ∀φ ∈ L2
1,0 (BR(0), gϕ) :

∫
R2

�g0 (dφ,df) dA0 = 0.

We now apply an Agmon-trick type argument: Let χ be a smooth and compactly
supported function. Then, using φ = fχ2 in the second row, we get∫

R2
� |d (χf)|2 dA0 =

∫
R2

� |dχ|2 f2 dA0 + 2
∫

R2
�fχg0 (dχ,df) dA0

+
∫

R2
�χ2 |df |2 dA0

=
∫

R2
� |dχ|2 f2 dA0 +

∫
R2

�g0

(
d
(
fχ2

)
, �df

)
dA0

−
∫

R2
�χ2 |df |2 dA0 +

∫
R2

�χ2 |df |2 dA0

=
∫

R2
� |dχ|2 f2 dA0.

Now for each R � 1, let χ = χR be a smooth cut-off function that is 1 on BR(0),
vanishes on R

2 − B2R(0), and (for some K ∈ R+) |dχR| = K
R . Let AR = B2R(0) −

BR(0). Then we get that∫
R2

�|df |2 dA0 � lim inf
R→∞

∫
R2

� |d (χRf)|2 dA0

= lim inf
R→∞

∫
R2

� |dχR|2 f2 dA0 � lim inf
R→∞

K2

R2

∫
AR

�f2 dA0.

To complete the proof, we show now that the last limit inferior is zero. Since∫
AR

�f2 dA0 �
(√∫

AR

� ln (�)2 dA0 +

√∫
AR

�c2
ϕ,� dA0

)2

,
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it is enough to show that both terms under the square roots are o(R2), at least for
some divergent sequence of radii. This is immediate for the second term by lemma
2.1. To bound the first term, let C be the constant from equation (3.1) and break
up AR into 2 pieces:

AR,I
..=
{

x ∈ AR

∣∣∣ �(x) � r(x)−Cr(x)2
}

,

AR,II
..=
{

x ∈ AR

∣∣∣ r(x)−Cr(x)2 � �(x) � r(x)Cr(x)2
}

.

By equation (3.1), AR = AR,I ∪ AR,II . Let us first inspect

0 �
∫

AR,I

� ln (�)2 dA0

� C(2R)−C(2R)2 ln
(
C(2R)−C(2R)2

)2

Area (AR,I , g0) = o
(
R2
)
.

Finally, note that on AR,II , we have |ln(�)| = O(R2 ln(R)). Thus, for R � 1,
we have

0 �
∫

AR,II

� ln (�)2 dA0

� ‖ ln (�) ‖L∞(AR,II)

∫
AR,II

� |ln (�)| dA0 � 8CR2 ln (R)
∫

AR,II

� |ln (�)| dA0.

Now let Rk
..= 2k, and then

0 � 1
R2

k

∫
ARk,II

� ln (�)2 dA0 � 8C ln(2)k
∫

ARk,II

� |ln (�)| dA0.

Since � ln(�) ∈ L1(R2, g0) we have that

lim inf
k→∞

(
k

∫
ARk,II

� |ln (�)| dA0

)
= 0,

and thus

0 �
∫

R2
� |df |2 dA0 � lim inf

k→∞
K2

R2
k

∫
ARk

�f2 dA0 = 0,

and hence ∫
R2

� |df |2 dA0 = 0,

which implies equation (2.2), and thus completes the proof. �

Corollary 3.4. If � ∈ CKS is a solution of the static Keller–Segel equation (2.1)
and satisfies (3.1), then there is a number K = K(ϕ, �) � 1 such that

K � �
(
1 + r2

) m
4π � K−1. (3.2)

In particular, � ∼ r−
m
2π and m > 4π.
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Proof. We have

ln
(
�
(
1 + r2

) m
4π

)
= ln (�) + m

4π ln
(
1 + r2

)
= ln (�) − cϕ,�︸ ︷︷ ︸

constant by theorem 3.1

+ cϕ,� + m
4π ln

(
1 + r2

)︸ ︷︷ ︸
bounded by lemma 2.1

,

which concludes the proof. �

Remark 3.5. Theorem 3.1 remains true (with the same proof) even when gϕ is
replaced by any compactly supported, smooth perturbation of g0. However proving
lemma 2.1 becomes more complicated in that case, although conjecturally, that
claim should still hold, and thus so should corollary 3.4.

