# RANDOMLY $k$-AXIAL GRAPHS 

David Burns, Gary Chartrand, S.F. Kapoor and Farrokh Saba

A class of graphs called randomly $\mathcal{k}$-axial graphs is introduced, which generalizes randomly traceable graphs. The problems of determining which bipartite graphs and which complete $n$-partite graphs are randomly $k$-axial are studied.

A graph $G$ was defined to be randomly traceable in [1] if, for each vertex $v$ of $G$, every path with initial vertex $v$ can be extended to a hamiltonian path with initial vertex $v$. Equivalently, a graph of order at least 3 is randomly traceable if every path of $G$ is contained in some hamiltonian cycle of $G$. It was proved in [1] that a graph $G$ of order $p$ is randomly traceable if and only if $G$ is isomorphic to $K_{p}, C_{p}$ or $K(p / 2, p / 2)$, where in the last case $p$ is even. In this paper we consider a generalization of randomly traceable graphs.

DEFINITION OF RANDOMLY $k$-AXIAL GRAPHS. Let $G$ be a graph and $k$ an integer such that $1 \leq k \leq \delta(G)$. Let $v$ be an arbitrary vertex of $G$ and let $v_{11}, v_{12}, \ldots, v_{1 k}$ be any $k$ distinct vertices adjacent to $v$. Define the set

$$
L_{1,0}=\left\{v, v_{11}, v_{12}, \ldots, v_{1 k}\right\}
$$

If $L_{\perp, 0} \neq V(G)$, let $v_{21}$ be any vertex not in $L_{1,0}$ that is adjacent to $v_{11}$ and define $L_{1,1}=L_{1,0} \cup\left\{v_{21}\right\}$. We now define sets $L_{m, n}$ (having

Received 14 October 1980. Dr Chartrand's research was supported in part by a Western Michigan University faculty research fellowship. The authors thank Carsten Thomassen for his valuable comments and suggestions which led to an improved paper.
cardinality $1+m k+n$ ) inductively for certain positive integers $m$ and nonnegative integers $n$ for which $0 \leq n \leq k-1$. If a set $L_{m, n} \subseteq V(G)$ has been defined, where $0 \leq n \leq k-2$, and $L_{m, n} \neq V(G)$, let $v_{m+1, n+1}$ be any vertex adjacent to $v_{m, n+1}$ such that $v_{m+1, n+1} \notin L_{m, n}$ and define

$$
L_{m, n+1}=L_{m, n} \cup\left\{v_{m+1, n+1}\right\}
$$

If a set $L_{m, k-1} \subseteq V(G)$ has been defined and $L_{m, k-1} \neq V(G)$, let $v_{m+1, k}$ be any vertex adjacent to $v_{m, k}$ such that $v_{m+1, k} \neq L_{m, k-1}$ and define

$$
L_{m+1,0}=L_{m, k-1} \cup\left\{v_{m+1, k}\right\}
$$

If every such set $L_{m, n}$ is defined and every such sequence $L_{m, n}$ has $V(G)$ as its final term, then we say that $G$ is randomly $k$-axial. If $r$ is a positive integer for which the vertices $v_{r l}, v_{r 2}, \ldots, v_{r k}$ are defined, we denote the set $\left\{v_{r 1}, v_{r 2}, \ldots, v_{r k}\right\}$ by $L_{r}$ and refer to it as a level set or, more simple, as a level.

A more intuitive definition of randomly $k$-axial graphs can be given with the aid of the following terms. A random extension of a path $P: v_{1}, v_{2}, \ldots, v_{n}$ in a graph is a path $P^{\prime}: v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ where $v_{n+1}$ is any vertex of the graph adjacent to $v_{n}$ that does not belong to $P$. A collection of paths, each with initial vertex $u$, is called internally disjoint if every two paths in the collection have only the vertex $u$ in common.

A graph $G$ is then randomly $k$-axial $(1 \leq k \leq \delta(G))$ if for each vertex $v$ of $G$, any ordered collection of $k$ paths in $G$ of length 1 having initial vertex $v$ can be cyclically randomly extended to produce $k$ internally disjoint paths whose lengths are as equal as possible and which contain all the vertices of $G$.

