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AXIOMS FOR CONVEXITY

W.A. COPPEL

The basic elementary results about convex sets are derived successively from var-
ious properties of segments. The complete set of properties is shown to form a
natural set of axioms characterising the convex sets in a real vector space.

1. INTRODUCTION

The problem of axiomatising the concept of convexity may be approached from
quite different viewpoints. A convexity space is frequently defined to be a family F of
subsets of a set X which contains both X itself and the empty set 0 and which is
closed under arbitrary intersections. In a sense there is no loss of generality in requiring
also that any collection of subsets in F which is totally ordered by inclusion has its
union again in F; see Sierksma [16]. Such a notion of convexity is clearly so broad
that few general statements can be made. However, the value of this approach is that
it leads us to ask questions in new situations for which the answers are already known
in the standard case of convex sets in real n-dimensional space. The answers in the
new situations may be quite different. An attractive introduction to this approach is
contained in Jamison-Waldner [10].

Alternatively, one may consider the problem of formulating a set of axioms for
'convex' sets which will completely characterise them as the convex sets in a vector
space over the real numbers. For this approach see Hammer [8] and Whitfield and
Yong [20].

There is also an approach intermediate between these two. In the standard case a
set is convex if and only if it contains the whole segment joining each two of its points.
However, the notion of segment arises quite naturally in other situations. For example,

(i) X is a Banach space and, if x,y 6 X, the segment [x, y] is the set of all
z € X such that

(ii) X is a finite connected graph and, if x, y are vertices of X, the segment
[x, y] is the set of all vertices of X which he on shortest paths from x to

y,
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180 W.A. Coppel [2]

(iii) X is a vector space over the field of p-adic numbers and, if x,y G X, the
segment [x, y] is the set of all z G X such that z = \x + fiy, where A
and (i are p-adic integers.

These examples are discussed in Boltyanskii and Soltan [2], Soltan [17] and Monna [14]
respectively.

By axiomatising the properties of segments we can obtain a concept of convex-
ity which is independent of linearity and topology, but which resembles the standard
case more closely than an arbitrary convexity space. This last approach is treated at
length in Prenowitz and Jantosciak [15]. However, the primary interest of these authors
was in Euclidean geometry, and their axioms are not altogether appropriate for other
situations. (They also choose to exclude from a segment its endpoints.)

In the present work the basic elementary results about convex sets in a real vector
space are derived successively from certain properties of segments. If these properties
are regarded as postulates, then the validity of a result depends only on those postulates
which precede its statement. The complete set of postulates is shown to characterise
convex sets in a real vector space by deducing all the axioms of Whitfield and Yong
[20].

The merit of this approach, we believe, is that it exhibits the logical structure of
the subject and forces us to formulate definitions and construct proofs in the 'right'
way. It may also have some shock-therapeutic value to meet the hyperplane separation
theorem for convex sets at the end of the development, instead of at the beginning.

2. POSTULATES AND PROPOSITIONS

Let X be a real vector space and let [x, y] denote the closed straight line segment
with endpoints x,y 6 X. Then, obviously,

PO [a:, y] is a nonempty subset of X for all x,y G X.

We can define convexity without any further requirements. A set C C X is said
to be convex if [x, y] C C for all x,y G C. From this definition and PO we obtain
immediately

PROPOSITION 1 . Convex sets have the following properties:

(i) tiie whole space X and the empty set 0 are convex sets,

(ii) tiie intersection of any collection of convex sets is again a convex set,

(iii) the union of any collection of convex sets which is totally ordered by

inclusion is again a convex set.

For any set S C. X, we define the convex hull [S] of S to be the intersection of all
convex sets which contain 5". From this definition and Proposition 1 we can deduce
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PROPOSITION 2 . Convex hulls have the following properties:

(0) [0] = 0,

(0 sc[s],
(ii) SCT implies [S] C [T],

(iii) [[S]} = [S],
(iv) the convex hull of any set is the union of the convex hulls of all its finite

subsets.

PROOF: The only property whose derivation is not immediate is (iv). For its proof
we refer to Cohn [3, Chapter II.l], since the purely set-theoretic ideas are not our
primary concern. D

[In the same reference it is shown that, conversely, given any map C: S —> [SI] of
the subsets of a set X with the properties in Proposition 2, if we define a set S to
be 'convex' when [5] = S then the properties in Proposition 1 hold. Moreover, the
correspondence between maps C with the properties in Proposition 2 and systems of
'convex' sets with the properties in Proposition 1 is bijective.]

Let A be a subset of X and E a subset of A. Then E is said to be an extreme

subset of A if, for every B C A,

(1) [B]nEC[BnE].

It is worth noting that (1) holds for every B C A if (and only if) it holds for every
finite B C.A. For, if B C A and x G [B] HE, then x G [F] for some finite set F C B.

Hence, by (1) with B replaced by F,

x e [F]nE c [FnE] c [BnE\.