Remark 3.6. Before stating our next theorem, let us recall a few facts, commonly
used in literature of the Keller–Segel equations.

First of all, and to the best of our knowledge, the only known solutions in the
flat case are the ones given in equation (1.4). Note that they all have mass 8π.

A complementary fact, supporting the conjecture that static solutions must have
mass 8π, is the the following ‘Virial Theorem’ that applies to the time-dependent
equation as well: Assume that � is a solution to the (time-dependent) Keller–Segel
equation (1.1a) and (1.1b), such that for all t in the domain of � the following
quantity is finite

W (t) ..=
∫

R2
|x|2�(t, x) dA0(x).

Then W satisfies the following equation (cf. [2]*lemma 22 for the proof):

Ẇ (t) = 4m − m

2π
.

In particular, if � is a (positive) solution to the static Keller–Segel equation (2.1)
with finite W , then m = 8π. Note that for each �λ,x�

in equation (1.4), we get
W = ∞, so the above two results are indeed complementary.

In the next theorem we prove that, under equation (3.1), all (positive) solutions
to the static Keller–Segel equation (2.1) must have mass 8π.

Theorem 3.7. If � ∈ CKS is a solution of the static Keller–Segel equation (2.1) and
satisfies equation (3.1), then its mass is necessarily 8π.

Proof. By corollary 3.4, we have that m > 4π and thus, for some ε > 0, we have
� = O(r−2−ε).

Let now v = (v1, v2) be a smooth, compactly supported vector field. Let us pair
both sides of equation (2.2) with −�v, integrate over R

2 with respect to dA0 and

https://doi.org/10.1017/prm.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.1
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then integrate by parts in the first term to get

2∑
i=1

( ∫
R2

� (∂ivi + vi∂icϕ,�) dA0

)
= 0. (3.3)

For any smooth, real function f , let

vf (x) ..=
(
2x1e

2ϕ(x) + ∂1f, 2x2e
2ϕ(x) + ∂2f

)
,

and let χR as in the proof of theorem 3.1. Let us assume that |df | ∈ L2(R2, gϕ).
Then for v = χRvf equation (3.3) becomes

0 =
2∑

i=1

( ∫
R2

�
(
χR∂iv

f
i + χR�vf

i ∂icϕ,� + ∂iχRvf
i

)
dA0

)

=
2∑

i=1

( ∫
R2

χR(x)�(x)
(
2e2ϕ(x) + 4xi∂iϕ(x)e2ϕ(x) + ∂2

i f(x)

+
(
2xie

2ϕ(x) + ∂if(x)
)

∂icϕ,�(x)
)

dA0(x)
)

+ O

( ∫
B2R(0)−BR(0)

|dχR|
∣∣vf
∣∣ � dAϕ

)

= 4
∫

R2
χR� dAϕ︸ ︷︷ ︸
I1(R)

+2
2∑

i=1

∫
R2

χR(x)�(x)xi∂icϕ,�(x) dAϕ(x)︸ ︷︷ ︸
I2(R)

+
2∑

i=1

( ∫
R2

χR� (4r∂rϕ − Δϕf − gϕ (df,dcϕ,�)) dA0

)
︸ ︷︷ ︸

I3(R)

+ O
(
R−1

(
R + ‖df‖L2(R2,gϕ)

)
R−2−εR2

)
.

