
/. Austral. Math. Soc. (Series B) 22 (1981), 270-283

ON ERROR BOUNDS IN STRONG APPROXIMATIONS
FOR EIGENVALUE PROBLEMS

R. P. KULKARNI and B. V. LIMAYE

(Received 6 March 1980)

(Revised 12 June 1980)

Abstract

Some corrections of error bounds obtained by Chatelin and Lemordant for the first
three terms of the asymptotic case of a strong approximation are given. The error
bounds for the approximations of order 2 in the Galerkin method are compared with the
Rayleigh quotients constructed with the eigenvectors in the Sloan method. A numerical
experiment is also carried out.

1. Introduction

Chatelin and Lemordant [4] have introduced the concept of a strong approxima-
tion of a bounded or unbounded closed operator T in a Banach space X and, by
using the series expansions for eigenvalues and spectral projections given by
Kato [7, pages 76-78], have given some error bounds for approximations of
eigenvalues and spectral projections. In the present paper, we show that some of
these error bounds need to be modified. As shown in [4], the analysis is relevant
to most of the presently used methods for approximating differential and
integral operators.

Section 2 contains the relevant notation, which agrees with that of [4]. Our
major results are presented in the two theorems of Section 3. In Section 4 we
give computable a posteriori error bounds. In this section we also compare the
error bounds for the approximations of order 2 in the Galerkin method with the
Rayleigh quotients constructed with the eigenvectors in the Sloan method, and
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\21 Error bounds for eigenvalue problems 271

show that in the case of uniform convergence the latter give an approximation of
a higher order. A numerical example at the end of the paper illustrates this
comparison.

2. Preliminaries

Let X be a Banach space over C, normed by || ||. Let L{X) be the algebra of
bounded linear operators on X and S(X) be the space of closed linear operators
in X with domain D. Let T e. Q(X).

The resolvent set p(T) is the set of points z in C such that (T - z)"1 e L(X),
the resolvent operator is R(z) = (T — z)'x for z G p(71), and the spectrum of T
is a{T) = C — p( r ) . The resolvent operator /?(z) has domain X and range D.

Let rn , n = 1, 2, . . . , be a sequence of operators in Q(X). Note that, for
each z G p(T), (T — Tn)R(z) is a closed operator with domain X. By the closed
graph theorem, it is bounded.

Let A be an isolated eigenvalue of T, with finite algebraic multiplicity m and
index Q. Let F be a positively oriented rectifiable curve enclosing A, but not
enclosing any other part of a(T). Then

1

is called the spectral projection, and M = PX the spectral subspace associated
with A and T. Note that the dimension of M is m.

S = lim R(z)(\ - P)
Z—>A

is called the reduced resolvent with respect to A.
As in Section IV of Chatelin and Lemordant [4], Tn will be called a strong

approximation of T if Tnx -> Tx for all x G D, and ||[(r - Tn)R(z)f\\ -»0 for
any z on F. The following special cases of strong approximation are discussed in
Chatelin and Lemordant [4]: uniform approximation, collective compact ap-
proximation, neighbouring approximation, holomorphic family of type (A).

We shall assume throughout this paper that Tn is a strong approximation of T.
Then it follows that, inside the curve F, there are exactly m eigenvalues A,,,,
i = 1, 2, . . . , m, of Tn, counted according to algebraic multiplicities, for n large
enough. (See Chatelin and Lemordant [4], Lemma 4.) We write

1 m

where Pn is the spectral projection associated with the spectrum of Tn inside F.
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272 R. P. Kulkarni and B. V. Limaye 131

The eigenvalue A is a pole of order /, 1 < / < m, of R{z) whose Laurent
expansion can be written as follows:

*(*)= 2 (z-\)ks^k+l\
* = -/

with

S(0> = -P,

S<-*> = -£>*, k > l,D = (T-\)P,

and

S<*> = 5*. A; > 1, S = lim /?(z)(l - P).

Using the Neumann series of R,,(z), we have (Kato [7], pages 76, 77)

pn- P= 2 2 s ( t l ) ( r - r j5 ( f c i ) ( r- rB)s<H (2.1)
p = 2 .

where * denotes summation over kx, . . . ,kp subject to

and

and

A « - X = ^ 2 ^ 2 t r [ ( r - Tn)S^-- • (T- Tm)SlU]. (2.2)m
 P=\ P .