Extreme subsets have the following basic properties:

PROPOSITION 3 . For any set A c x ,

(1) A and 0 are extreme subsets of A,
(ii) the intersection of any collection of extreme subsets of A is again an

extreme subset of A,
(iii) the union of any collection of extreme subsets of A is again an extrene

subset of A,
(iv) if E is an extreme subset of A and E* is an extreme subset of E, then

E* is an extreme subset of A,
(v) if E C AQ A and E is an extreme subset of A, then E is an extreme

subset of A.
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PROOF: We give the proof of (ii) only, since (i) and (v) follow immediately from
the definition, and (iii) and (iv) are easy exercises in the algebra of sets.

Let {Ei: i £ / } be any collection of extreme subsets of A and put E — f] Ei.

Suppose B C A and x G [B] D E. Then x £ [F] for some finite F C B. Moreover,
we may assume that x g [F*] for every proper subset F* of F. Then, since x £
[F] n Ei Q[FC\ Ei], we have F D Et = F for all i G I. Hence F C Et for all t G / ,
and so F C E. Consequently x G [F] C [B D E]. D

A point e £ A is said to be an extreme point of A if E = {e} is an extreme
subset of A. The next result shows that testing for extreme points is much simpler
than testing for arbitrary extreme subsets.

PROPOSITION 4 . Let A C X and e € A. Then e is an extreme point of A if
and only if e £ [A \ e].

PROOF: Suppose first that e is an extreme point of A and let B = A \ e. Then
B n e = 0 and hence, by (1), e £ [B].

Conversely, suppose that e ^ [A \ e] and B C. A. It e £ B, then B C A\e and
[£] C [A \ e], hence e £ [B]. Therefore [B] D e C [B D e] for e £ 5 , as well as for
e(EB. D

From Proposition 4 we immediately obtain

PROPOSITION 5 . Let C be a convex set and e G C. Then e is an extreme
point of C if and only if C \e is convex.

We will denote by E(A) the set of all extreme points of the set A. It can be
characterised in the following way:

PROPOSITION 6 . HACX, then E(A) is the intersection of all subsets of A
which have the same convex hull as A.

PROOF: It follows at once from (1) that if e is an extreme point of A, and if
B CA with [B] = [A], then e G B.

On the other hand, if e £ A is not an extreme point of A then e £ [A \ e], by
Proposition 4. Hence A C [A \ e] and [A] = [A \ e]. But e $ A\e. D

The reason for giving PO its zero rating is that it will now be superseded by the
stronger, but equally obvious, property

PI x,y E [x, y] C X for all x,y € X.
If x,y £ X, the segment [x, y] is characterised analytically as the set of all z £ X

which can be represented in the form z = \x + (1 — \)y with 0 ^ A ^ 1. We use this
characterisation to derive the next property of segments, whose geometrical significance
is illustrated in Figure 1.
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P2 If zi G [x, j/i], zj € [35,1/2] <"»<* z G [zi, z2], then z 6 [x, y] for some y G

[yi.wl-
PROOF: We have 2 = 0zi + (1 - 0)z2, where

and 9,X,fi € [0, 1]. Evidently we may assume that 0 £ (0, 1) and that at least one of
A,/x^ 1. Then

v := 1 - ffX - (1 - 0)ji G (0, 1].

Moreover z = (1 — t/)i -f- vy, where

Figure 1

The property of join-hull commutativity can now be deduced.

PROPOSITION 7. For any poini x G X and any nonempty set 5 C X,

[xUS}= U [*•»]•

PROOF: The right side is certainly contained in the left, since if y G [5] then
y G [a: U 5], x G [* U 5] and hence also [z, y ]C[zUS] , On the other hand, the right
side contains I U S , since it contains x and \S]. Consequently, to show that the right
side contains the left we need only show that it is convex. But this follows immediately
from P2. D

The geometrical significance of the next property of segments is illustrated in Fig-
ure 2.

P3 / / z\ €. [x, yi] and z2 G [x, y2], then

[yi,*2]n[y2, zi] ^ 0 .
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PROOF: For some A, / i£ [0, 1] we have

•zi = Ayi + (1 - X)x, z2 = fiyi + (1 - p)x.

If A/i < 1 then, putting p — (1 — A/i)"1, we have

If A/i = 1 the result is trivial, since then A = /x = 1 and z\ = y\, «2 = J/2 •

Figure 2

A basic separation property of convex sets can now be deduced.

PROPOSITION 8 . If C and D are disjoint convex subsets of X, then there exist
disjoint convex sets C and D' with C U D' = X such that C C C", D C D'.

PROOF: Let F be the family of all convex sets C" which contain C but are
disjoint from D. Then F is nonempty, since it contains C. If we partially order F
by inclusion then, by Hausdorff's maximality theorem, F contains a maximal totally
ordered subfamily Fo. The union C" of all the sets in Fo is again a convex set containing
C but disjoint from D.

Since C is maximal, for every x £ C' we have

We will show that, for every x ^ C",

C" n [x u D] = 0.

Assume on the contrary that, for some x <£ C, there exists a point c' £ C fl [i U D]

and let d" e [x U C] fl D. By Proposition 7 we have c' € [x, d'] for some d ' e D and
d" € [x, c"\ for some c" 6 C". Hence, by P3,

[c" ,c ' ]n [<*',<*"] 7*0.

