Canad. Math. Bull. Vol. 18 (3), 1975

PARTIAL ORDERS ON THE 2-CELL

BY
E. D. TYMCHATYN

1. Introduction. A partially ordered space is an ordered pair (X, \leq) where X is a compact metric space and \leq is a partial ordering on X such that \leq is a closed subset of the Cartesian product $X \times X$. \leq is said to be a closed partial order on X.

If (X, \leq) is a partially ordered space let $\operatorname{Min}(X)($ resp. $\operatorname{Max}(X))$ denote the set of minimal (resp. maximal) elements of X. For $x \in X$ let

$$
L(x)=\{y \in X \mid y \leq x\} \quad \text { and } \quad M(x)=\{y \in X \mid x \leq y\} .
$$

Ward used partial orders to characterize dendrites in [7]. In [1], [2] and [3] Tymchatyn used partial orders to obtain characterizations of the two and three dimensional cells.

In this paper we use the methods developed in [1] to study a wide class of partial orders on the 2-cell. We let (X, \leq) be a partially ordered space where X is a 2-cell, $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ are closed arcs on the boundary of X and for each $x \in X$ $L(x) \cup M(x)$ is a connected set. We let \leq^{\prime} be the vertical partial order on the unit square $[0,1] \times[0,1]$ in the euclidean plane, i.e. we set $(a, b) \leq^{\prime}(c, d)$ in $[0,1] \times$ $[0,1]$ if and only if $a=c$ and $d-b$ is non-negative. We show that there is a continuous order preserving function of the partially ordered space ($[0,1] \times[0,1], \leq^{\prime}$) onto (X, \leq) such that the inverse image of a point of X is either a point or a horizontal line segment. It follows that \leq contains a partial order that has the same properties as \leq and that is obtainable in a natural way from a very simple decomposition of ($\left.[0,1] \times[0,1], \leq^{\prime}\right)$.
2. Preliminaries. We shall gather here some necessary definitions and theorems from [1] and [4].

A chain is a totally ordered set. An order arc is a compact connected chain. It is known [6] that a separable order arc is homeomorphic under an order preserving function to the closed unit interval $[0,1]$ with its usual order (which we also denote by \leq) and with its usual topology. The reader should have no difficulty in determining in a particular instance whether \leq represents the partial order on X or on [0,1].
If (X, \leq) is a partially ordered space we let 2^{X} denote the space of closed subsets of X with the Hausdorff metric topology. We let $\mathscr{M}(X)$ denote the family of order arcs in X which meet both $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$.

Received by the editors May 15, 1974.
AMS Classification: Primary 54F05, 06A45.
This research was supported in party by National Research Council Grant No. A5616.

Theorem A (Tymchatyn and Ward [4]). Let (X, \leq) be a partially ordered space such that $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ are closed sets and for each $x \in X, L(x) \cup M(x)$ is connected. Then $\mathscr{M}(X)$ is a compact subset of 2^{X} and $\mathscr{M}(X)$ covers X.

An antichain is a set which contains no non-degenerate chain. We let $\mathscr{A}(X)$ denote the family of compact maximal antichains of X. We let $\mathscr{A}(X)$ have its relative topology as a subset of 2^{X}. It is known [6] that $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ are in $\mathscr{A}(X)$ if and only if they are closed subsets of X.
The following two results appear in [1]:
Theorem B. Let (X, \leq) be a partially ordered space such that $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ are closed and $\mathscr{M}(X)$ covers X. For $A, B \in \mathscr{A}(X)$ define

$$
A \wedge B=\{x \in A \cup B \mid L(x) \cap(A \cup B)=\{x\}\}
$$

and

$$
A \vee B=\{x \in A \cup B \mid M(x) \cap(A \cup B)=\{x\}\}
$$

Then $\mathscr{A}(X)$ with operations \wedge and \vee is an arcwise connected topological lattice. Furthermore, $\mathscr{A}(X)$ covers X.

Theorem C. Let (X, \leq) be a partially ordered space such that $\operatorname{Max}(X)$ and $\operatorname{Min}(X)$ are closed, disjoint sets and $\mathscr{M}(X)$ covers X. Then there exists a continuous order preserving function f of (X, \leq) onto $[0,1]$ with its usual order such that
(i) $f^{-1}(0)=\operatorname{Min}(X)$ and $f^{-1}(1)=\operatorname{Max}(X)$ and
(ii) for each $a \in[0,1] f^{-1}(a) \in \mathscr{A}(X)$.