(3.4)

As R → ∞ the last term goes to zero, by definition, I1(R) → m. Using equation
(2), we get

I2(R) =
2∑

i=1

∫
R2

χR(x)xi∂icϕ,�(x) dAϕ(x)

= − 1
2π

2∑
i=1

∫∫
R2×R2

χR(x)�(x)xi∂i ln (|x − y|) �(y) dAϕ(y) dAϕ(x)

= − 1
2π

2∑
i=1

∫∫
R2×R2

χR(x)�(x)xi
xi − yi

|x − y|2 �(y) dAϕ(y) dAϕ(x),
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thus

lim
R→∞

I2(R) = − 1
2π

2∑
i=1

∫∫
R2×R2

�(x)xi
xi − yi

|x − y|2 �(y) dAϕ(y) dAϕ(x)

= − 1
2π

2∑
i=1

∫∫
R2×R2

�(x)
(

xi − yi

2
+

xi + yi

2

)
xi − yi

|x − y|2 �(y) dAϕ(y) dAϕ(x)

= − 1
4π

∫∫
R2×R2

�(x)�(y) dAϕ(y) dAϕ(x) + 0︸︷︷︸
due to antisymmetry

= −m2

4π
.

Finally, if we can choose a smooth f so that

Δϕf + gϕ (df,dcϕ,�) = 4r∂rϕ, (3.5)

and |df | ∈ L2(R2, gϕ), then I3(R) = 0, for all R. For any smooth, compactly
supported function φ, let

‖φ‖ϕ,�
..=
√

‖dφ‖2
L2(R2,gϕ) + 1

2‖
√

�φ‖2
L2(R2,gϕ),

and let (Hϕ,�, 〈−|−〉ϕ,�) the corresponding Hilbert space. Clearly Hϕ,� ⊆ L2
1,loc.

The weak formulation of equation (3.5) on Hϕ,� is

∀φ ∈ C∞
cpt

(
R

2
)

: 〈dφ|df〉L2(R2,gϕ) +
∫

R2
φgϕ (df,dcϕ,�) dAϕ︸ ︷︷ ︸

B(f,φ)

=
∫

R2
φr∂rϕ dAϕ︸ ︷︷ ︸
Φϕ(φ)

.

Now if f = φ ∈ C∞
cpt(R

2), then

B (φ, φ) = 〈dφ|dφ〉L2(R2,gϕ) +
∫

R2
φgϕ (dφ,dcϕ,�) dAϕ

= ‖dφ‖2
L2(R2,gϕ) +

1
2

∫
R2

gϕ

(
dφ2,dcϕ,�

)
dAϕ

= ‖dφ‖2
L2(R2,gϕ) +

1
2

∫
R2

φ2Δϕcϕ,� dAϕ

= ‖dφ‖2
L2(R2,gϕ) +

1
2

∫
R2

φ2� dAϕ

= ‖φ‖2
ϕ,�,
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and, using that ϕ has compact support and equation (3.2), we have

|Φϕ (φ)| =
∫

R2
φr∂rϕ dAϕ

=
∫

R2
(φ
√

�)
(

r∂rϕ√
�

)
dAϕ

� ‖φ√�‖L2(R2,gϕ)

√∫
R2

r2(∂rϕ)2

� dAϕ

� K(ϕ, �)‖φ‖ϕ,�.

Thus the conditions of the Lax–Milgram theorem are satisfied and hence there is a
unique f ∈ Hϕ,� that solves equation (3.5). By elliptic regularity, f is in fact smooth
and by the definition Hϕ,�, |df | ∈ L2(R2, gϕ). Hence equation (3.4) becomes 0 =
4m − m2

2π , which concludes the proof. �

4. Connection to the critical Kazdan–Warner equation on the round
sphere

Let us assume that � ∈ CKS is a solution of the static Keller–Segel equation (2.1)
and satisfies equation (3.1), and thus m = 8π. Fix λ ∈ R+ and x� ∈ R

2, and
let �λ,x�

as in equation (1.4). Pick the unique stereographic projection pλ,x�
:

S
2 − { North pole } → R

2, so that gS2 ..= (pλ,x�
)∗( 1

2�λ,x�
g0) is the round metric

of unit radius. By corollary 3.4, the function ũ ..= 1
2 ln( �

�λ,x�
) is bounded on R

2. Let
u ..= ũ ◦ pλ,x�

∈ L∞(S2). Then (omitting obvious pullbacks and computations) we
have

ΔS2u =
1

1
2�λ,x�

Δ0

(
1
2

ln
(

�

�λ,x�

))
=

1
�λ,x�

Δ0 ((ln (�) − cϕ,�) + cϕ,� + ln (�λ,x�
))

=
1

�λ,x�

(
0 + e2ϕ� − �λ,x�

)
= e2ϕe2u − 1.