Since [c", c'] C C" and \d\ d"\ C D, this is a contradiction.
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Consider now the family G of all convex sets D" which contain D but are disjoint
from C". Then G is nonempty and contains a maximal totally ordered subfamily Go.
The union D' of all the sets in G o is again a convex set containing D but disjoint from
C. In the same way, for every y £ D' we have

[y U £>'] n C ± 0
and

D' n [y U C] = 0.

Since C" is maximal, it follows that y £ C. That is, C" is the complement of D'. Q

We shall say that a set H C X is a hemispace if both H and X \H are convex.
Clearly X itself is a hemispace, and the complement of a hemispace is again a hemispace.

From Proposition 8 we can obtain by induction a separation theorem for any finite
number of sets:

PROPOSITION 9 . For any sets Slt..., Sm c X,

t"=l

if and only if there exist hemispaces Hi, . . . , Hm such that Si C Hi (t = 1, . . . , TO)

and nij^J.

PROOF: The condition is obviously sufficient, since 5< C Hi implies [Si] C Hi.
Suppose, on the other hand, that (2) holds. We need only consider m ^ 2, since if
m = 1 we can take H\ = 0 = Si. Assume that for some ib e {1, . . . , TO — 1} there exist

Jb hemispaces Hi, ..., Hk such that Si C Hi (t = 1, . . . , Jb) and p) Hi is disjoint from

fk \ (
I f] Hi I D I

TO

f) [Si]. For k = 1 this is guaranteed by Proposition 8.

f \ (
The assumption implies that the convex sets [Sit+i] and I f] Hi I D I f) [Si]

/ \ * + 2
are disjoint. Hence there exists a hemispace .flt+i such that Sk+i Q [̂ fc+i] Q

k+l TO

and P| Hi is disjoint from f] [Si]. Thus the assumption continues to hold when A:
»=1 t=*+2

is replaced by k + l, and so it holds for k = TO — 1. Now, by Proposition 8 again, there
m n

exists a hemispace Hm such that Sm C Hm and f| Hi — 0. D
i=i

To make further progress we introduce another property of segments:

P4 If u € [v, x] and v £ [u, y], where u ^ v, then u G [x, y].

PROOF: We have
u — Ai/ + (1 — \)x, v = fiu + (1 - y.)y,
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where A,/x G [0, 1). Substituting the second equation in the first we obtain u =
8x + (1 - 0)y, where 6 = (1 - A)(l - A/if1 G [0, 1]. D

Under the same hypotheses P4 itself implies that v G [y, x], as may be seen by
interchanging u with v and x with y.

With the help of this property we can now obtain

PROPOSITION 10 . For any set SCX and any point o £ [5], the set [aUS]\a
is convex.

PROOF: Since [a U S] is convex, we need only show that if x,y G [o U S] and
x,y ^ a, then a £ [x, y).

Assume on the contrary that a € [a:, y]. By Proposition 7 we have x G [a, u] and
y G [a, f] for some u, v G [S]. Hence, by P4, a G [y, u] and so, by P4 again, a G [it, f].
Since a (£ [S], this is a contradiction. U

Proposition 10 implies the anti-exchange property of convex sets:

PROPOSITION 1 1 . For any convex set C and any x,y £ C with x ^ y, if
y G [x U C] then x <£ [y U C].

PROOF: The set D := [y U C] \y is convex, by Proposition 10. Moreover C C D ,
since C C [yUC] and y £ C. Assume x G [yUC]. Then x G D and hence [xUC] C D.
Since j / £ [ I U C ] , but y (fc. D, this is a contradiction. U

We can now also prove

PROPOSITION 12 . A set and its convex hull have the same extreme points.

PROOF: Let A C X. If e is an extreme point of [.4] then e G A, by (1) with
B = A and E = {e}. Hence e is an extreme point of A, by Proposition 3(v).

On the other hand, let e be an extreme point of A. If we put S = A \ e then, by
Proposition 4, e ^ [S]. Therefore, by Proposition 10, [A] \ e is convex. Consequently,
by Proposition 5, e is an extreme point of [A]. D

The next property of segments has so far been conspicuous by its absence:

P5 [x, x] — {x} for every x G X.
It tells us that singletons are convex sets. Moreover it now follows from Propo-

sition 7 that the set 5 = {x, y} has convex hull [5] = [x, y]. Thus our notation is
consistent and we also obtain

PROPOSITION 1 3 . [x, y] is a convex set and [x, y] = [y, x] for all x,y G X.

The definition of a convex set can now be reformulated in the following way: a set
is convex if and only if it contains the convex hull of every pair of its points. We can
also give Proposition 7 a more general, and more symmetrical, form:
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PROPOSITION 1 4 . For any nonempty sets S,T C X,

[SUT}= |J [x,y].