The partial order \leq on a space X is said to be order dense if for each $x<y$ there exists z such that $x<z<y$. It is known [6] that if (X, \leq) is a compact, order dense, partially ordered space then every chain in X is contained in a member of $\mathscr{M}(X)$.

In case there is more than one partial order on a space X we shall write $\operatorname{Min}(X, \leq), \operatorname{Max}(X, \leq), L(x, \leq), M(x, \leq), \mathscr{M}(X, \leq)$ and $\mathscr{A}(X, \leq)$ for $\operatorname{Min}(X)$, $\operatorname{Max}(X), L(x), M(x), \mathscr{M}(X)$ and $\mathscr{A}(X)$ respectively.

3. Orders on the 2-cell.

Theorem 1. Let (X, \leq) be a partially ordered space where X is a closed 2-cell. Suppose $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$ are arcs in the boundary S^{1} of X. If $\mathscr{M}(X)$ covers X then $\mathscr{M}(X)$ admits the structure of a compact, connected, topological lattice.

Proof. Case 1. Suppose $\operatorname{Min}(X)$ is disjoint from $\operatorname{Max}(X)$.
Let F and E be the closures of the two components of $S^{1}-(\operatorname{Min}(X) \cup \operatorname{Max}(X))$. We wish to prove that F and E are in $\mathscr{M}(X)$. Notice that F and E are arcs which meet both $\operatorname{Min}(X)$ and $\operatorname{Max}(X)$. We need only prove that F and E are chains. Let $x, y \in F$. We may suppose that x separates y from $\operatorname{Min}(X) \cap F$ in F. By hypothesis there exists $T \in \mathscr{M}(X)$ such that $x \in T$. If $y \in T$ we are done. If $y \notin T$ then
$T \cap M(x)$ is an arc in the 2 -cell X which separates y from $\operatorname{Min}(X) \cap L(y)$. By hypothesis there exists $S \in \mathscr{M}(X)$ such that $y \in S$. Now $S \cap L(y)$ is an order arc which meets both y and $\operatorname{Min}(X) \cap L(y)$. Hence, there exists

$$
z \in S \cap L(y) \cap T \cap M(x) .
$$

Since $x \leq z \leq y$ it follows that $x \leq y$ and F is a chain. Similarly, E is a chain.
By Theorem C there is a continuous function $f: X \rightarrow[0,1]$ such that $f^{-1}(0)=$ $\operatorname{Min}(X), f^{-1}(1)=\operatorname{Max}(X)$ and for each $a \in[0,1], f^{-1}(a) \in \mathscr{A}(X)$. It follows that for each $a \in[0,1], f^{-1}(a)$ meets each member of $\mathscr{M}(X)$ in precisely one point.

If $a \in] 0,1\left[\right.$, it is clear that $f^{-1}(a)$ separates X into precisely two components $f^{-1}\left(\left[0, a[)\right.\right.$ and $\left.\left.f^{-1}(] a, 1\right]\right)$. Furthermore, $f^{-1}(a)$ is arcwise accessible from each of these two components. By Theorem II.5.38 in Wilder [8], $f^{-1}(a)$ is an arc. Since $f^{-1}(a)$ is irreducible with respect to separating X it follows that one endpoint of $f^{-1}(a)$ is in F and the other is in E.

For each $a \in[0,1]$ give the arc $f^{-1}(a)$ its natural total order with minimal point in $F \cap f^{-1}(a)$. Denote the resulting partial order on X by $\leq^{\prime \prime}$. Then $x \leq^{\prime \prime} y$ if and only if $f(x)=f(y)$ and x separates y from $f^{-1}(f(x)) \cap F$ in the $\operatorname{arc} f^{-1}(f(x))$.

