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PARTIAL ORDERS ON THE 2-CELL 
BY 

E. D. TYMCHATYN 

1. Introduction. A partially ordered space is an ordered pair (X, < ) where 
Xis a compact metric space and < is a partial ordering on X such that < is a closed 
subset of the Cartesian product XxX. < is said to be a closed partial order on X. 

If ( ^ < ) is a partially ordered space let Min(Z) (resp. Max(Z)) denote the set 
of minimal (resp. maximal) elements of X. For x e X let 

L(x) = {yeX\y<x} and M(x) = {y eX \ x < y}. 

Ward used partial orders to characterize dendrites in [7], In [1], [2] and [3] 
Tymchatyn used partial orders to obtain characterizations of the two and three 
dimensional cells. 

In this paper we use the methods developed in [1] to study a wide class of partial 
orders on the 2-cell. We let (X, < ) be a partially ordered space where Z is a 2-cell, 
Min(X) and Max(Z) are closed arcs on the boundary of X and for each xe X 
L(x) U M(x) is a connected set. We let < ' be the vertical partial order on the unit 
square [0, l ] x [0, 1] in the euclidean plane, i.e. we set (a, b)<J(c, d) in [0, l ] x 
[0, 1] if and only ifa=c and d—b is non-negative. We show that there is a continu
ous order preserving function of the partially ordered space ([0, l ] x [0, 1], <[') 
onto (X, < ) such that the inverse image of a point of X is either a point or a hori
zontal line segment. It follows that < contains a partial order that has the same 
properties as < and that is obtainable in a natural way from a very simple decom
position of ([0, l ] x [0, 1], < ' ) . 

2. Preliminaries. We shall gather here some necessary definitions and theorems 
from [1] and [4]. 

A chain is a totally ordered set. An order arc is a compact connected chain. It is 
known [6] that a separable order arc is homeomorphic under an order preserving 
function to the closed unit interval [0, 1] with its usual order (which we also denote 
by <,) and with its usual topology. The reader should have no difficulty in determin
ing in a particular instance whether <, represents the partial order on X or on 
[0, 1]. 

If {X> < ) is a partially ordered space we let 2X denote the space of closed subsets 
of X with the Hausdorff metric topology. We let Jt(JC) denote the family of order 
arcs in X which meet both Min(Z) and Max(Z). 
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THEOREM A (TYMCHATYN and WARD [4]). Let (X, <>) be a partially ordered 
space such that Min(X) and Max(Z) are closed sets and for each x e X, L{x) U M(x) 
is connected. Then *JK{X) is a compact subset oflx and *Jt(X) covers X. 

An antichain is a set which contains no non-degenerate chain. We let $£{X) 
denote the family of compact maximal antichains of X. We let s#(X) have its 
relative topology as a subset of 2X. It is known [6] that Min(Z) and Max(X) are in 
s/(X) if and only if they are closed subsets of X. 

The following two results appear in [1]: 

THEOREM B. Let (X, < ) be a partially ordered space such that Min(X) and Max{X) 
are closed and J£(X) covers X. For A, B esé(X) define 

AAB = {xeAuB\ L(x) n (A U B) = {x}} 
and 

AvB = {xeAvB\ M(x) n (A U B) = {x}}. 

Then sé(X) with operations A and V is an arcwise connected topological lattice. 
Furthermore, sé{X) covers X. 

THEOREM C. Let (X, < ) be a partially ordered space such that MSLX(X) and 
Min(JT) are closed, disjoint sets and *J£{X) covers X. Then there exists a continuous 
order preserving function fof(X, < ) onto [0, 1] with its usual order such that 

(i) / - 1 (0)=Min(Z) andf-1 (l) = Meix(X) and 
(ii) for each a G [0, \\f-\a) e s/(X). 

The partial order < on a space X is said to be order dense if for each x<y 
there exists z such that x<z<y. It is known [6] that if (X, < ) is a compact, order 
dense, partially ordered space then every chain in X is contained in a member of 
J((X). 

In case there is more than one partial order on a space X we shall write 
MinCT, <) ,Max(Z, <),L(x, <),M(x, <),<Jf(X, < ) a n d j / ( Z , <)forMin(X), 
Max(X), L(x), M(x), J((X) and sé{X) respectively. 

3. Orders on the 2-cell. 

THEOREM 1. Let (X, < ) be a partially ordered space where X is a closed 2-cell. 
Suppose Min(X) and Max(X) are arcs in the boundary S1 of X. If *J({X) covers X 
then *M(X) admits the structure of a compact, connected, topological lattice. 

Proof. Case 1. Suppose Min(X) is disjoint from Max(Z). 