It thus follows that the randomly l-axial graphs are precisely the randomly traceable graphs. Indeed, we also have the following.

PROPOSITION 1. A graph $G$ with $\delta(G) \geq 2$ is randomly 2 -axial if and only if $G$ is randomly traceable.

Proof. If $G$ is randomly traceable of order $p$, then $G$ is isomorphic to one of the graphs $K_{p}(p \geq 3), C_{p}$ or $K(p / 2 ; p / 2)$, where $p$ is even and $p \geq 4$. It follows immediately that each of these graphs is randomly 2-axial.

Suppose that $G$ is a randomly 2 -axial graph, and let $P$ be an arbitrary path of $G$. Then $P$ can be labelled as

$$
P: v_{r 1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}, v_{22}, \ldots, v_{r 2}
$$

or

$$
P: v_{r 1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}, v_{22}, \ldots, v_{r-1,2},
$$

according to whether $P$ has even length or odd length, respectively. Since $G$ is randomly 2-axial, the vertices of $G$ can be listed as

$$
v_{m 1}, v_{m-1,1}, \ldots, v_{r 1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}, v_{22}, \ldots, v_{r 2}, \ldots, v_{m 2}
$$

or
$v_{m 1}, v_{m-1,1}, \ldots, v_{r 1}, v_{r-1,1}, \ldots, v_{11}, v, v_{12}$,

$$
v_{22}, \ldots, v_{r 2}, \ldots, v_{m-1,2},
$$

where consecutive vertices are adjacent, producing a hamiltonian path $Q$ of $G$ in either case. Thus $P$ is contained in $Q$ and, consequently, every path of $G$ is contained in a hamiltonian path of $G$. By a result of Thomassen [2], $G$ belongs to a class of graphs containing the randomly traceable graphs as a proper subclass. Among all these graphs, however, only the randomly traceable graphs of order at least 3 are randomly 2-axial. Thus $G$ is randomly traceable.

It therefore follows that the only randomly 2 -axial graphs are $K_{p}$ $(p \geq 3), C_{p}$ and $K(n, n), n \geq 2$. It is obvious that $K_{p}$ is randomly $k$-axial for every $k$ with $1 \leq k \leq p-1$. We have already noted that the graph $K(6,6)$ is both randomly l-axial and randomly 2-axial. It is not difficult to verify that $K(6,6)$ is also randomly 3-axial. However, $K(6,6)$ is not randomly 4-axial; for consider the labelling of $K(6,6)$ shown in Figure 1. Note that, as in the definition of randomly 4-axial graphs, $L_{2,2}$ is defined and $L_{2,2} \neq V(K(6,6))$; however, there is no

vertex $v_{33} \notin L_{2,2}$ such that $v_{33}$ is adjacent to $v_{23}$; that is, $L_{2,3}$ is not defined. Thus, the sequence $\left\{L_{m, n}\right\}$ does not have $V(K(6,6))$ as its final term, thereby implying that $K(6,6)$ is not randomly 4 -axial. On the other hand, $K(6,6)$ is both randomly 5-axial and randomly 6-axial. All these facts will become clear shortly as we begin our study of bipartite randomly $k$-axial graphs.

PROPOSITION 2. Let $G$ be a bipartite graph with partite sets $V_{1}$ and $V_{2}$ such that $n_{1}=\left|V_{1}\right| \leq\left|V_{2}\right|=n_{2}$. If $G$ is randomly k-axial, $3 \leq k \leq n_{1}$, then $n_{1}=n_{2}$ where $n_{1} \equiv 0(\bmod k)$ or $n_{1} \equiv 1(\bmod k)$.

Proof. Assume, to the contrary, that $n_{1}<n_{2}$. Then $n_{2}=n_{1}+u$, where $u \geq 1$. By the division algorithm, we can write $n_{1}=a k+b$, where $a \geq 1$ and $0 \leq b<k$.