Claim. ($X, \leq^{\prime \prime}$) is a partially ordered space.
Proof of claim. Let x_{i}) and y_{i}) be sequences in X which converge to x and y respectively such that for each $i, x_{i} \leq " y_{i}$. We must prove that $x \leq " y$. For each i, $f\left(x_{i}\right)=f\left(y_{i}\right)$ and f is continuous so $f(x)=f(y)$. Either $x \leq^{\prime \prime} y$ or $y \leq^{\prime \prime} x$ since $f^{-1}(f(x))$ is linearly ordered with respect to the partial order $\leq "$. Just suppose $y<" x$. Let $t \in X$ such that $y<" t<" x$. By hypothesis there exists $T \in \mathscr{M}(X, \leq)$ such that $t \in T$. The arc T separates x and y in X. The sequence x_{i}) (resp. y_{i})) is eventually in the same component of $X-T$ as is x (resp. y) since X is locally connected. Also, $F \cap f^{-1}\left(f\left(x_{i}\right)\right)$ is eventually in the same component of $X-T$ as $F \cap$ $f^{-1}(f(x))$ and y. Since for each $i, f^{-1}\left(f\left(x_{i}\right)\right)$ meets T in precisely one point, it follows that eventually $y_{i}<" x_{i}$. This is a contradiction. Thus $x \leq " y$ and the claim is proved.

Clearly, $\mathscr{M}(X, \leq) \subset \mathscr{A}\left(X, \leq^{\prime \prime}\right)$. By Theorem $A \mathscr{M}(X, \leq)$ is compact. By Theorem $\mathrm{B} \mathscr{A}\left(X, \leq^{\prime \prime}\right)$ is a topological lattice. We must prove that $\mathscr{M}(X, \leq)$ is actually a sublattice of $\mathscr{A}\left(X, \leq^{\prime \prime}\right)$. If $S, T \in \mathscr{M}(X, \leq)$ then $T \wedge S$ and $T \vee S$ are in $\mathscr{A}\left(X, \leq^{\prime \prime}\right)$ since $\mathscr{A}\left(X, \leq^{\prime \prime}\right)$ is a lattice. In particular $T \vee S$ and $T \wedge S$ are compact subsets of X. The continuous function f takes each of the compact sets $T \wedge S$ and $T \vee S$ by a one-to-one correspondence onto [0, 1]. Hence, $T \wedge S$ and $T \vee S$ are arcs. We check that $T \wedge S$ and $T \vee S$ are chains with respect to \leq. Let $x, y \in T \wedge S$. We may suppose that $f(x)<f(y)$. If $x, y \in T$ then $x \leq y$ since T is a chain. Suppose, therefore, that $x \in S-T$ and $y \in T-S$. Let z be the maximal element of the compact chain

$$
(T \wedge S) \cap S \cap f^{-1}([0, f(y)]) .
$$

Then $z \in T \cap S$ since $f^{-1}(f(z)) \cap(T \wedge S)=\{z\}, T \wedge S$ is compact and

$$
(T \wedge S) \cap f^{-1}([f(z), f(y)]) \subset T
$$

Hence, $x \leq z \leq y$ and $T \wedge S$ is a chain with respect to \leq. Since $T \wedge S$ is a compact, connected chain which meets both $\operatorname{Min}(X, \leq)$ and $\operatorname{Max}(X, \leq)$ it follows that $T \wedge S \in \mathscr{M}(X, \leq)$. Similarly, $T \vee S \in \mathscr{M}(X, \leq)$.

For $T, S \in \mathscr{M}(X, \leq)$ define $T \leq * S$ if and only if $T \wedge S=T$. Then $(\mathscr{M}(X, \leq)$, \leq^{*}) is a partially ordered space. We shall prove that \leq^{*} is order dense. Let $S, T \in \mathscr{M}(X, \leq)$ such that $T \wedge S=S$ and $S \neq T$. Let $a \in[0,1]$ such that $f^{-1}(a) \cap$ $S \neq f^{-1}(a) \cap T$ and let $b \in f^{-1}(a)$ such that

$$
f^{-1}(a) \cap S<^{\prime \prime} b<^{\prime \prime} f^{-1}(a) \cap T
$$

By hypothesis there exists $P \in \mathscr{M}(X, \leq)$ such that $b \in P$. Let $R=(S \vee P) \wedge T$. Then $b \in R \in \mathscr{M}(X, \leq)$. Notice that $T \wedge R=R$ and $R \wedge S=S$. Hence, $S<*$ $P<^{*} T$. Thus, \leq^{*} is order dense. Since F is the unique minimal element in the partially ordered space $\left(\mathscr{M}(X, \leq), \leq^{*}\right), \mathscr{M}\left(X, \leq^{*}\right)$ is connected by the remarks following Theorem C.