Let F and E be the closures of the two components of S1— (Min(X) U Max(Z)). 
We wish to prove that F and E are in JK(X). Notice that Fand E are arcs which meet 
both Min(Z) and Max(Z). We need only prove that F and E are chains. Let 
x,y eF. We may suppose that x separates y from Min(Z) n F in F. By hypothesis 
there exists Te *£{X) such that xeT. If y G T we are done. If y <£ T then 
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T n M(x) is an arc in the 2-cell X which separates y from Min(X) n L(y). By 
hypothesis there exists S e J((X) such that y e S. Now £ n L(y) is an order arc 
which meets both y and Min(Z) n £(y). Hence, there exists 

zesnL(y) n r n M (x). 

Since x<z<y it follows that x<y and F is a chain. Similarly, E is a chain. 
By Theorem C there is a continuous function/:X-^[0, 1] such t h a t / - 1 ( 0 ) = 

Min(Z), / - 1 ( l )=Max(Z) and for each a e [0, l ] , / - 1 ( a ) G ^ ( X ) . It follows that 
for each a e [0, l ] , / - 1 ( a ) meets each member of JK{X) in precisely one point. 

If a e ]0, 1[, it is clear tha t / - 1 (a ) separates X into precisely two components 
/ - 1 ( [ 0 , a[) and/ - 1 ( ]# , 1]). Furthermore, / - 1^) is arcwise accessible from each of 
these two components. By Theorem II.5.38 in Wilder [8],/ - 1(a) is an arc. Since 
/ _ 1 (a ) is irreducible with respect to separating X it follows that one endpoint of 
f~x(a) is in F and the other is in E. 

For each a e [0, 1] give the arc /^(a) its natural total order with minimal 
point in F n / - 1 ( t f ) . Denote the resulting partial order on X by <". Then x<,ny 
if and only iff(x)=f(y) and x separates y f rom/ - 1 (/(*)) n jFin the arc / - 1 ( / (x)) . 

CLAIM. (X, <") w a partially ordered space. 

Proof of claim. Let x^) and j^) be sequences in X which converge to x and 7 
respectively such that for each /, x t < " j ; . We must prove that x<"y. For each /, 
f(xi)=f(yi) and / i s continuous sof(x)=f(y). Either x<"y oty<"x since f~x{f{x)) 
is linearly ordered with respect to the partial order <". Just suppose y<"*. Let 
teX such that y<"t<"x. By hypothesis there exists TeJXÇX, <>) such that 
f e 7*. The arc T separates x and y in X. The sequence xt) (resp. j^)) is eventually 
in the same component of X— T as is x (resp. y) since X is locally connected. 
Also, F n / - 1 ( / ( X ) ) is eventually in the same component of X—T as F n 
/ - 1 ( / ( x ) ) and j . Since for each /, / _ 1 ( / ( ^ ) ) meets T in precisely one point, it 
follows that eventually y^'x^ This is a contradiction. Thus x<"y and the claim 
is proved. 

Clearly, J((X, < ) < = J / ( X , <")• By Theorem A J((X, < ) is compact. By 
Theorem B jtf(X, <") is a topological lattice. We must prove that ~#(X, < ) is 
actually a sublattice of J / ( Z , <"). If S, TeJ((X, < ) then Tk S and TV S 
are in s/(X, <") since s/(X, <") is a lattice. In particular TV S and TA S are 
compact subsets of X. The continuous function/takes each of the compact sets 
TA S and T V S by a one-to-one correspondence onto [0,1]. Hence, T'A S 
and T V S are arcs. We check that T A S and T V S are chains with respect to < . 
Let x9 y e T A S. We may suppose tha t / (x)</ ( j ) . If x, y e T then # < j ; since T 
is a chain. Suppose, therefore, that x e S— T and y e T—S. Let z be the maximal 
element of the compact chain 

(TAS)nsn/^([0,/(y)D. 
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Then z e T n S since f~Kf{z)) n (T A S)={z}> T A S is compact and 

(TAS)nn [ / ( z ) , /W] )cT . 
Hence, x<z<y and T A S is a chain with respect to < . Since T A S is a compact, 
connected chain which meets both Min(X, < ) and Max(Z, < ) it follows that 
TA SE JZ{X, < ) . Similarly, r V S e *Jf(X, < ) . 

For T,Se Jf(Xf < ) define T< *S if and only if T A S = T. Then (uT(AT, < ) , 
<* ) is a partially ordered space. We shall prove that < * is order dense. Let 
S, Te^(X, < ) such that TA S=S and S^T. Let a e [0, 1] such t h a t / ^ O ) n 
Sjéf-i(a) n r and let 6 ef-^a) such that 

/ - » n s < " i ) < 7 » n T. 
By hypothesis there exists P e J£(X, < ) such that be P. Let J R = ( 5 V P) AT. 

Then beRe*Jf(X, < ) . Notice that TA R=R and RAS=S. Hence, 5 < * 
P<*T. Thus, < * is order dense. Since Fis the unique minimal element in the par
tially ordered space (^#(X, < ) , <* ) , ~#(X, <*) is connected by the remarks 
following Theorem C. 