Let $v \in V_{2}$ and apply the definition of randomly $k$-axial graphs to obtain a labelling of the vertices of $G$. For $i=1,2, \ldots, a$, define

$$
U_{i}=\left\{v_{2 i-1,1}, v_{2 i-1,2}, \ldots, v_{2 i-1, k}\right\}
$$

and

$$
W_{i}=\left\{v_{2 i, 1}, v_{2 i, 2}, \ldots, v_{2 i, k}\right\}
$$

Write

$$
V_{1}=U_{1} \cup U_{2} \cup \ldots \cup U_{a} \cup B
$$

$$
\begin{equation*}
\text { Randomly } k \text {-axial graphs } \tag{147}
\end{equation*}
$$

and

$$
v_{2}=\{v\} \cup W_{1} \cup W_{2} \cup \ldots \cup W_{a} \cup A,
$$

where $|A|=u+b-1$ and $|B|=b$. Since $|B|=b<k$, we must have $A=\varnothing$; otherwise, $L_{2 a, b}$ is the final term in the sequence $\left\{L_{m, n}\right\}$, but $L_{2 a, b} \neq V(G)$, contradicting the fact that $G$ is randomly $k$-axial. Thus $u+b-1=0$, implying that $u=1$ and $b=0$ since $u \geq 1$ and $b \geq 0$. Hence $n_{2}=n_{1}+1$.

Next let $v \in V_{1}$ and once again apply the definition of randomly $k$-axial graphs to obtain a labelling of the vertices of $G$. For $i=1,2, \ldots, a$, define

$$
w_{i}=\left\{v_{2 i-1,1}, v_{2 i-1,2}, \ldots, v_{2 i-1, k}\right\}
$$

and for $i=1,2, \ldots, \alpha-1$, define

$$
u_{i}=\left\{v_{2 i, 1}, v_{2 i, 2}, \ldots, v_{2 i, k}\right\}
$$

Write

$$
v_{1}=\{v\} \cup U_{1} \cup U_{2} \cup \ldots \cup U_{a-1} \cup B
$$

and

$$
v_{2}=W_{1} \cup W_{2} \cup \ldots \cup W_{a} \cup A,
$$

where $|B|=k-1$ and $|A|=1$. The last term in the sequence $\left\{L_{m, n}\right\}$ is then $L_{2 a-1, k-1}$; however, $L_{2 a-1, k-1} \neq V(G)$, contradicting the fact that $G$ is randomly $k$-axial. Hence we conclude that $n_{1}=n_{2}$.

We now show that $n_{1} \equiv 0(\bmod k)$ or $n_{1} \equiv 1(\bmod k)$. Recall that $n_{1}=a k+b$, where $a \geq 0$ and $0 \leq b<k$.

Let $v \in V_{1}$. Since $G$ is randomly $k$-axial, a labelling of $V(G)$ is produced. For $i=1,2, \ldots, a$, define

$$
w_{i}=\left\{v_{2 i-1,1}, v_{2 i-1,2}, \ldots, v_{2 i-1, k}\right\}
$$

and for $i=1,2, \ldots, a-1$, define

$$
u_{i}=\left\{v_{2 i, 1}, v_{2 i, 2}, \ldots, v_{2 i, k}\right\}
$$

Write

$$
V_{1}=\{v\} \cup U_{1} \cup U_{2} \cup \ldots \cup U_{a-1} \cup U_{a} \cup B
$$

and

$$
V_{2}=W_{1} \cup W_{2} \cup \ldots \cup W_{a} \cup A
$$

where $|A|=b$. If $b=0$, then $B=\emptyset$ and $\left|U_{a}\right|=k-1$; if $b \geq 1$, then $|B|=b-1$ and $\left|U_{a}\right|=k$.

Suppose $b \geq 1$. Then the final term of the sequence $\left\{L_{m, n}\right\}$ is $L_{2 a, b}$. Since $G$ is randomly k-axial, $L_{2 a, b}=V(G)$; hence $B=\emptyset$ and $b=1$.

Thus $b=0$ or $b=1$, completing the proof.
It therefore follows that the partite sets of a bipartite, randomly $k$-axial graph have the same cardinality. Further, this cardinality is either divisible by $k$ or gives a remainder of $l$ when divided by $k$. In the first of these cases we can say much more.

THEOREM 1. If $G$ is a randomly $k$-axial graph $(k \geq 3)$ of order $p$, where $2 k \mid p$, then either $G \cong K_{p}$ or $G \cong K(p / 2, p / 2)$.