Case 2. Suppose $\operatorname{Min}(X, \leq) \cap \operatorname{Max}(X, \leq)$ is non-void. Make the disjoint union of X and $\operatorname{Max}(X, \leq) \times[0,1]$ into a partially ordered space by setting $x \leq^{\prime} y$ in $X \cup(\operatorname{Max}(X, \leq) \times[0,1])$, if:
(a) $x, y \in X$ and $x \leq y$
(b) $x \in X$ and $y=(a, b) \in \operatorname{Max}(X, \leq) \times[0,1]$ where $x \leq a$ in X or
(c) $x=(a, b)$ and $y=(c, d)$ are in $\operatorname{Max}(X, \leq) \times[0,1], a=c$ and $b \leq d$ in $[0,1]$.

Form the adjunction space X^{\prime} of X and $\operatorname{Max}(X, \leq) \times[0,1]$ by identifying (m, o) and m for each $m \in \operatorname{Max}(X, \leq)$. The partial order \leq^{\prime} on $X \cup(\operatorname{Max}(X, \leq) \times[0,1]$ induces a partial order \leq° on X^{\prime} such that $\left(X^{\prime}, \leq^{\circ}\right)$ satisfies the hypotheses of the theorem. Notice that $\operatorname{Min}\left(X^{\prime}, \leq^{\circ}\right)=\operatorname{Min}(X, \leq)$ and $\operatorname{Max}\left(X^{\prime}, \leq^{\circ}\right)=\operatorname{Max}(X, \leq) \times$ $\{1\}$. By Case $1 \mathscr{M}\left(X^{\prime}, \leq^{\circ}\right)$ is a compact, connected topological lattice. It is easy to see that $\mathscr{M}(X, \leq)$ is homeomorphic and isomorphic to $\mathscr{M}\left(X^{\prime}, \leq^{\circ}\right)$ under the correspondence that takes a member A of $\mathscr{M}\left(X^{\prime}, \leq^{\circ}\right)$ to the unique member B of $\mathscr{M}(X, \leq)$ such that $B \subset A$.
The following theorem was proved in [1].
Theorem D. Let (X, \leq) be a partially ordered space. Suppose there exists a function $h:[0,1] \rightarrow \mathscr{M}(X)$ such that $X=\cup\{h(a) \mid a \in[0,1]\}$ and if $a<b<c$ in $[0,1]$ then $h(a) \cap h(c) \subset h(b)$. If X is non-degenerate and has no cutpoints then X is a 2 -cell.

It is shown in the proof of Theorem D that if \leq is a closed partial order on the 2-cell D then in order that there exist a function $h:[0,1] \rightarrow \mathscr{M}(D)$ as in the above theorem it is necessary that $\operatorname{Min}(D)$ and $\operatorname{Max}(D)$ be closed, connected sets in the boundary of D and that $\mathscr{M}(D)$ cover D. We shall show that these conditions are also sufficient.

Corollary 2. Let \leq be a closed partial order on a 2 -cell D such that $\mathscr{M}(D)$ covers D and $\operatorname{Min}(D)$ and $\operatorname{Max}(D)$ are closed and connected sets in the boundary of D. Then there exists a continuous function $h:[0,1] \rightarrow \mathscr{M}(D)$ such that $D=$ $\cup\{h(\mathrm{a}) \mid a \in[0,1]\}$ and if $a<b<c$ in $[0,1]$ then $h(a) \cap h(c) \subset h(b)$.

Proof. $\mathscr{M}(D)$ is a compact topological lattice and thus $\mathscr{M}(D)$ has a zero F and a unit E. By Theorem $1 \mathscr{M}(D)$ is connected. By Koch's Theorem (see [5]) there is an order $\operatorname{arc} \mathbb{C}$ in $\mathscr{M}(D)$ such that $F, E \in \mathbb{C}$. Let $h:[0,1] \rightarrow \mathbb{C}$ be a one to one continuous function such that $h(0)=F$ and $h(1)=E$. From the definition of order in $\mathscr{M}(D)$ it is clear that if $a<b<c$ in [0,1] then $h(a) \cap h(c) \subset h(b)$. It remains to show only that $D=\cup\{h(a) \mid a \in[0,1]\}$.