P R O O F : By Proposition 2(iv) it is sufficient to prove the result for finite sets 5, T.
If T is a singleton the result follows from P5 and Proposition 7. We use induction on
the cardinality of T and assume that the result holds as written. If z $ T then, by
the induction hypothesis,

[SUzUT] = U [w,y]
we[SUz],»€[T]

= U U K

= U U [••

= U i». "]•
x(E[S\,ve[zUT\

Thus the result holds also when the cardinality of T is increased by 1. U

From P4 and P5 we immediately obain

PROPOSITION 15 . If z e [y, x] and y e [z, x], then y = z.

In agreement with the usual notation for intervals in R we set, for any x,y 6 X,

[x, y) = [x, y] \ y, {x, y] = [x, y] \ x, {x, y) = [x, y] \ {x, y}.

PROPOSITION 16. (a, b] and (a, 6) are convex sets, tor all a,b £ X.

PROOF: We may assume a ^ b, by P5. Then the convexity of (a, 6] follows from
Proposition 10 with S - {b}.

Suppose x,y G (a, 6). Then a £ [y,b], by Proposition 15. Since a € [x, y]
would imply a G [y, 6], by P4, it follows that a £ [x, y]. Similarly 6 £ [x, y]. Hence
[x, y] Q (a, b). This establishes the convexity of (o, 6). D

The defining property of extreme subsets can now be given a simpler, and more
familiar, form:

PROPOSITION 17. A subset E of a set A CX is extreme if and only if x,y £ A
and (x, y) D E ^ 0 together imply x, y € E.

PROOF: On account of P5, the relation (1) always holds if B is a singleton. If
B = {x, y}, where x ^ y, then (1) is equivalent to "(x, y) f\ E ^ 0 implies x,y £ E".
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Hence, to complete the proof we assume this property and show that if (1) holds for a
finite set B and if x € A \ B, then

[xUB]r\EC[(xUB)n E}.

By Proposition 7,

[xL)B]nE= (J [*, y] n E.
ve[B]

If x $. E, then [x, y]nE={y}C\E and hence

[xU B]D E = [B]H E C [B 0 E] = [(xU B) (1 E].

On the other hand, if x 6 E then

[xUB]HE= | J [x,y]
ye[B]nE

= [(* u B) n £].

D
The hnear nature of segments is brought out in the next property:

P 6 If ze[x,y], then [«, y] = [x, z] U [y, z].

As a consequence of this property we have the following counterpart:

P R O P O S I T I O N 1 8 . If z e [x, y], then [x, z] n [y, z] = {«}.

PROOF: Suppose w £ [x, z] D [y, z\. Then w G [x, y], by Proposition 13, and
hence, by P6, either z € [x, w] or z € [y, w]. In both cases Proposition 15 implies that
w = z. D

It will now be shown that the points of any segment can be totally ordered. If
c € [a, d\ we write c ^ o d, or simply c ̂  d ii there is no danger of confusion. Then
c ^ c, by PI. If c ̂  d and d ̂  c then c = <f, by Proposition 15. If c ̂  d and d ̂  e,
then [a, d] C [a, e] by Proposition 13, and hence c ̂  e. Finally, if c,d £ [a, 6] then
either c ̂  d or d ̂  c. For if c £ [a, <f] then c G [6, d], by P6, therefore d ^ [6, c] by
Proposition 15, and hence d 6 [a, c] by P6.

P R O P O S I T I O N 1 9 . If c e [o, b] and d e [o, c], tien c e [b, d].

PROOF: by PI we may assume c ̂  d. Then c ^ [o, d], by Proposition 15. Since

d G [a, b], by Proposition 13, it now follows from P6 that c 6 [b, d]. D
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Another simple property of segments which we require is

P7 If [x, y] D [x, z] ^ {x} , then y,z £ [x, w] for some w.

It follows that we can choose to 6 {y, z}, as we now show.

PROPOSITION 2 0 . If [x, y] ("I [x, z] ^ {x}, then either z £ [x, y] or y€ [x, z].

PROOF: We may assume y ^ z. Choose w as in P7. If z £ [x, y] then, by
P6, z E [w, y]. Similarly, if y $ [x, z] then y E [w, z]. The result now follows from
Proposition 15. D

The next result is one of the axioms of Whitfield and Yong [20].

PROPOSITION 2 1 . The union of two segments with more than one common
point is again a segment.

PROOF: Let [a, b] and [c, d] be two segments whose intersection contains the
distinct points x, y. To prove that [a, b] U [c, d] is a segment we may obviously assume
that neither segment is contained in the other.

By P6 we may suppose the notation chosen so that y £ [x, d] and x € [y, o] • Then,
by P4 and Proposition 13, x,y £ [a, d]. Since y £ [x, a], by Proposition 15, it follows
from P6 that y £ [x, b]. Hence, by Proposition 20, either b 6 [x, d] or d £ [z, 6].
Similarly, since x £ [y, d], we have x £ [y, c] and hence either a E [y, c] or c E [y, a].

If c € [y, a] then b £ [x, d\, since d E [x, b] would imply [c, d] C [o, 6]. Hence
b,c E [a, d] and b E [c, d]. It follows that [a, b] C [a, d], [c, d] C [a, d], and

[a, d] = [a, b] U [6, d]

C [a, 6] U [c, d].