Since ϕ is compactly supported, the pullback of e2ϕ to S
2 via pλ,x�

extends smoothly
over the North pole. Let us denote this extension by h. Then the equation on u
becomes

ΔS2u = he2u − 1. (4.1)

This is the equation of Kazdan and Warner, [7]*equation (1.3), with k = 1 (note
that they use the opposite sign convention for the Laplacian). When ϕ vanishes
identically, then u = 0 is a solution, which corresponds to the well-known � = �λ,x�

solution on the flat plane. More generally, given any λ ∈ R+ and x� ∈ R
2 and any

positive scalar curvature metric g on S
2, one can construct a solution to curved,

https://doi.org/10.1017/prm.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.1


Stationary solutions to the Keller–Segel equation on curved planes 337

static Keller–Segel equation (2.1) as follows: by the uniformization theorem, g and
gS2 are always conformally equivalent. Thus we have a function, u, that solves
equation (4.1) with h being the scalar curvature of g (pulled back under a diffeo-
morphism). Let now ũ and h̃ be the pushforwards of u and h, respectively, to R

2 via
pλ,x�

, and let � ..= �λ,x�
e2ũ. Then � solves the curved, static Keller–Segel equation

(2.1) with ϕ = 1
2 ln(h̃).

Remark 4.1. Using the reduced, static Keller–Segel equation (2.2) also, equations
similar to the Kazdan–Warner equation (4.1) were studied in [3, 9]. These equations
however are still on the plane so the geometric interpretation above is lost.

Unfortunately, equation (4.1) is the critical version of the Kazdan–Warner
equation in [7]. Thus we cannot, in general, assume solvability for an arbitrary
h. In fact, Kazdan and Warner found a necessary condition for the existence of
solutions: For each spherical harmonic of degree one, u1, by [7]*equation (8.10), we
have ∫

S2
gS2 (du1,dh) e2uωS2 = 0, (4.2)

where ωS2 is the symplectic/area form of gS2 . We use equation (4.2) to prove the
following:

Theorem 4.2. There exists ϕ ∈ C∞
cpt(R

2), arbitrarily close to the identically zero
function, such that the static Keller–Segel equation (2.1) has no solutions satisfying
equation (3.1).

Proof. Let us assume that ϕ is radial (with respect to x�). Then h is only a func-
tion of the polar angle θ ∈ (−π

2 , π
2 ), on S

2. When u1 = sin(θ), then equation (4.2)
becomes ∫

S2
cos (θ) (∂θh) e2uωS2 = 0. (4.3)

Since ∂θh ∼ e2ϕ∂rϕ, we get that if ϕ is nonconstant and ∂rϕ is either nonnegative
or nonpositive, then equation (4.3) cannot hold. This concludes the proof. �

5. The variation aspects of the Keller–Segel theory on curved planes

We end this paper with a complementary result to theorem 3.7, showing that the
energy functional (formally) corresponding to the Keller–Segel flow in equation
(1.1a) and (1.1b) is bounded from below only when m = 8π. In order to do
that, we first prove a curved version of the logarithmic Hardy–Littlewood–Sobolev
inequality.