3. The main results

THEOREM 1. Let 1= 1, £„ = \\(T - Tn)P\\, an = \\(T - TJS\\, fin =
\\[(T - Tn)S]2\\ and yn = \\(T - Tn)S\T - Tn)S\\ so that en and pn tend to zero,
and an remains bounded as n -» oo. Then, for n large enough,

(a)

^ tr(T - Tn)P + ~ tr(r - Tn)5(r - TJP

(3.1)

- PnP-S(T- TJP - S(T - Tn)S(T - Tn)P

+ P(T- Tn)S\T - TJP - S2(T - Tn)P(T- Tn)P\\

= O(max{ #,£„, anen
2, ynen, en

3}). (3.2)
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[4] Error bounds for eigenvalue problems 273

PROOF, (a) Since P is a compact projection, en = | | ( r - Tn)P\\ —* 0 as n —> oo.
For the proof of fin = \\[(T - Tn)S]2\\ -H>0 a s n ^ o o , see Chatelin-Lemordant
[4], Lemma 2, page 261. For / = 1, (2.2) becomes

where * denotes summation over kx, . . . ,kp subject to

*, + k2+ • • • +kp=p- 1

and
kj > 0, 7 = 1,2, . . . , / » .

If we put /> = 1 in the above expression, we get the term tr(w(7' — Tn)P)/m.
The remaining term,

« = i 2 ^ 2 tr[(r -

can be decomposed into the sum a, over the set of all kj's where only one kj is
zero, the sum a2 over the set of kj's where only two Â -'s are zero, and so on. Then

a, = - 1 tr(T - Tn)S(T - Tn)P - -L tr(7 - Tn)S(T - Tn)S(T - Tn)P

- 1 t r ( r - Tn)S(T - Tn)S(T - Tn)S(T - Tn)P + . . . .

The «th term of the above expansion is

f O(/?;/2en), if n is even

\ O(anP),n~ '' en), if n is odd.

It follows that

o, + -^ t r ( r - Tn)S(T - Tn)P = O(/3nen). (3.3)

Next,

2 m n) n) n)

1
?2,^ [ t r ( T - Tn)S\T- Tn)S(T- Tn)P(T - Tn)P

- Tn)S\T - Tn)P(T- Tn)S(T - Tn)P

+ tr(r- rn)52(r- r j ^ r - rB)p(r- Tn)s
+ tr(r- rn)5(r- rn)52(r- rn)/>(r- Tn)p
+ tr(r- rn)5(r- rn)/»(r- rn)52(r- Tn)p
+ tr(r- rn)5(r- r j yc r - rj/>(r- Tn)s

2} + ..
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274 R. P. Kulkarni and B. V. Limaye Is 1

Hence it follows that a2 = O(ane
2) and, in general, ak = O(ane

k), k > 2, so that

2 °* = O(ane
2). (3.4)

Thus,

m " m "

+ O(max{ (3nen, ane
2}).

This proves (a).
(b )Fo r /= 1,(2.1) becomes

oo

Pn- P = 2 2 S(k'\T - Tn)S
(kl) • • • (T - Tn)S^\

Since PS = SP = 0,
OO

pnp - p = - 2 2 s(Ari)(r - rn)5(*2) • • • s^k'->\T- Tn)p, (3.5)

where *• denotes summation over kx, . . . , kp_l subject to

k t + k 2 + • • • + k p _ t = p - \

and
kj > 0, j= 1,2, . . . , / > - 1.

Decompose SJLiS , , , ^^ 1 ^^ - Tn)S
(k*> • • • (T - Tn)P into the sum a', over

the set of all Ay's where only one k} is zero, the sum a'2 over the set of all Ay's
where only two Ay's are zero, and so on. Then

a\ = S(T - Tn)P + S(T - Tn)S(T - Tn)P

+ S(T - Tn)S(T - Tn)S(T -Tn)P+ ....

The «th term of the above expansion is

, _ f O(/8
("-1)/2en), if n is odd

[ O(an/3i"~l)/2en), if n is even.

It follows that

||a; - S(T - Tn)P -S(T- Tn)S(T - Tn)P\\ = O(/3nen). (3.6)

Since

O2 = -[S2(T- Tn)P(T - Tn)P+ P(T- Tn)S\T- Tn)P

+ S2(T- Tn)S(T - Tn)P(T- Tn)P + S2(T - Tn)P(T - Tn)S(T - Tn)P

+ S(T- TJS2(T- Tn)P(T- Tn)P+ S(T - Tn)P(T - Tn)S
2(T - Tn)P

+ P(T- TJS(T- Tn)S
2(T- Tn)P

+ P(T- Tn)S\T- Tn)S
2(T- Tn)S(T- Tn)P + • • • ],
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we see that

Also,

Error bounds for eigenvalue problems

\\o'2 + S2(T- Tn)P(T - Tn)P + P(T - Tn)S
2(T - Tn)P\\

= O(max{ane
2, pnen) ynen}).

a'3 = S\T - Tn)P(T - Tn)P(T - Tn)P

+ P(T- Tn)S
3(T- Tn)P(T- Tn)P

+ P(T- Tn)P{T- Tn)S\T- Tn)P

+ S3(T - Tn)S(T - Tn)P(T - Tn)P(T - Tn)P + . . . ,

275

(3.7)

so that

In general,

It follows that

| | ^ | | = O(max{£n
3,an£2}).