Consequently [a, b] U [c, d] = [a, d].

If a G [y, c] then d E [x, b] and a similar argument applies. D

If a and 6 are distinct points, we define the line (a, b) to be the set of all points
c such that either c E [a, b] or a E [b, c] or 6 E [c, a]. Hence (a, b) = (6, a) and
[a, 6] C (o, b). In particular, a,b £ {a, b).

It follows at once from the definition of a line that if a, b, c are distinct points such
that c £ (a, b), then also a £ (6, c) and b £ (c, a). Thus the property depends only
on the triple {a, 6, c} and we say that the three points are collinear. From P4, P6 and
Propositions 19, 20 we obtain, simply by enumeration of cases,

PROPOSITION 2 2 . If {a, b, c} and {a, b, d} are collinear triples, and ifc^d,
then {b, c, d} is also a collinear triple.

PROPOSITION 2 3 . Suppose there exist three points a, b, c which are not
collinear. Then for any distinct points x, y there exists a point z ^ x,y such that
x, y, z are not collinear.
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PROOF: If z £ (a, 6), y £ (a, b) we can take z = b if x = a and z — a if x / o,
since then (x, z) = (a, b). Also, it follows from Proposition 22 that if x £ (a, 6),
y £ (a, b) we can take z — c. Thus we may now assume that x,y £ (a, b). If
a ^ (x, y) we can take z = a. If a, x, y are collinear, then 6, x, y are not collinear
and we can take z = b. D

A set Zr C X is said to be linear if (x, y) C L for all distinct points x,y £ L. It
follows at once from this definition that singletons are linear sets and that Proposition 1
continues to hold if throughout its statement 'convex' is replaced by 'linear'.

Similarly, we define the linear hull (S) of a set S C X to be the intersection of
all linear sets which contain 5 . Then Proposition 2 continues to hold if throughout
its statement 'convex' is replaced by 'linear' and '[ ] ' by '( ) ' . Again our notation is
consistent, since the line (x, y) is the linear hull of the set {x, y}. [Note also that if
x,y £ X, the line (a;, y) is the set of all z £ X which can be represented in the form
z = Xx + (1 - X)y with A £ R.]

A linear set L is said to be a hyperplane if L ^ X and if the only linear sets which
contain L are L itself and X. Equivalently, a linear set L ^ X is a hyperplane if
(x U L) = X for every z £ X \ L.

Some notions of a topological nature will now be introduced. We define the intrinsic
interior C* of a convex set C to be the set of all z G C such that, for every y £ C\x,
there exists some z £ C for which x £ (y, z).

Thus C* C C, and C = C if C contains at most one point.

PROPOSITION 2 4 . Let C be a convex set and C*' its intrinsic interior. If x £ C"

and y £ C, then [x, y) C C*. In particular, C* is also a convex set.

PROOF: Suppose z £ (z, y). We wish to show that, for any u £ C\z, there exists
some W £ C \ z such that z £ [u, w]. Hence we may suppose that u ^ z, y and that
z £ [w> y]. For some v £ C \ x we have z £ [u, u\. Then, by P2, z £ [u, to] for some
w £ [u, y]. If w ^ z there is nothing more to do. Hence we may suppose z £ [u, y].

Since z (£ [u, y], it follows from P4 that z ^ u.

If v £ [z, y] then z £ [w, y], by P4, and hence z £ [z, y] C [u, y], contrary to
hypothesis. Therefore u (£ [x, y]. We may suppose also y ^ [tt, i/], since y £ [u, v\

implies z £ [z, y] C [u, i/].

Since z £ [z, y] D [i/, y] and i/ ^ [z, y], it follows from Proposition 20 that z £
[i/, y]. Thus x £ [f, y] D [u, v\. Since y $ [«, f ] , it follows from Proposition 20 again
that u £ [v, y]. Hence, by P6, [u, y] = [v, u] U [u, y]. Since z £ [u, y], it follows that
z£[u, V\. D

We further define the convex closure C of a convex set C to be C itself if C* = 0

and otherwise to be the set of all y £ X such that [x, y) C C* for every x £ Cx. In
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either event C C C, by Proposition 24.

PROPOSITION 2 5 . If C is a convex set, then C is also a convex set.

PROOF: Obviously we may assume that Cx ^ 0. Suppose x,y £ C, where x ̂  y.
We wish to show that if z £ (x, y), then also z £ C. Thus we may assume that z $ C.

Let c £ C* and w € (c, z). Suppose tu G [x, y]. Then either z G [a;, to] or
z G [y, iu], by P6. If z G [x, u>], then z G [c, a;] by P4. Since z ^ x, it follows
that z £ C*, which is contrary to assumption. If z G [y, to] we obtain a contradiction
similarly.

Therefore w $ [x, y]. On the other hand, by P2, w G [d, y] for some d G [c, x].
Since necessarily d ̂  x, it follows that d £ Cx and hence ti> G C*. This proves that
z G C, and thus that C is convex. D

To obtain further results of this nature an additional property of segments must

be invoked:

P8 Ifx^y,then(x,y)^m.