Case 2. Suppose Min(X, < ) n Max(X, < ) is non-void. Make the disjoint 
union of X and Max(X, < ) x [ 0 , 1] into a partially ordered space by setting 
*<;> in X U (Max(X, < ) x [0, 1]), if: 

(a) x, y e X and x<y 
(b) x e l and y= (a, b) e Max(Z, < ) X [0, 1] where x<a in X or 
(c) x=(a9 b) and j = ( c , d) are in Max(X, < ) x [0, 1], a=c and b<din [0, 1]. 

Form the adjunction space X' of Xand Max(X, < ) X [0,1] by identifying (m, o) and 
m for each m e Max(Z, < ) . The partial order < ' o n l U (Max(Jf, < ) x [0, 1] 
induces a partial order < ° on X' such that (X', <°) satisfies the hypotheses of the 
theorem. Notice that Min(X', <°)=Min(X, < ) and Max(X', <°)=Max(Z, < ) x 
{1}. By Case 1 ^f(X\ <°) is a compact, connected topological lattice. It is easy 
to see that *Jf(X, < ) is homeomorphic and isomorphic to J((X\ <°) under the 
correspondence that takes a member A of ^K(X'', <°) to the unique member B 
of JK(X, < ) such that B^A. 

The following theorem was proved in [1]. 

THEOREM D. Let (X, < ) be a partially ordered space. Suppose there exists a 
function h: [0, 1]->^(X) such that X= \J{h{a) \ a e [0, 1]} and ifa<b<c in [0, 1] 
then h(a) n h(c)<^h(b). IfXis non-degenerate and has no cutpoints then X is a 2-cell. 

It is shown in the proof of Theorem D that if < is a closed partial order on the 
2-cell D then in order that there exist a function h: [0, \\->JK(D) as in the above 
theorem it is necessary that Min(Z>) and Max(Z)) be closed, connected sets in the 
boundary of D and that JP{D) cover D. We shall show that these conditions are 
also sufficient. 
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COROLLARY 2. Let < be a closed partial order on a 2-cell D such that JK(D) 
covers D and Min(D) and Max(D) are closed and connected sets in the boundary 
of D. Then there exists a continuous function h:[0, l]-^JK{D) such that D= 
U{A(a) | a G [0, 1]} and ifa<b<c in [0, 1] then h(a) n h(c)^h(b). 

Proof. ~#(D) is a compact topological lattice and thus JK{D) has a zero F 
and a unit E. By Theorem 1 JK{D) is connected. By Koch's Theorem (see [5]) 
there is an order arc C in *Jf(D) such that F, EeC Let h: [0, 1]->C be a one 
to one continuous function such that A(0)=jFand h(l)=E. From the definition of 
order in JK{D) it is clear that if a<b<c in [0, 1] then h(a) n h(c)<^h(b). It 
remains to show only that D= U{h(a) \ae[0, 1]}. 

Let x e D and let R e s/(D) such that x e R by Theorem B. It is easy to see that 
for each a G [0, 1], h{a) n R consists of exactly one point. Define g: [0, l]-+R 
by letting g(a) e h(a) n R for each a e [0, 1]. Then g is easily seen to be a con
tinuous function. By the proof of Theorem 1 R is an arc with endpoints in F and 
E. Hence g(0) G F and g(l) G £. Thus, g maps [0, 1] onto R and x e u{h(a) | a G 

[0, 1]}. 
Let (D \ < ' ) be the unit square [0, 1] x [0, 1] in the plane with the partial order 

(a, b)<'(c, d) if and only if a=c and b<d in [1, 1]. 

COROLLARY 3. Let (D, < ) be a partially ordered space such that D is a 2-cell, 
*df(L>, < ) covers D and Min(D, < ) and Max(Z>, < ) are closed disjoint arcs in the 
boundary of D. There is an order preserving continuous function g of(D\ < ' ) onto 
(D, < ) such that 

(i) g-HMaxCD, <))=Max(2)\ < ' ) 
(ii) g-KMin(D, <))=Min(2) \ < ' ) 
(hi) g takes every member of JK(D', < ' ) homeomorphically onto a member of 

J({D, < ) . 
(iv) for x G D g~x{x) is either a point or a horizontal line segment in D'. 

Proof. Let/ :D->[0, 1] be a function satisfying the conditions of Theorem C. 
Let h:[0, 1 ]->*#(!>, < ) be a function satisfying the conditions of Corollary 2. 
Define g : (D\ <')-+(D, < ) by letting g(a, b) be the unique point in h(a) n / _ 1 ( ô ) 
for each (a, b) G D'= [0, 1] x [0, 1]. 

If (i)? < ) and g are as in Corollary 3, there is a smallest partial order < * on D 
such that g is order preserving with respect to < * and < * has a closed graph. 
Clearly <*<=<, J((D, <*) covers D, Min(i), <*)=Min(Z>, < ) and Max(D, 
<*)=Max(D, < ) . Thus we have extracted from < a partial order < * which is 
moderately large and which is well understood since it is completely determined by 
the function g. 
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