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Abstract

This paper is concerned with the oscillation of first-order delay differential equations

where p(t) and z{t) are piecewise continuous and nonnegative functions and r(/) is non-
decreasing. A new oscillation criterion is obtained.

1. Introduction

We are concerned with delay differential equations of the form

(r(O) = O, t > r0, (1.1)

where p(t) > 0 is a piecewise continuous function and x(t) is a nondecreasing
piecewise continuous function, r(r) < t for t > t0 and lim,-,,*, r(r) = oo.

As is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily
large zeros. Hereafter for convenience we shall assume that inequalities and equations
about values of functions are satisfied eventually for all large t.

Two well-known oscillation criteria for (1.1) are, respectively,

f 1
a := liminf / p(s)ds > - (1.2)

'~*°° Jt(i) £

P := limsup / p(s)ds > 1 (1.3)
/-»oo Jz(t)

and
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(see [9,11]). Concerning the constant l/e in (1.2), it is pointed out in [9] that if the
inequality

f 1
/ p(s)ds<-

JT(I) e

holds eventually, then (1.1) has a nonoscillatory solution.
It is obvious that there is a gap between the conditions (1.2) and (1.3) when the

limit lim^oo fT(l)p(s) ds does not exist. How to fill the gap is an interesting problem
which has been recently investigated by several authors. See [1-4,6-8,10,12-18].
Of them, the best results are, respectively, the condition

p > ( M )

derived in [6], where kt is the smaller root of the equation

k=ea\ (1.5)

and the condition

f p(t)\n(e f p(s)dsjds = oo (1.6)

obtained in [12] in the case r(r) = t — r, T > 0.
The purpose of this paper is to develop a new oscillation criterion of the form

limsupl min / p(£)d$\ > - ^ - - — (1.7)

for (1.1), which improves (1.3) and is related to but independent of (1.4) and (1.6),
where k\ is the smaller and k2 the greater root of (1.5).

When a = l/e, it is obvious that k\ — X2 — e. In this case, (1.7) reduces to

l min /limsupl min / p (£ ) r f | | > - . (1.8)
I n»<<t J

The constant l/e in the right-hand side of (1.8) is "best possible" and cannot be
further improved. Furthermore, the left-hand side of (1.8) cannot be weakened to
0 = lim sup ,^ / r ' ( ( ) p(s)ds in general (see [17]).

For a discussion on the significance of oscillation properties in applications, see the
monograph [5, p. 288].
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2. Oscillation criteria for (1.1)

Throughout this section, let or be defined by (1.2) and let k\ be the smaller and X2

the greater root of (1.5).

LEMMA 2.1 ([8]). Assume that (1.1) has an eventually positive solution x(t). Set

7 T -
X(t)

Then

A., < liminf io(r) < *2- (2.1)
1-+OO

LEMMA 2.2. Assume that (1.1) has an eventually positive solution x(t). Set

{x(r(s))
Then

liminffi(O> — • (2.2)
' - • o o

PROOF. Assume, for the sake of contradiction, that (2.2) is not true. Then there
exists an increasing sequence {tn} with tn -*• oo as n ->• oo such that

lim B(tn) = liminf B(0 = /x < —.
n—KX> »->oo X.2

For a given X € (/u,, 1/X2), there exists an integer N > 0 such that

B(tn) <k, n>N. (2.3)

Since —A. In X < In X2/k2 = a, it follows from the definition of a that there exists an
integer Nt > N such that

/ p(s)ds > -A. In A., f>fWl. (2.4)

Next we prove that

^ \ ^ , r>rW l . (2.5)

In fact, if (2.5) is not true, then by (2.3) there exist an integer n\ > N] and T with
tni < T < tni+x such that

<kforte[T{tn,),T) and
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By (1.1), we have

Jr(T) Jz(T)X(rJr(T)

which contradicts (2.4) and so (2.5) holds. By (2.5), we have

liminf — = liminf w(t) > - > k2,
'-•oo x(t) '-»oo k

which contradicts (2.1) again and so the proof is complete.

THEOREM 2.1. Assume that 0 < a < l/e and

limsupl min / p(l-)ds\ > + * ' - —. (2.6)

Then all solutions of (I. I) oscillate.

PROOF. Assume, for the sake of contradiction, that (1.1) has an eventually positive
solution x(t). For any given 6 e (0, 1), by Lemma 2.1 and (1.2),

f p{s)ds>9a and
Jx(l)

for all sufficiently large t, and consequently for r(t) < s < t

r
Jv(s)

-e)xl + exl f

> exp
\ Jr(s) /

/
.r(i)

t(j)

/ rrd) \

exp X, / p(M)d$ , (2.7)
V JTM )

since f* p(£)d% < 1. Integrating (1.1) from r(r) to r and using (2.7), we obtain

jc(r(O)-Jt(O= f P(s)x(r(s))ds
r(l)

p(s)exp(kl [ p(l-)dt;)ds,
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and so

x(t) f / /"r('' \
I >-~~ + els-l)"' pWexp A, p(l;)dt-)ds. (2.8)

Let t be large enough so that f'x{l)p(s) ds > 6a. Then there exists t* e [r(/), /] such

that/r'*()p(j) = 9a. Thus

r(t) \ JT(S)

>f p{s)ds+ f p(s)\cxp(xl f '
JTV) JZU) L \ Jt{$)

= ! p(s)ds+ [
J

> f p(s)ds + eeak' f p(j)expf-X, f

f'
JTU)

ds - 6a

Substituting this into (2.8), we have

'r(')

It follows that

min

Taking the limit superior as t —*• oo and using Lemma 2.2, we obtain

A,

> limsupf e(1-fl)XlB(f)+ min /

min

Since 0 < 6 < 1 is arbitrarily close to 1, we let 9 -> 1. Then

\ T . twi r l s i ettk'- (\ + aXt) 1 1 + lr.A, 1
j nun / p($)d%\ < 1
[

,. \ T . t w i r l s i
hmsupj nun / p($)d%\ < 1

which contradicts (2.6) and so the proof is complete.
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EXAMPLE. Consider the delay differential equation

x'(t)+p(t)x(t-l)=0, r > l , (2.9)

where r(r) = t — 1 and

\a+\/e, n2<t<n2 + 2,

[ 12

Observe that

1 , ,. . 1 . 1

Lp(s)ds = e

- + a{t-n1) + — , n2<t<n2+l,
e n2 t — 1
- +a, n2 + 1 < t < n2 + 2,

-+a(n2+ 3-t)-\ , n2 + 2< t < n2 + 3,
e t n2 + 2 ~

n2 + 3<t<(n + I)2.
e t(t-iy

Clearly, if a > 0, then

/ " ' I / " I
or = liminf / p(s)ds = -, /} = limsup / p(s)ds = —\-a

and
f f ,, , 1 1 1

limsup { min / p(£)d£ } = - + a > - .
,_«, l'-isi<«y,_, J e e

Thus, according to Theorem 2.1, all solutions of (2.9) oscillate. However, none of the
results mentioned in the introduction can be applied to this equation when a < 0.2313.
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