PROOF: Put z = (l/2)z + (l/2)y. Then z G [x, y] and z ^ x,y. D

This property is used in the proof of the next two results.

PROPOSITION 2 6 . If C is a. convex set, then 7T = C* and ~C - ~C.

PROOF: Obviously we may assume that C ̂  C, and then C* ^ 0. Suppose
x G C . Then for every y £ C\x there exists z £ C such that x £ (y, z). In particular
this holds for every y £ C* \ x and then (y, z) C C", by the definition of C. Thus
x G C{ and (f C C \

Suppose, on the other hand, that x £ C" and J / £ C \ I . Then (x, y) C C* and,
by P8, there exists some w £ (x, y). By the definition of C* there exists z £ C such
that x £ (w, z). Then x G (y, z), by P4. Thus x G C* and C 'CC*.

This proves the first assertion of the proposition. To prove the second we need
only show that C C C, since the reverse inclusion is trivial. Suppose x £ C. Then
(x, j ] C C for every y £ C . Since C — C*, by what we have just proved, this implies
x£C. U

PROPOSITION 27 . If C is a convex set, tien (C*)* = &. Moreover, if C{ ^ 0
tien C7 = C.

PROOF: TO prove the first assertion we may assume that C* contains more than
one point. Suppose x,y G C", where x ̂  y. Then there exists z £ C such that x G
(y, z). Moreover, by P8, there exists some w £ (x, z). Then u; £ C*, by Proposition
24, and x 6 [y, «;], by Proposition 19. Hence w ^ y and x G (y, 10). Thus x G C"
and &< = &.
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Since C{ ^ 0, u G C if and only if (u, v) C C{ for every i /£CV Since C"' = C*,
u G C* if and only if the same condition is satisfied. 0

It is of interest that the postulate P3 is actually a consequence of the other pos-
tulates which have by now been introduced. In establishing this we are free to use any
of the preceding propositions except Propositions 8 and 9, since an examination of our
discussion reveals that P3 played no direct or indirect role in the proofs of the other
propositions.

P R O P O S I T I O N 2 8 . Pi-2 and P4-8imply P3.

PROOF: It is sufficient to show that [yi, z2] D [j/2) zi] ^ 0 if £i G (x, yi), z2 G
(x, 1/2) and z\ ^ z-i. Moreover, we may assume that z\ £ [yi, Z2] and z^ £ [2/2> z\\.
Then, by Proposition 19, z2 £ [x, z\] and z\ £ [x, zz\. Furthermore x £ [zi, Z2], by
P4. Consequently, by Proposition 20, [x, Z\] D [21, z2] = {z\} and [*, 22] l"l [zi, Z2] =

By P8 we can choose w G («i, Z2). (This is the only place where we use P8.) Thus
w ^ x. By PI and P2, w G [x, u] for some u G [j/2> ^1] and also w G [x, v\ for some
v G [l/i> ^2]- Hence, by Proposition 20, either u G [x, v\ or 1/ G [x, u]. Without loss of
generality assume ii G [x, v]. Then, by Proposition 19, u G [v, w].

Thus u G [{j/i, Z2, z\}\ and hence u £ [21, t] for some t G [yi, ^2]. If t G [1/2-, 21] we
are finished. We will assume t £ [y2, z\\ and derive a contradiction. Since u = zx would
imply w G [x, z{\ (~1 («i, 22)) we must have w ^ zi. Since u G [«i, t] D [zi, y2], it follows
from Proposition 20 that jfe G [z\, t]. But, since [j/i, Z2] C [{yi, x, y2}], we have also
i € [2/2> «] for some a G [x, yi]. Hence, by P4, y2 G [zi, a]. Since [zlf a] C [x, yj], by
Proposition 13, it follows that y2 G [x, yi] and so Z2 G [x, yi]. Since z\ $ [yi, Z2], we
obtain from P6 that z\ G [x, Z2]. It now follows from Proposition 19 that Z2 G [y2, z{[.
This is the desired contradiction. U

Figure 3 may provide assistance in understanding the motivation for this proof.

Figure 3

The next property of segments is a counterpart to P8:

P9 If x ^ y, then there exists a point z such that x G (y, z).
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Actually, as we now show, it virtually supersedes P8.

PROPOSITION 2 9 . Suppose there exist three points which are not coUineai.
Then Pl-2, P4-7 and P9 together imply P8 (and hence also P3, by Proposition 28).

PROOF: Let 2/1 > 2/2 by any two distinct points. By Proposition 23 we can choose
z i1 J/i> 1/2 s o that j / i , j/2) 2 are not collinear. By P9 we can now choose Z\ so that
2 G (1/2, «i) and then x so that z\ £ {x, 2/1). It follows from P2, with zi = 2/2) that
z £ [x, y] for some y G J j i , ^ ] . Hence we need only show that y ^ 2/1 > 2/2 •

Since 2/2> zi zi are collinear but 2/1 > 2/2) 2 are not, it follows from Proposition 22
that z, zi, 2/i are not collinear. Hence z ^ x. Moreover, since x, z\, j/i are collinear,
it follows that x, z, 2/1 are not collinear. Hence y ^ 2/1 • Similarly it may be shown that
2/ ^ 2/2 • •

We use P9 in the proof of the next two results.

