Long-period Red Variables in the Large Magellanic Cloud from the MOA Database

Mine Takeuti

Astron. Inst., Tohoku Univ., Sendai, 980-8578 Japan

Noda, S.

Solar-Terrestrial Environment Lab., Nagoya Univ., Nagoya, 464-8601 Japan

Abstract. We studied 147 long-period red variable stars in the Large Magellanic Cloud from the MOA database. Amongst them, seven red luminous stars are likely pulsating in a higher mode.

1. **Observation and Reduction**

The MOA is a massive photometry project designed to study the distribution of cosmic dark matter, based on observations of gravitational microlensing events.

¹Solar-Terrestrial Environment Lab., Nagoya Univ., Nagoya, 464-8601 Japan
²Dept. of Physics, Univ. of Auckland, Auckland, New Zealand
³Carter National Obs., Wellington, New Zealand
⁴Dept. of Physics and Astron., Univ. of Canterbury, Christchurch, New Zealand
⁵Inst. Cosmic Ray Research, Univ. of Tokyo, Kashiwa, 277-8582 Japan
⁶Institute for Civilization, Tokai Univ., Tokyo, Japan
⁷KEK, Tsukuba, 305-0801 Japan
⁸Research Inst. Fundamental Physics, Kyoto Univ., Kyoto, 606-8502 Japan
⁹Lower Hutt, New Zealand
¹⁰Nagano Tech. College, Nagano, Japan
¹¹Dept. of Physics, Victoria Univ., Wellington, New Zealand
¹²Tokyo Metropolitan College of Aeronautics, Tokyo, 140-0011 Japan
¹³National Astron. Obs., Mitaka, Tokyo, 181-8588 Japan
Millions of stars in the Large Magellanic Cloud are monitored by using a wide-field camera on a 0.61-m telescope at the Mount John Observatory of Canterbury University on the South Island of New Zealand.

Variable star research with the MOA project has been described in Hearnshaw et al. (2000). In a recent study, we compare our results with those of the WFPC2 of the HST taking the effects of colour into account. Calibration is performed by a careful frame-to-frame check (Kato 2000). Approximately 300 observations, from January 1997 to December 1999, are used. The probable error of the intensity mean, \(\langle V_m \rangle \) and \(\langle R_m \rangle \) is less than \(\pm 0.015 \) mag. We have analysed the \(V_m \) and \(R_m \) periodicity of stars that show a prominent variability by using a folding method, the phase difference minimization. Variables with a period of less than 30 d or with colour \(\langle V_m \rangle - \langle R_m \rangle \) less than 0.4 are omitted. Because our time span is 1060 d, we also omitted stars with periods longer than 400 d. Finally, 147 stars with an amplitude \(\Delta R \) larger than 1.3 mag are selected. Because the blue passband of the MOA system is very broad, the relation among the \(V_m, R_m, \) and \(K \)-magnitudes is different for M-type and C-type stars, due to the effect of the TiO band.

2. Results

The scattering of the period-colour diagram is smaller than in our preliminary report (Takeuti et al. 2000). Among the 147 stars, seven red and short-period variables are separated from the other variables. The \(K \)-magnitude-log \(P \) relation of M-Miras coincides with that presented by Feast et al. (1989). On this diagram, the seven stars form a group separated from the other stars. On the \(K \)-magnitude-colour diagram, the stars locate at the tip of the giant branch. This indicates that the radii of these stars are very large. These large, short-period stars are less regular in their periodicity, and their amplitudes are small. They may be a counterpart of the short period red (SP red) stars found in the study of Hipparcos parallaxes (Whitelock & Feast 2000), and also the stars suggested to be higher mode pulsators (Wood & Sebo 1996; Bedding & Zijlstra 1998).

References

Kato, Y. 2000, Dissertation for Master Degree, Nagoya University (in Japanese)