Let $x \in D$ and let $R \in \mathscr{A}(D)$ such that $x \in R$ by Theorem B . It is easy to see that for each $a \in[0,1], h(a) \cap R$ consists of exactly one point. Define $g:[0,1] \rightarrow R$ by letting $g(a) \in h(a) \cap R$ for each $a \in[0,1]$. Then g is easily seen to be a continuous function. By the proof of Theorem $1 R$ is an arc with endpoints in F and E. Hence $g(0) \in F$ and $g(1) \in E$. Thus, g maps [0, 1] onto R and $x \in \cup\{h(a) \mid a \in$ $[0,1]\}$.

Let $\left(D^{\prime}, \leq^{\prime}\right)$ be the unit square $[0,1] \times[0,1]$ in the plane with the partial order $(a, b) \leq^{\prime}(c, d)$ if and only if $a=c$ and $b \leq d$ in [1, 1].

Corollary 3. Let (D, \leq) be a partially ordered space such that D is a 2 -cell, $\mathscr{M}(D, \leq)$ covers D and $\operatorname{Min}(D, \leq)$ and $\operatorname{Max}(D, \leq)$ are closed disjoint arcs in the boundary of D. There is an order preserving continuous function g of $\left(D^{\prime}, \leq^{\prime}\right)$ onto (D, \leq) such that
(i) $g^{-1}(\operatorname{Max}(D, \leq))=\operatorname{Max}\left(D^{\prime}, \leq^{\prime}\right)$
(ii) $g^{-1}(\operatorname{Min}(D, \leq))=\operatorname{Min}\left(D^{\prime}, \leq^{\prime}\right)$
(iii) g takes every member of $\mathscr{M}\left(D^{\prime}, \leq^{\prime}\right)$ homeomorphically onto a member of $\mathscr{M}(D, \leq)$.
(iv) for $x \in D g^{-1}(x)$ is either a point or a horizontal line segment in D^{\prime}.

Proof. Let $f: D \rightarrow[0,1]$ be a function satisfying the conditions of Theorem C. Let $h:[0,1] \rightarrow \mathscr{M}(D, \leq)$ be a function satisfying the conditions of Corollary 2. Define $g:\left(D^{\prime}, \leq^{\prime}\right) \rightarrow(D, \leq)$ by letting $g(a, b)$ be the unique point in $h(a) \cap f^{-1}(b)$ for each $(a, b) \in D^{\prime}=[0,1] \times[0,1]$.

If (D, \leq) and g are as in Corollary 3, there is a smallest partial order \leq^{*} on D such that g is order preserving with respect to \leq^{*} and \leq^{*} has a closed graph. Clearly $\leq * \subset \leq, \mathscr{M}\left(D, \leq^{*}\right)$ covers $D, \operatorname{Min}\left(D, \leq^{*}\right)=\operatorname{Min}(D, \leq)$ and $\operatorname{Max}(D$, $\left.\leq^{*}\right)=\operatorname{Max}(D, \leq)$. Thus we have extracted from \leq a partial order \leq^{*} which is moderately large and which is well understood since it is completely determined by the function g.

References

1. E. D. Tymchatyn, Antichains and products in partially ordered spaces, Trans. Amer. Math. Soc. 146 (1969) pp. 511-520.
2. ——, The 2-cell as a partially ordered space, Pac. J. Math. 30 (1969) pp. 825-836.
3. E. D. Tymchatyn, Some order theoretic characterizations of the 3-cell, Colloq. Math. 10 (1972) pp. 195-203.
4. - and L. E. Ward, Jr., On three problems of Franklin and Wallace concerning partially ordered spaces, Coll. Math. 20 (1969) pp. 229-236.
5. L. E. Ward, Jr., Concerning Koch's Theorem on the existence of arcs, Pac. J. Math. 15 (1965) pp. 347-355.
6. L. E. Ward, Jr., Partially ordered topological spaces, Proc. Amer. Math. Soc. 5 (1954) pp. 144-161.
7. L. E. Ward, Jr., A note on dendrites and trees, Proc. Amer. Math. Soc. 5 (1954) pp. 992-994.
8. R. L. Wilder, Topology of Manifolds, Amer. Math. Soc., Providence, 1949.

University of Saskatchewan

Saskatoon, Saskatchewan

