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Abstract

The process of deterioration of repairable systems with each repair is modeled using
converging geometric-type processes. It is proved that the expectation of the number of
repairs in each interval of time is infinite. A new regularization procedure is suggested
and the corresponding optimization problem is discussed.

Keywords: Geometric process; renewal process; repairable system; renewal function;
minimal repair; overhaul

2010 Mathematics Subject Classification: Primary 60K10
Secondary 60N05

1. Introduction

Deterioration in performance of imperfectly repaired items is often modeled using a stochas-
tically decreasing sequence of lifetimes (cycles). This can be done in various ways. One popular
approach is based on the virtual age concept, which states that after the repair action the age
of a deteriorating item that started operation at t = 0 and failed at t = tf is equal to some
‘younger’, intermediate value tν, 0 ≤ tν ≤ tf . The case in which tν = 0 corresponds to the
perfect repair, whereas tν = tf means that a minimal repair has been performed. Different
models exist for defining this intermediate value. The most popular method employs the linear
reduction of the age at failure (see Kijima (1989), Doyen and Gadoin (2004), and Finkelstein
(2007), to name a few). Note that the corresponding renewal-type process in this case is the
process with dependent interarrival times that are governed by a generic cumulative distribution
function (CDF) F(t). On the other hand, a sequence of stochastically decreasing, independent
lifetimes can also constitute a useful model for the deterioration of repairable items and the
corresponding example will be considered in this paper.

Denote the duration of the ith cycle by Xi ≥ 0, i = 1, 2, . . . , and the corresponding CDF
by Fi(t). Assume that the mean µi = E[Xi] exists, and denote the variance by σ 2

i . Let
µi+1 < µi , which is obviously weaker than the (usual) stochastic ordering:

Xi+1<stXi, i = 1, 2, . . . , (1)

meaning that Fi(t) > Fi+1(t), t > 0 (see Ross (1996)).
The geometric process introduced in Lam (1988) and thoroughly investigated in Lam (2007)

is a meaningful example of (1). Let Y1, Y2, . . . be the independent and identically distributed
sequence of continuous lifetime random variables with CDF F(t), F (0) = 0, mean µ, and
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variance σ 2. Then the geometric process is defined by the following sequence of random
variables:

Xi = Yi

ai−1 , i = 1, 2, . . . , (2)

where E[Xi] = µ/ai−1, var(Xi) = σ 2/a2(i−1), and a > 0 is a constant.
Note that relationship (2) is often equivalently written as Xi = di−1Yi, i = 1, 2, . . . , d > 0,

and called a ‘quasi-renewal process’, as in Wang and Pham (2006) and in their earlier papers,
Wang and Pham (1996a), (1996b).

Let

Sn =
n∑

i=1

Xi, S0 = 0.

Then the counting geometric process N(t) is defined similarly to the ordinary renewal counting
process, i.e.

N(t) = sup{n : Sn ≤ t}, t ≥ 0. (3)

When a > 1,
n∑

i=1

E[Xi] = µa

a − 1
< ∞, (4)

and the sequence Sn, n ≥ 1, almost surely converges to

S =
∞∑
i=1

Xi, S0 = 0. (5)

We will call this case the converging geometric process and we will discuss it (and its general-
izations) in this paper.

As in ordinary renewal theory, the expectation H(t) ≡ E[N(t)] is of main interest. By
analogy (see Lam (2007) and Wang and Pham (2006)), a similar general equation for the
renewal function H(t) holds:

H(t) ≡ E[N(t)] =
∞∑
i=1

F (n)(t), (6)

where F (n)(t) is the CDF of Sn, n = 1, 2, . . . , and F (1)(t) ≡ F(t).
The concept of the converging geometric process can be generalized. Let

Xi = Yi

q(i)
, i = 1, 2, . . . , a > 1, (7)

where q(i), q(1) = 1, is an increasing function of integer i such that

∞∑
i=1

E[Xi] = b < ∞ (8)

and, as previously, Y1, Y2, . . . are independent and identically distributed with governing
CDF F(t). Then, similar to (3) and (4), the corresponding geometric-type converging process
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can be defined. The specific case of (7) was considered in Braun et al. (2005), (2008) and called
the series process:

Xi = Yi

ia
, i = 1, 2, . . . .