Proof. Let $m=p / k$ and let $v_{0} \in V(G)$. A-plying the definition of randomly $k$-axial graphs to $G$ with $v=v_{0}$, we obtain a labelling of the vertices of $G$ (as in the definition) and $L_{m-1, k-1}=V(G)$. This implies that $G$ contains the edges indicated in Figure 2. The levels $L_{1}, L_{2}, \ldots, L_{m-1}$ are as indicated and define $L_{m}^{*}=\left\{v_{m 1}, v_{m 2}, \ldots, v_{m, k-1}\right\}$ :

Let $i$ be given, $1 \leq i \leq k-1$; we show that the vertex $v_{m-1, k}$ is adjacent to $v_{m, i}$. This is accomplished by a relabelling of $V(G)$. Relabel $v_{a k}(1 \leq a \leq m-1)$ as $u_{a, k-1}$, relabel $v_{b i}(1 \leq b \leq m-1)$ as $u_{b k}$ and relabel $v_{c, k-1}(1 \leq c \leq m)$ as $u_{c i}$. Further, relabel $v_{0}$ as


FIGURE 2
$u$ and any $v_{r s}$, except $v_{m i}$, not already relabelled as $u_{r s}$. We now apply the definition of randomly $k$-axial graphs to $G$ (where $v$ and $v_{r s}$ in the definition are replaced by $u$ and $u_{r s}$ ). It follows that the vertex $v_{m i}$ must now receive the label $u_{m, k-1}$ and, therefore, $u_{m-1, k-1}$ is adjacent to $u_{m, k-1}$ or, equivalently, $v_{m-1, k}$ is adjacent to $v_{m i}$. Since $i \quad(1 \leq i \leq k-1)$ is arbitrary, $v_{m-1, k}$ is adjacent to $v_{m i}$ for every $i, 1 \leq i \leq k$.

Next, let $j$ be given, $1 \leq j \leq k-1$. We show that $v_{m-1, j}$ is adjacent to $v_{m i}$ for every $i, 1 \leq i \leq k$. This is accomplished by
another relabelling of $V(G)$. For $1 \leq a \leq m-1$, relabel $v_{a j}$ as $w_{a k}$ and $v_{a k}$ as $w_{a j}$. Also, relabel $v_{0}$ as $w$ and relabel any $v_{r \varepsilon}$ not already relabelled as $w_{r s}$. By the argument of the preceding paragraph, it follows that $w_{m-1, k}$ is adjacent to $w_{m i}$ for every $i, 1 \leq i \leq k-1$, or, equivalently, $v_{m-l, j}$ is adjacent to $v_{m i}$ for every $i$, $1 \leq i \leq k-1$. Since $j$ is arbitrary, we conclude that every vertex of $L_{m-1}$ is adjacent to every vertex of $L_{m}^{*}$. In general, we now know that if $v$ is any vertex of $G$ with level $L_{m-1}$ and set $L_{m}^{*}$ as defined above, then every vertex of $L_{m-1}$ is adjacent to every vertex of $L_{m}^{*}$. Therefore, $G$ contains the edges indicated in Figure 3.


FIGURE 3

Our next step is to show that every vertex of $L_{1}$ is adjacent to every vertex of $L_{2}$. Relabel $v_{m-1, k}$ as $v^{\prime}$ and for each $j$, $1 \leq j \leq k-1$, relabel $v_{m+l-i, j}$ as $v_{i, j}^{\prime}$ for $1 \leq i \leq m$. Also, let $v_{i, k}^{\prime}=v_{m-1-i, k}$ for $1 \leq i \leq m-2$ and let $v_{m-1, k}^{\prime}=v_{0}$. Applying the definition of randomly $k$-axial graphs to $G$ (with $v$ and $v_{r s}$ replaced by $v^{\prime}$ and $v_{r s}^{\prime}$ ) we obtain the corresponding level set
$L_{m-1}^{\prime}=\left\{v_{21}, v_{22}, \ldots, v_{2, k-1}, v_{0}\right\}$ and set
$\left(L_{m}^{\prime}\right) *=\left\{v_{11}, v_{12}, \ldots, v_{1, k-1}\right\}$. From above, we know that every vertex of $L_{m-1}^{\prime}$ is adjacent to every vertex of $\left(L_{m}^{\prime}\right) *$. By repeating this process twice more, say
(1) by relabelling $v_{m-1,1}$ as $v^{\prime}$ and
(2) by relabelling $v_{m-1,2}$ as $v^{\prime}$,
we conclude that every vertex of $L_{1}$ is adjacent to every vertex of $L_{2}$. The graph $G$ now contains the edges as indicated in Figure 4.