PROPOSITION 3 0 . IIC is a hemispa.ce, then C* is also a hemispace. Moreover,

x\c{ = x\c*.

PROOF: Obviously we may assume that C* ^ 0, X. Let D — X \ C and E =

X \Ct. Suppose x,y £ E and z £ (z, y). We wish to show that also z £ E.

Assume on the contrary that z £ C*. By P9 we can choose u so that x £ (u, z)
and v so that 1/ £ (•?) " ) • Then u £ £>, since u £ C would imply a; £ C", and similarly
v £ 2?. But, by P4, x,2/ £ (u, 1/). Since D is convex, it follows that x,y £ D and
hence also z £ D. But this is a contradiction.

Thus C" is a hemispace. To prove that also E = E we may assume that .E* ^ 0
and C* ^ 0. Let a £ £* and suppose there exists a point 6 £ ~E \ E. By P9 there
exists a point c such that b £ (o, c) and also a point d such that a £ (b, d). Then
c £ C*, since c £ E would imply b £ Ei. Similarly d£ D C E, because b £ C{ and
so d £ C would imply a £ Cx. Since a £ E', there exists e £ E such that a £ (d, e).
Since 6 £ [d, e] would imply 6 £ E, by the convexity of E, we must have e £ (6, d)
and actually e £ (a, b). Then 6 £ (e, c), by Proposition 19. On the other hand, since
b £ C' there exists / £ C such that b £ (c, / ) . Moreover e £ (c, / ) , since e £ (c, / )
would imply e £ C*. Hence, by Proposition 20, / £ [c, e] and actually / £ (6, e]. Thus
/ £ (a, 6) and hence f £ E*. Consequently there exists g £ E such that / £ (a, g).

Since 6 £ (0, g) would imply 6 £ Ex, we must have g £ (a, 6) and actually g £ (6, / ) .
Since / £ E1' and 6 £ ~E, this implies g £ E*. On the other hand, since f £ C and
6 £ C%, it implies g £ C*. Thus we have a contradiction. Q

PROPOSITION 3 1 . If C is a nonempty hemispace such that C = C", and if
£> = X \ C, then D = DandC\C = D\Di.
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PROOF: The relation D = D follows at once from Proposition 30. To prove the
other relation we show first that C l~l D* = 0.

Assume, on the contrary, that there exists a point x £ C (1 Dx and choose some
y £ C. By P9 there exists a point z such that x £ (y, z). Moreover z £ D, since z £ C

would imply x £ C. Since x £ D%, there exists a point w £ D such that x £ (z, w).

But y £ [w, z], since y £ C. Hence w £ (y, z) and actually w £ (x, y). Since x £ C

and C* = C, it follows that w £ C, which is a contradiction.

Hence ~C\C C D\Di. To complete the proof we must show that D \ D* CC.

Choose any a £ D \ Dx. Then, for some b £ D, a £ (6, c) implies c £ C. Since
C = C*, we need only show that (a, d) C C for any d £ C not colh'near with o, 6. Fix
some c such that a £ (6, c) and choose e £ C so that d £ (c, e). Then, by P2, for any
/ £ (a, d) there exists g £ [a, c] such that / € [e, #]. Moreover g ^ o, since o, c, <f
are not collinear. Consequently g £ C and hence f £ C. D

Let C be a nonempty convex set. A point Co £ C will be said to be an X-interioT

•point if for any x £ X \ Co there exist ci, ci £ C with Co £ (cj, a;) and c0 € (ci, C2) •

PROPOSITION 32 . Let C be a nonempty convex set such tiat C - C{. If one

point of C is an X-interior point, then every point of C is an .X"-interior point.

PROOF: By hypothesis there exists a point Co £ C such that, for any x £ X \ CQ
there exist ci,C2 £ C with Co € (ci, x) and CQ £ (ci, C2). We wish to show that any
bo £ C \ Co has a corresponding property. If 60 is collinear with Co, a; this follows
directly from the fact that C = C*. Thus we may assume that b0 is not collinear with
c0, x. Again since C = C, there exists a point c £ C such that b0 £ (cj, c). By P3
there exists a point 62 £ [co, c] D [x, to]- In fact 62 G (*> &o), by Proposition 22. Since
i2 € C, there exists a point bi £ C such that b0 £ (6j, 62)- Since also 60 £ (&i> *)! by
P4, this is what we wanted to show. D

We define a nonempty convex set C to be a convex body if every point of C is

an X-interior point. In order to prove the separation theorem for convex bodies we

introduce our final property of segments.

P10 If C is a convex subset of [x, y) such that x £ C, y £ C, then there exists

a point z £ [x, y] such that [x, z) C.C and (z, y] C X \ C.