This sequence obviously converges (in the sense of (8)) for a > 1.
In what follows, we will show that H(t) = ∞ for all t > 0 and that this property ‘does not

prevent us’ from using converging processes in reliability applications. In Section 3 we suggest
a possible regularization and use it to obtain a simple optimal solution that can be of help when
designing systems with two types of repair. This regularization, which has a clear practical
meaning, results in a finite number of renewals in each interval of time. It is worth noting that
the justification for using the geometric process as a tool for modeling sequences of lifetimes
in practice was discussed in Section 4.1.3 of Wang and Pham (2006), whereas some aspects of
statistical inference were investigated in Lam (1992).

2. Infiniteness of H(t) for converging processes

The (renewal) function H(t) defined in (6) plays a crucial role in ordinary renewal theory
(a = 1). The following renewal-type integral equation was derived in Lam (1988) for the case
of the geometric process (2):

H(t) = F(t) +
∫ t

0
H(a(t − x)) dF(x). (9)

Using this equation, namely the specific form of the argument of the function H(a(t − x)),
Braun et al. (2005) proved that, for a > 1, the function H(t) for all t > 0 is infinite, which
is not intuitively evident (intuitively, it is clear that this should be the case for sufficiently
large t , e.g. for t > µa/(a − 1), as pointed out in Finkelstein (2008, pp. 76–79)). Note that
(9) holds only for the geometric process. Therefore, the proof of the following theorem, which
generalizes the result of Braun et al. (2005) to the geometric-type process (7)–(8), is based on
a different concept.

Theorem 1. Assume that the governing lifetime CDF F(t) is absolutely continuous, strictly
positive, and strictly increasing for all t > 0. Let the point process N(t), t ≥ 0, be defined by
the interarrival times described by (7) and (8). Then E[N(t)] is infinite for all t > 0.

Proof. The first part of this proof is similar to that of Theorem 1 of Braun et al. (2005) for
the geometric process (2).

(a) Denote the CDF of the random variable in (5) by S(t). It follows from (8) that there
exists ε > 0 such that

S(b) ≡ Pr

( ∞∑
i=1

Xi ≤ b

)
> ε. (10)

Indeed, if, on the contrary, S(t) = 0 for 0 ≤ t ≤ b, then
∫ ∞

0
(1 − S(u)) du =

∞∑
i=1

E[Xi] > b,

which contradicts (8). As

Pr

( n∑
i=1

Xi ≤ b

)
≥ Pr

( ∞∑
i=1

Xi ≤ b

)
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and

N(b) ≥ n ⇐⇒
n∑

i=1

Xi ≤ b,

we have
Pr(N(b) ≥ n) > ε, n ≥ 1,

and, therefore,

E[N(b)] =
∞∑
i=1

Pr(N(b) ≥ i) = ∞.

As H(t) is nondecreasing, it is also infinite for all t ≥ b.
(b) Now we will prove that this property is valid for all t > 0. Equation (5) can be rewritten

as

S = X1 +
∞∑
i=2

Xi.