FIGURE 4

Next we show that every vertex of level $L_{1}$ is adjacent to every vertex of set $L_{m}^{*}$. This can be accomplished by relabelling $v_{m, k-1}$ as $v^{\prime \prime}$. It is possible to relabel other vertices of $G$ so that the corresponding levels $L_{1}^{\prime \prime}, L_{2}^{\prime \prime}, \ldots, L_{m-1}^{\prime \prime}$ are produced, where

$$
L_{i}^{\prime \prime}=\left\{v_{m-i, 1}, v_{m-i, 2}, \ldots, v_{m-i, k}\right\}=L_{m-i}
$$

for $1 \leq i \leq m-1$. Further,

$$
\left(L_{m}^{\prime \prime}\right) *=\left\{v_{m 1}, v_{m 2}, \ldots, v_{m, k-2}, v_{0}\right\}
$$

From the argument given above, every vertex of $L_{m-1}^{\prime \prime}$ is adjacent to every vertex of $\left(L_{m}^{\prime \prime}\right)^{*}$. If we now repeat this argument, where $v_{m, Z}$ $(1 \leq 2 \leq k-2)$ is relabelled as $v^{\prime \prime}$ and levels $L_{1}^{\prime \prime}, L_{2}^{\prime \prime}, \ldots, L_{m-1}^{\prime \prime}$ are produced exactly as above, then we see that $v_{m, k-1}$ is also adjacent to every vertex of $L_{m-1}^{\prime \prime}$; hence, every vertex of $L_{1}$ is adjacent to every vertex of $L_{m}^{*}$.

Our next step is to show that $v_{0}$ is adjacent to every vertex of $L_{m-1}$. Relabel $v_{m, k-1}$ as $v^{\prime \prime \prime}$. Other vertices of $G$ can be relabelled so that corresponding levels $L_{1}^{\prime \prime \prime}, L_{2}^{\prime \prime \prime}, \ldots, L_{m-1}^{\prime \prime \prime}$ are produced, where $L_{i}^{\prime \prime \prime}=L_{i}$ for $1 \leq i \leq m-1$. Moreover,

$$
\left(L_{m}^{\prime \prime}\right) *=\left\{v_{m 1}, v_{m 2}, \ldots, v_{m, k-2}, v_{0}\right\}
$$

Since every vertex of $L_{m-1}^{\prime \prime \prime}$ is adjacent to every vertex of $\left(L_{m}^{\prime \prime \prime}\right) *$, it follows that $v_{0}$ is adjacent to every vertex of $L_{m-1}$.

Define $L_{m}=L_{m}^{*} \cup\left\{v_{0}\right\}$. We have shown that every vertex of $L_{m}$ is adjacent to every vertex of $L_{m-1}$ and to every vertex of $L_{1}$. Applying the previous arguments and the definition of randomly $k$-axial graphs with $v$ selected from $L_{1}$, we see that every vertex of $L_{1}$ is adjacent to every vertex of $L_{m}$ and to every vertex of $L_{2}$. Continuing this procedure, it follows that every vertex of $L_{i}$ is adjacent to every vertex
of $L_{i-1}$ and to every vertex of $L_{i+1}(i=1,2, \ldots, m)$, where the subscripts are expressed modulo $m$.