5.1. Curved logarithmic Hardy–Littlewood–Sobolev inequality and the
Keller–Segel free energy

Let λ ∈ R+ and x� ∈ R
2, and define

μλ,x�
(x) ..=

λ2

π (λ2 + |x − x�|2)2
. (5.1)
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Then μλ,x�
is everywhere positive,

∫
R2 μλ,x�

dA0 = 1, and for any f ∈ C∞
cpt(R

2)

lim
λ→0

∫
R2

μλ,x�
f dA0 = f(x�). (5.2)

The following identities about μλ,x�
are easy to verify:∫

R2
mμλ,x�

ln (mμλ,x�
) dA0 = m ln

(m

πe

)
− 2m ln(λ), (5.3a)∫

R2
G(·, y)μλ,x�

(y) dA0(y) =
1
8π

(ln (μλ,x�
) − 2 ln(λ) + ln(π)) ,

(5.3b)∫∫
R2×R2

μλ,x�
(x)G(x, y)μλ,x�

(y) dA0(x) dA0(y) = − 1
2π

ln(λ) − 1
4π

. (5.3c)

Now we can state the logarithmic Hardy–Littlewood–Sobolev inequality on (R2, g0),
which is a special case of [1]*theorem 2.

Theorem 5.1. Let � be an almost everywhere positive function on R
2 and assume

that ∫
R2

� dA0 = m ∈ R+.

Then for all λ ∈ R+, x� ∈ R
2, we have∫

R2
�(x) ln

(
�(x)

mμλ,x�
(x)

)
dA0

� 4π

m

∫∫
R2×R2

(�(x) − mμλ,x�
(x))G(x, y)(�(y) − mμλ,x�

(y)) dA0(x) dA0(y). (5.4)

Moreover, equality holds exactly when � = mμλ,x�
.

Idea of the proof. Note that equations (5.3a), (5.3c), and (5.3a) imply that
equation (5.4) is equivalent to∫

R2
�(x) ln (�(x)) dA0 +

2
m

∫∫
R2×R2

�(x) ln (|x − y|) �(y) dA0(x) dA0(y)

+ m (1 + ln(π) − ln(m)) � 0. (5.5)

Now equation (5.5) is the n = 2 and f = g case of [1]*inequality (27).

Let now g be any smooth Riemannian metric on R
2, not necessarily conformally

equivalent to g0. There still exists a smooth function, ϕ, such that if the area form
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of g is dAg, then

dAg = e2ϕ dA0. (5.6)

For the remainder of this section (but this section only), let ϕ be defined via
equation (5.6), and write, as before dAϕ

..= dAg. When g is not conformally equiva-
lent to g0, then G is no longer the Green’s function for g. Now let μϕ

λ,x�

..= μλ,x�
e−2ϕ.

Note that
∫

R2 μϕ
λ,x�

dAϕ = 1.
The next lemma is a generalization of theorem 5.1.

Lemma 5.2. Let � be an almost everywhere positive function on R
2 and assume

that ∫
R2

� dAϕ = m ∈ R+.

Then for all λ ∈ R+ and x� ∈ R
2, we have

∫
R2

� ln

(
�

mμϕ
λ,x�

)
dAϕ � 4π

m

∫∫
R2×R2

(
�(x) − mμϕ

λ,x�
(x)
)

G(x, y)

×
(
�(y) − mμϕ

λ,x�
(y)
)

dAϕ(x) dAϕ(y), (5.7)

and equality holds exactly when � = mμϕ
λ,x�

.

Proof. Let us first rewrite the left-hand side of equation (5.7):

∫
R2

� ln

(
�

mμϕ
λ,x�

)
dAϕ =

∫
R2

� ln
(

�

mμe−2ϕ

)
e2ϕ dA0

=
∫

R2

(
�e2ϕ

)
ln

((
�e2ϕ

)
mμ

)
dA0. (5.8)

Since �e2ϕ is almost everywhere positive and∫
R2

(
�e2ϕ

)
dA0 =

∫
R2

� dAϕ = m,

we can use equation (5.4), with � replaced by �e2ϕ, and get

∫
R2

(
�e2ϕ

)
ln

((
�e2ϕ

)
mμ

)
dA0 � 4π

m

∫∫
R2×R2

(
�(x)e2ϕ(x) − mμ(x)

)
G(x, y)

×
(
�(y)e2ϕ(y) − mμ(y)

)
dA0(x) dA0(y). (5.9)
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Furthermore∫∫

R2×R2

(
�(x)e2ϕ(x) − mμ(x)