PROOF: This follows at once from the Dedekind cut property for R. D

PROPOSITION 3 3 . If Ai, A2 are disjoint convex bodies, then X is the union

of paiiwise disjoint nonempty sets H, C\, C2, where H is a hyperplane and C\, C2

are hemispaces with C\ = C{, C2 = C\ such that Ai C C i , i j C C 2 .

PROOF: By Proposition 8 there exists a hemispace C such that A\ C C, A2 C
D — X \C. In the present case A\ C C " , since A\ is a convex body. Consequently,
by Proposition 30, we may assume that C — C* and D = D. Since Ai is a convex
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body, we now have A2 Q Dx. If we put H = D \ D%, then X is the disjoint union of
the set H and the hemispaces Ci = C, C2 = Di. Moreover, d = C\ and C2 = C{

2,

by Proposition 27. The set H = D f\ {X \ Z)*) is convex, since Dl is a hemispace.
Hence to prove that H is actually a linear set it is enough to show that x,y £ H and
x £ (y> z) together imply z £ E. Since y £ C, by Proposition 31, z G C would imply
as G C. Therefore z £ D. Since a G J5* would imply z G X)*, we actually have z G B.

Suppose 6 G C\ and c G C j . Then by P10, the segment [6, c] contains a point d

such that [6, d) C Ci and (d, c] C C2 • Then d £ d , since Ci = C{, and similarly
d £ C2. Hence d£ H. This proves, in particular, that H ^ 0.

It remains to show that H is a hyperplane. If b G X \ H, then 6 G Ci U C2 •
Without loss of generality assume b £ C\. We wish to show that (b U H) = X. Let
a £ H and choose c so that a £ (&, c). Then c £ C2, since ZT is linear and C\ is
convex. For any Ci G Ci the segment [c, ci] contains a point d £ H. Consequently
d C (bUH), and similarly C2 C (bUH). Thus (&UJT) = X. D

A well-known example which illustrates that Proposition 33 can fail to hold without
P10 is obtained by taking X to be the field Q of rational numbers, A\ to be the set
of all x £ Q with x2 > 2 and x > 0 and A2 = X \ Ai.

All the axioms of Whitfield and Yong [20] are now immediate consequences of our
postulates or of propositions which have already been established. Consequently, by
their main result, our postulates characterise X as a linearly open convex subset of a
real vector space, provided X has dimension greater than 2. (The restriction on the
dimension is necessitated by the existence of non-desarguesian planes.) Without giving
any general definition of dimension, we can formulate this in the following way:

PROPOSITION 3 4 . Let X be a set with subsets [z, y], defined for all x,y £ X,

possessing the properties Pl-2, P4-7 and P9-10. Assume, in addition, that there exists

a set S C X containing four points such that some point of the convex hull of S is not

contained in the convex hull of any proper subset of S.

Then X can be identified with a convex subset X* of a real vector space V, whose

intersection with every line in V is an open segment in F , so that the subset [x, y]

coincides with the closed segment with endpoints z, y.

PROOF: We merely point out that the additional assumption implies that there
exist three distinct points which are not collinear since, by Proposition 13, no point
of 5 is contained in a segment whose endpoints are two other points of S. Hence P8
holds, by Proposition 29. D

Whitfield and Yong give examples to show that each of their axioms is independent
of the remaining axioms. Since the example which claims to show this for the axiom
REG(i), that is, our P8, is two-dimensional, this contradicts Proposition 29. However,
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it is easily seen that in fact this example also fails to satisfy the axiom JHC (and our
P2). Whitfield and Yong also do not mention that the axiom REG(i) is implied by the
other hypotheses of their main result.

3. CONCLUDING REMARKS

Our purpose has been to present the basic properties of convex sets, as expounded
in Eggleston [5], Valentine [19] or Lay [12], in a logical order under minimal hypotheses.
It would be impossible to do this in a coherent manner without repeating results which
are already known, in some cases in the same generality as here. To provide guidance for
the uninitiated, and to avoid criticism from the initiated, we now give some additional
references.

Our discussion of extreme subsets owes much to Lassak [11]. Proposition 8 was
already proved by Ellis [6]. Proposition 9 is due to Martinez-Legaz and Singer [13,
p.177]. It is included here, although we make no later use of it, because it may be re-
garded as the abstract basis for the method of Lagrange multipliers; see Boltyanskii [1].
The anti-exchange property for finite convex geometries, or antimatroids, is emphasised
in Edelman and Jamison [4]. What we have called the intrinsic interior of a convex set
is also known as its intrinsic core; our non-topological definition of the convex closure
of a convex set seems to be new.

The problem of axiomatising geometry has an extensive literature, beginning with
Euclid [7]. Besides the classic work of Hilbert [9], we mention the more recent book
by Vaisman [18]. Whether one set of axioms is regarded as 'better* than another will
depend on one's interests. Part of the motivation for our work has been the feeling that
convex geometry is more primitive than affine geometry since segments, unlike lines,
are bounded objects. In our view also the postulates P2 and P10 appear more naturally
here than their counterparts, Pasch's axiom and the continuity axiom, in the traditional
approach.
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