Denote the CDF of the sum on the right-hand side of this equation by S2(t), and consider the
corresponding convolution:

S(t) =
∫ t

0
f (x)S2(t − x) dx, (11)

where f (t) = F ′(t). As
∞∑
i=2

E[Xi] = b − µ,

similar to (10), there exists ε2 > 0 such that

S2(b − µ) ≡ Pr

( ∞∑
i=1

Xi ≤ b − µ

)
> ε2 > 0, (12)

and, obviously, S2(t) > ε for t > b − µ as well. Our goal now is to reduce the value t = b for
which the function H(t) was proved to be infinite. Let t = b − µ + δ1, where δ1 is sufficiently
small (its value will be discussed later). Then, taking into account the fact that f (x) is strictly
positive, (11) results in

S(b − µ + δ1) =
∫ b−µ+δ1

0
f (x)S2(b − µ + δ1 − x) dx > ε2

∫ δ1

0
f (x) dx > 0, (13)

which is written for the ‘worst’ scenario, when S2(t) = 0 for 0 ≤ t < b − µ and S2(t) ≥ ε2
for b − µ ≤ t ≤ b − µ + δ1. Therefore, as previously,

E[N(b − µ + δ1)] = ∞.

Thus, at this step, we have decreased the ‘point of infiniteness’ from b to b − µ + δ1. We can
proceed in a similar manner at the next step. Therefore,

S = X1 + X2 +
∞∑
i=3

Xi (14)
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and

S(t) =
∫ t

0
f (2)(x)S3(t − x) dx,

where f (2)(t) = dF (2)(t)/dt and S3(t) denotes the CDF of the sum in (14).
Taking into account (7) and (12),

S2

(
b − µ − µ

q(2)

)
≡ Pr

( ∞∑
i=1

Xi ≤ b − µ − µ

q(2)

)
> ε3 > 0.

Similarly to (13),

S

(
b − µ − µ

q(2)
+ δ2

)
=

∫ b−µ−µ/q(2)+δ2

0
f (2)(x)S2

(
b − µ − µ

q(2)
+ δ2 − x

)
dx

> ε3

∫ δ2

0
f (2)(x) dx

> 0,

where δ2 > 0. Therefore, as previously,

E

[
N

(
b − µ − µ

q(2)
+ δ2

)]
= ∞,

and we have decreased the ‘point of infiniteness’ to b − µ − µ/q(2) + δ2.
In the same manner this point can be decreased after the nth step to

b − µ −
(

µ

q(2)
+ · · · + µ

q(n)

)
+ δn.

Choosing the decreasing sequence of δn as

lim
n→∞ δn = 0

and taking into account the convergence in (8), we eventually arrive at the statement of the
theorem.

3. The process of imperfect repair

In this section we consider only the converging geometric process. It will be shown that,
although H(t) = ∞ for all t > 0, this process after suitable regularization can be used
to describe the sequences of deteriorating cycles in the process of imperfect repair. The
regularization can be performed in several ways. Note that the repair action in practice is
not instantaneous, which means that H(t) 
= ∞ automatically in this case. For instance, Lam
(2007) considered another (increasing) geometric process for modeling the sequence of repair
times, which makes sense in applications (see also, e.g. Stanley (1993) and Zhang (2002)).
Another obvious method is based on the truncation of the geometric process when there cannot
be more than m ≥ 1 ‘geometric renewals’ in the process (see Wang and Pham (2006)). Our
approach to regularization of the geometric process is different and it is based on the following
reasoning.
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Assume that, with probability θ , each (instantaneous) repair is perfect, i.e. the next cycle
is distributed in accordance with the first cycle’s CDF F(t), and, with probability 1 − θ , the
repair results in the next cycle of the geometric process. The latter assumption means that
if the current cycle is distributed in accordance with F(ak−1t), k = 1, 2, . . . , then the next
cycle will have the CDF F(akt). It is clear that the expected number of ‘geometric repairs’
between the perfect repairs is now finite, whereas the instances of perfect repairs constitute
the corresponding ordinary renewal process. Note that this procedure somehow resembles
the Brown–Proschan model of imperfect repair (see Brown and Proschan (1983) and Cha and
Finkelstein (2009)).

Denote by Nθ the corresponding geometric random variable, which is equal to the number
of geometric repairs between two consecutive perfect repairs plus 1. Thus,

Pr(Nθ = i) = θ(1 − θ)i−1, i = 1, 2, . . . .