)
G(x, y)

(
�(y)e2ϕ(y) − mμ(y)

)
dA0(x) dA0(y)

=
∫∫

R2×R2

(
�(x) − mμ(x)e−2ϕ(x)

)
G(x, y)

(
�(y) − mμ(y)e−2ϕ(y)

)
×
(
e2ϕ(x) dA0(x)

)(
e2ϕ(y) dA0(y)

)
=
∫∫

R2×R2

(
�(x) − mμϕ

λ,x�
(x)
)

G(x, y)
(
�(y) − mμϕ

λ,x�
(y)
)

dAϕ(x) dAϕ(y).

(5.10)

Combining equations (5.8), (5.9), and (5.10) proves equation (5.7). Finally, equality
in equation (5.9) holds exactly when �e2ϕ = mμ, or equivalently, when � = mμϕ

λ,x�
,

which conclude the proof. �

Remark 5.3. As opposed to the flat case, when ϕ is not identically zero, the m = 8π
minimizer for the curved logarithmic Hardy–Littlewood–Sobolev equation (5.7),
8πμϕ

λ,x�
, is not a solution to the static Keller–Segel equation (2.1), nor the reduced,

static Keller–Segel equation (2.2). Instead, we get

d
(
ln
(
8πμϕ

λ,x�

)
− cϕ,8πμϕ

λ,x�

)
= d

(
ln (8πμλ,x�

) − 2ϕ − c0,8πμλ,x�

)
= −2 dϕ �≡ 0.

5.2. The Keller–Segel free energy

The (flat) Keller–Segel free energy of � ∈ CKS(m, 0) is

F0 (�) =
∫

R2
� ln (�) dA0 − 1

2

∫∫
R2×R2

�(x)G(x, y)�(y) dA0(x) dA0(y). (5.11)

Remark 5.4. Formally, equation (1.1a) is the negative gradient flow of the
Keller–Segel free energy under the Wasserstein metric. Formally this metric can be
introduced as follows: If � ∈ CKS(m, ϕ), then the operator f �→ L�(f) ..= d∗(�df)
is expected to be nondegenerate. Then if �̇ is a tangent vector to CKS(m, ϕ), then
its Wasserstein norm is given by

‖�̇‖2
W

..=
∫

R2
�̇L−1

� (�̇) dA0.

Then the Wasserstein norm is a Hilbert norm, thus can be used to define gradient
flows.

Remark 5.5. The functional in (5.11) is also the energy of self-gravitating
Brownian dust; cf. [4].
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Let us generalize F0 to (R2, gϕ): For any � ∈ CKS(m, ϕ), let the curved
Keller–Segel free energy be

Fϕ (�) ..=
∫

R2
� ln (�) dAϕ − 1

2

∫∫
R2×R2

�(x)G(x, y)�(y) dAϕ(x) dAϕ(y). (5.12)

Now we are ready to prove our last main result.

Theorem 5.6. The curved Keller–Segel free energy (5.12) is bounded from below
on CKS(m, ϕ), exactly when m = 8π.

Proof. Let m, λ ∈ R+, and μλ,0 as in equation (5.1) (with x� = 0). Now equations
(5.3c) and (5.3a) imply that

Fϕ

(
mμλ,x�

e−2ϕ
)

=
∫

R2
mμλ,x�

e−2ϕ ln
(
mμλ,x�

e−2ϕ
)

dAϕ

− 1
2

∫∫
R2×R2

mμλ,x�
(x)e−2ϕ(x)

× G(x, y)mμλ,x�
(y)e−2ϕ(y) dAϕ(x) dAϕ(y)

=
∫

R2
mμλ,x�

ln (mμλ,x�
) dA0 − 2m

∫
R2

μλ,x�
ϕ dA0

− m2

2

∫∫
R2×R2

μλ,x�
(x)G(x, y)μλ,x�

(y) dA0(x) dA0(y)

=
m

4π
(m − 8π) ln(λ) + m ln

(m

πe

)
− 2m

∫
R2

μλ,x�
ϕ dA0.