We now show that $G$ contains $K(p / 2, p / 2)$ as a subgraph. If $m=2$ or $m=4$, this already follows. Thus we assume that $m \geq 6$. We show that every vertex of $L_{i}(1 \leq i \leq m)$ is adjacent to every vertex of $L_{i+3}$, where the subscripts are expressed modulo $m$. For convenience, let $x$ denote any vertex of $L_{2}$ (see Figure 5). Applying the definition of randomly $k$-axial graphs, we can obtain the labelling of the vertices of $G$ shown in Figure 5. Note that a vertex of $G\left(\right.$ in $\left.L_{2}\right)$ has not yet been labelled. Since $G$ is randomly $k$-axial, this vertex must be labelled $x_{m, k-1}$. Since $x_{m, k-1}$ must be adjacent to $x_{m-1, k-1}$ and $x_{m-1, k-1} \in L_{5}$, it follows, because of symmetry, that for each $i$ ( $1 \leq i \leq m$ ), every vertex of $L_{i}$ is adjacent to every vertex of $L_{i+3}$, where, as always, the subscripts are expressed modulo $m$.

$$
\text { If } m=6 \text { or } m=8 \text {, then } G \text { contains } K(p / 2, p / 2) \text { as a subgraph. }
$$ If $m \geq 10$, we use the known edges of $G$ and the fact that $G$ is randomly $k$-axial to produce yet another labelling of the vertices of $G$. Relabel vertex $x$ as $y$, vertex $x_{m-1, k-1}$ as $y_{m-3, k-1}$ and vertex $x_{m-3, k-1}$ as $y_{m-1, k-1}$. Every other vertex $x_{r s}$ is relabelled $y_{r s}$. Since $G$ is randomly $k$-axial, the unlabelled vertex in $L_{2}$ must be $y_{m, k-1}$ and is adjacent to $y_{m-1, k-1}$. By symmetry, we conclude that every vertex of $L_{i}$ is adjacent to every vertex of $L_{i+5}$.

If $m=10$ or $m=12$, we have now shown that $G$ contains $K(p / 2, p / 2)$ as a subgraph. If $m \geq 14$, we again use the known edges of $G$ and the fact that $G$ is randomly $k$-axial to obtain a new labelling of $V(G)$. Relabel $y$ as $z$, vertex $y_{m-1, k-1}$ as $z_{m-5, k-1}$ and $y_{m-5, k-1}$ as $z_{m-1, k-1}$. By the same reasoning as above, one can now show that every vertex of $L_{i}$ is adjacent to every vertex of $L_{i+7}$ for all $i$. Continuing this procedure, we see that every vertex of $L_{i}$ is adjacent to every vertex of $L_{j}(1 \leq i, j \leq m)$, where $i$ and $j$ are of opposite

|  | $x_{11}$ | $x_{12}$ |  | $x_{1, k-3}$ | $x_{1, k}$ | $x_{3, k}$ | $x_{1, k-1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $L_{1}$ | 0 | 0 | $\cdots$ | 0 | 0 | 0 | 0 |

$$
\begin{array}{cccccccc} 
& x_{21} & x_{22} & & x_{2, k-3} & x_{2 k} & x & \\
L_{2} & 0 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{31} & x_{32} & & x_{3, k-3} & x_{3, k-2} & x_{1, k-2} & x_{5, k-2} \\
L_{3} & 0 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{41} & x_{42} & & x_{4, k-3} & x_{4, k-2} & x_{6, k-2} & x_{2, k-2} \\
L_{4} & 0 & 0 & \cdots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{51} & x_{52} & & x_{5, k-3} & x_{m-1, k} & x_{7, k-2} & x_{m-1, k-1} \\
L_{5} & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{61} & x_{62} & & x_{6, k-3} & x_{m-2, k} & x_{8, k-2} & x_{m-2, k-1} \\
L_{6} & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{71} & x_{72} & & x_{7, k-3} & x_{m-3, k} & x_{9, k-2} & x_{m-3, k-1} \\
L_{7} & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
& x_{m-2,1} & x_{m-2,2} & & x_{m-2, k-3} & x_{6 k} & x_{m, k-2} & x_{6, k-1} \\
L_{m-2} & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{m-1,1} & x_{m-1,2} & & x_{m-1, k-3} & x_{5 k} & x_{3, k-1} & x_{5, k-1} \\
L_{m-1} & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

$$
\begin{array}{cccccccc} 
& x_{m 1} & x_{m 2} & & x_{m, k-3} & x_{4 k} & x_{2, k-1} & x_{4, k-1} \\
L_{m} & 0 & 0 & \ldots & 0 & 0 & 0 & 0
\end{array}
$$

FIGURE 5
parity. Hence $G$ contains $K(p / 2, p / 2)$ as a subgraph.
If $G$ contains only the edges of the subgraph $K(p / 2, p / 2)$, then, of
course, $G \cong K(p / 2, p / 2)$. Suppose then that $G$ contains an edge $e$ not belonging to the subgraph $K(p / 2, p / 2)$. We show that $G \cong K_{p}$.