As this is a geometric distribution, E[Nθ ] = 1/θ . The expectation of time between consecutive
perfect repairs is

∞∑
n=1

( n∑
i=1

µ

ai−1

)
Pr(Nθ = n) = µθ

∞∑
n=1

1 − cn

1 − c
(1 − θ)n−1, (15)

where c = 1/a. When θ = 1 (only perfect repairs), this expectation is obviously equal to µ

and we arrive at the ordinary renewal process with governing CDF F(t). When θ is decreasing,
(15) is increasing as more cycles appear between consecutive perfect repairs, whereas the limit
(as θ → 0) is equal to b defined in (8) (pure geometric process).

Now consider an optimal θ , which minimizes the long-run operation costs of a system that
is repaired in the described way. Let the cost of the imperfect repair be Cg , and let the cost of
the overhaul (perfect repair) be Cp(Cg < Cp).

Denote by rc(θ) the long-run expected repair cost per unit of time (the repair cost rate).
As usual in maintenance problems described by renewal-type processes, rc(θ) is defined by
a quotient. The numerator is the expected repair costs between consecutive perfect repairs
(including, e.g. the first perfect repair and excluding the second perfect repair), whereas the
denominator is just the expectation of the duration of this renewal cycle. Let, for notational
convenience, Cg = 1. Therefore,

rc(θ) = (1/θ − 1) + CP

µθ
∑∞

n=1(1 − cn)(1 − θ)n−1/(1 − c)

= 1/θ

µθ
∑∞

n=1(1 − cn)(1 − θ)n−1/(1 − c)
+ C̃P

µθ
∑∞

n=1(1 − cn)(1 − θ)n−1/(1 − c)
,

(16)

where C̃P = CP − 1.
The function rc(θ), θ ∈ (0, 1], can be easily qualitatively analyzed. The first quotient

on the right-hand side of (16) decreases as θ increases. Indeed, the numerator is equal to
the expectation of the number of geometric repairs (plus 1) between two consecutive perfect
repairs. Therefore, it increases as θ decreases ‘faster’ than the denominator increases, because
the mean of each subsequent cycle in the converging geometric process (a > 1) is smaller than
the previous one. Alternatively, this can be easily shown by the corresponding differentiation.
The second term increases as θ increases, because the denominator decreases in this case.
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The boundary values for the first term are as follows. When θ → 0, it tends to ∞, as the
denominator tends to b defined in (8); when θ = 1, it is equal to 1/µ. For θ = 0, the second
term is equal to C̃P /b and, for θ = 1, it is equal to C̃P /µ. Due to the ‘structure’ of the first
term, rc(θ) is decreasing, at least for sufficiently small θ . On the other hand, for sufficiently
large C̃P , at least for values close or equal to θ = 1, the function rc(θ) is increasing, as the
derivative of the second term by increasing C̃P can be made as large as we wish. Obviously,
when C̃P is sufficiently small, the first term in (16) ‘prevails’ and rc(θ) is decreasing in (0, 1].
The latter means that only overhauls (θ = 1) should be performed in this case.

The function rc(θ) is continuous in (0, 1]. Therefore, if C̃P > C0 > 0, there exists θm such
that

rc(θm) ≡ min
θ∈(0,1)

rc(θ).

For the given values of parameters, the minimal value of rc(θ) and the corresponding θm and
C0 can be found numerically.

The obtained result can be used for designing repairable devices with imperfect repair
described by geometric repairs and overhauls. The value of the probability θ should be chosen
in an optimal way in order to minimize the long-run costs. This can be the case, for instance,
in systems where the proportion of failures that lead to overhauls (usually the most significant
failures) can be controlled in the process of design. The cost of an overhaul as a result of these
failures is also often large compared with the cost of the corresponding geometric repairs and,
therefore, the condition C̃P > C0 usually holds in practice.
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