As λ → 0+, the last term goes to ϕ(x�). Thus, when m > 8π, then

lim
λ→0+

Fϕ

(
mμλ,x�

e−2ϕ
)

= −∞.

Similarly, as λ → ∞, the last term goes to zero. Thus, when m < 8π, then

lim
λ→∞

Fϕ

(
mμλ,x�

e−2ϕ
)

= −∞.

This proves the claim for m �= 8π.
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When m = 8π, then for any � ∈ CKS(m, ϕ), we have

Fϕ (�) =
∫

R2
� ln (�) dAϕ − 1

2

∫∫
R2×R2

�(x)G(x, y)�(y) dAϕ(x) dAϕ(y)

=
∫

R2
� ln (�) dAϕ − 4π

m

∫∫
R2×R2

�(x)G(x, y)�(y) dAϕ(x) dAϕ(y)

=
∫

R2
� ln

(
�

mμϕ
λ,x�

)
dAϕ − 4π

m

∫∫
R2×R2

(
�(x) − mμϕ

λ,x�
(x)
)

× G(x, y)
(
�(y) − mμϕ

λ,x�
(y)
)

dAϕ(x) dAϕ(y)

+ m ln(m) − 2
∫

R2
�ϕ dAϕ +

∫
R2

� ln (μλ,x�
) dAϕ

− 8π

∫∫
R2×R2

�(x)G(x, y)μλ,x�
(y) dAϕ(x) dA0(y)

+ 4πm2

∫∫
R2×R2

μλ,x�
(x)G(x, y)μλ,x�

(y) dA0(x) dA0(y)

=
∫

R2
� ln

(
�

mμϕ
λ,x�

)
dAϕ − 4π

m

∫∫
R2×R2

(
�(x) − mμϕ

λ,x�
(x)
)

× G(x, y)
(
�(y) − mμϕ

λ,x�
(y)
)

dAϕ(x) dAϕ(y)

+ m ln(m) − 2
∫

R2
�ϕ dAϕ

+
∫

R2
�(x)

(
ln (μλ,x�

(x)) − 8π

∫
R2

G(x, y)μλ,x�
(y) dA0(y)

)
dAϕ(x)

+ 4πm

∫∫
R2×R2

μλ,x�
(x)G(x, y)μλ,x�

(y) dA0(x) dA0(y).

Now, using equations (5.7), (5.3b), (5.3c), and (5.2), and plugging back m = 8π,
we get

inf ({ Fϕ (�) | � ∈ CKS(m,ϕ) }) = 8π ln
(

8
e

)− 16π sup
({

ϕ(x)
∣∣x ∈ R

2
})

,

which completes the proof. �

Remark 5.7. It is not entirely obvious if the relevant generalization of Keller–Segel
free energy (5.11) is the functional, Fϕ, in equation (5.12). There is an generalization
that is minimally coupled to the metric: Let κϕ

..= Δϕϕ be the Gauss curvature of
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gϕ and q ∈ R be a coupling constant. Then let us define

Fϕ,q (�) ..=
∫

R2
� ln (�) dAϕ − 1

2

∫∫
R2×R2

�(x)G(x, y)�(y) dAϕ(x) dAϕ(y)

+ q

∫∫
R2×R2

κϕ(x)G(x, y)�(y) dAϕ(x) dAϕ(y).

When m �= 8π, the proof of theorem 5.6 can still be used to prove the unboundedness
of Fϕ,q, and when m = 8π, we get

Fϕ,q (�) �
∫

R2
� ln

(
�

mμϕ
λ,x�

)
dAϕ − 4π

m

∫∫
R2×R2

(
�(x) − mμϕ

λ,x�
(x)
)

× G(x, y)
(
�(y) − mμϕ

λ,x�
(y)
)

dAϕ(x) dAϕ(y)

+ (q − 2)
∫

R2
�ϕ dAϕ dAϕ + 8π ln

(
8
e

)
.

In particular, when q = 2, then � = 8πμϕ
λ,x�

is an absolute minimizer of Fϕ,q.
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