Let $V_{1}$ and $V_{2}$ denote the partite sets of the subgraph $K(p / 2, p / 2)$, where, say, $v_{0} \in V_{1}$. Thus

$$
V_{1}=\bigcup_{i=1}^{m / 2} L_{2 i} \quad \text { and } \quad V_{2}=\bigcup_{i=1}^{m / 2} L_{2 i-1}
$$

Without loss of generality, we may assume that $e=a b$, where $a=v_{m-2, k}$ and $b=v_{m, k-1}$ (see Figure 2). Let $c, d \in V_{2}$. The proof will be complete once it is shown that $c d \in E(G)$. Again, without loss of generality, we may assume that $c=v_{m-1, k-1}$ and $d=v_{m-1, k}$. We relabel $G$ as follows. Since $a b \in E(G)$, we can relabel $b$ as $\bar{v}_{m-1, k}, v_{0}$ as $\bar{v}_{0}$ and all other $v_{r s}$ except $v_{m-1, k}(=d)$ as $\bar{v}_{r s}$. Since $G$ is randomly $k$-axial, $d$ must be labelled $\bar{v}_{m, k-1}$; however, $\bar{v}_{m-1, k-1}$ must be adjacent to $d$, but $\bar{v}_{m-1, k-1}=c$.

Combining the previous two results, we have an immediate corollary.
COROLLARY. Let $G$ be a bipartite, randomly $k$-axial graph ( $k \geq 3$ ) whose partite sets have cardinality $n$. If $n \equiv 0(\bmod k)$, then $G \cong K(n, n)$.

The graph $K(n, n)$, where $n \equiv 1(\bmod k)$ and $k \geq 3$, is readily seen to be randomly $k$-axial. Thus, the complete bipartite, randomiy $k$-axial graphs are completely determined.

PROPOSITION 3. The complete bipartite graph $K\left(n_{1}, n_{2}\right)$ is randomly $k$-axial $(k \geq 3)$ if and only if $n_{1}=n_{2}$ and $n_{1} \equiv 0,1(\bmod k)$.

We conjecture that every bipartite, randomly $k$-axial graph $(k \geq 3)$ is complete bipartite.

CONJECTURE 1. Let $G$ be a bipartite, randomly $k$-axial graph $(k \geq 3)$ whose partite sets have cardinality $n$, where $n \equiv 1(\bmod k)$. Then $G \cong K(n, n)$.

In the case of complete tripartite graphs we have the following
result. The proof, which we omit, proceeds by case study.
PROPOSITION 4. For $k \geq 2$, the graph $K\left(n_{1}, n_{2}, n_{3}\right)$ is randomly $k$-axial if and only if $n_{1}=n_{2}=n_{3}=k / 2$.

It is not difficult to verify that one of the implications of Proposition 4 can be extended, namely, for $t \geq 3$, the complete $t$-partite graph $K(d, d, \ldots, d)$ is randomly $k$-axial for all $d \geq 1$ and $k=(t-1) d$. We conjecture that the converse is also true.

CONJECTURE 2. For $k \geq 2$ and $t \geq 3$, the graph $k\left(n_{1}, n_{2}, \ldots, n_{t}\right)$ is randomly $k$-axial if and only if $n_{1}=n_{2}=\ldots=n_{t}=k /(t-1)$.

Finally, we conjecture that every randomiy $k$-axial graph ( $k \geq 3$ ) is a regular complete multipartite graph.

## References

[1] Gary Chartrand and Hudson V. Kronk, "Randomly traceable graphs", SIAM J. Appl. Math. 16 (1968), 696-700.
[2] Carsten Thomassen, "Graphs in which every path is contained in a Hamilton path", J. reine angew. Math. 268/269 (1974), 271-282.

Professor D. Burns,
Department of Mathematics, School of General Education, Ferris State College, Big Rapids, Michigan 49307, USA;

Professor G. Chartrand, Professor S.F. Kapoor and Mr F. Saba, Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008, USA.