'ill = O(max{£*,an£n*-'}), k > 3.

- 0(max{£3, «n£n
2}). (3-8)

From (3.5), (3.6), (3.7), and (3.8) we get

\\P - PnP-S(T- Tn)P - S(T - Tn)S(T - Tn)P

+ P(T - Tn)S\T - Tn)P + S\T - Tn)P(T - Tn)P\\

= O(max{ /?„£„, ane
2
n, yn£n£n

3}).

This proves (b).

REMARKS 1. The proof of the above theorem also shows that

A = \ + 0(O
\\P - PnP\\ = O(en)

and

(3.9)

\\P - PnP - S(T - Tm)P\\ = O(max{an£n, en
2}). j

Let a,, - ^ 0 . (This is the case, for example, if \\(T - Tn)R(z)\\ -* 0.) Then we
see that error bounds in (3.10) are better than those in (3.9). Also, since /?„ < a2

and Yn < ll^llan' ll follows that in this case the error bounds in Theorem 1 are
still better than those in (3.10) above. If only yn —» 0 without an —> 0 (which is the
case, for example, if Tn is a collective compact approximation of T), then also
the error bounds in Theorem 1 are better than those in (3.9) and (3.10).
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276 R. P. Kulkami and B. V. Limaye [ 7 ]

2. Equation (5.2) of Chatelin and Lemordant [4] reads

A = \, +1 tr(r - Tn)p + -L tr(r - ra)5(r - rj/> + o(«AO-

In view of the proof of our equation (3.1), the above estimate is not likely to
hold. A similar remark holds for the equation (5.4) of [4] in view of our equation
(3.10).

3. It is stated in Chatelin and Lemordant [4], equation (5.5), that

\\P - PnP + S(T - Tn)P + S(T - Tn)S(T - Tn)P

-P(T- Tn)S\T- Tn)P\\ = O(/U,).

By comparing the above equation with our (3.2) of Theorem 1, it can be seen
that we have added the term -S2(T - Tn)P(T - Tn)P to the expression on the
left hand side of (5.5) of Chatelin and Lemordant [4]. If we do not add the above
term, we get,

||P - PnP - S(T - Tn)P - S(T - Tn)S(T - Tn)P

+ P(T - Tn)S\T - Tn)P\\ = O(max{ /?„£„, ynen, e
2

n}).

The claim made in Chatelin and Lemordant [4] that the above left hand side is
O( fin£n) does not seem to be justified.

THEOREM 2. Let the domain D of T be dense in X. Let / = 1, e* =

- T*)P*\\ and en and an, be as in Theorem 1. Then, for n large enough,

A = Xn + 1 t r ( r - Tn)P + -1 tr(7 - Tn)S(T - Tn)P

(3-11)

PROOF. Let JC,, x2, . • . , xm be a basis of M = PX, and xf, x$, . . ., x* be the
adjoint basis. Then

t r ( r - Tn)S(T- Tn)S(T~ TjP

= 2 (S(T- Tn)S(T- Tn)Xi,{T* - TS)x?).
1 = 1

Hence

tr ( r - Tn)S(T - Tn)S(T - Tn)P = O(anenen*).

Similarly,

t r ( r - Tn)S\T- Tn)P(T- Tn)P = O(efc).
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Thus we get, as in Theorem 1,

A = xn + 1 tr(r - Tn)p + 1 tr(r - r j t f r - rn)/>

4. Computable error bounds

In this section we assume in addition that A is a simple eigenvaue of T; that is,
m = 1. Then it can be seen that the roles of T and Tn can be interchanged, and
we obtain

and

A - \ = | H>! ^ tr[(r - rn)5<*'> • • • (r - rjsW]. (4.2)
\ p

THEOREM 3. L * m = 1. Le? £„ = ||(T - rn)/»J|, an = | | ( r - TJSJ, 0n =
| |[(r - Tn)Snf\\, yn = | | ( r - Tn)Sn\T - Tn)Sa\\. Also, let i* = \\(T* - T?)p;\\
in the case that D is dense in X. For n large enough,

\ = \n + t r(T - Tn)Pn + O(dnin) (4.3)

X = \, + t r ( r - r n )P n + (?(£„£„*) (4.4)

A = \ , + t r ( r - Tn)Pn - t r ( r - 7 ; )5 n (T - Tn)Pn + O(max{ ^n£n, an£n
2})

(4.5)

A = A, + tr(T - Tn)Pn - t r ( r - Tn)Sn(T - Tn)Pn + O(max{«„£„£-;, £2e";})

(4.6)

IIPP. - Pn~ Sn(T- Tn)Pn + Sm(T- Tn)Sn(T - Tn)Pn

- Pn(T- Tn)Sn
2(T- Tn)Pn - Sn\T- Tn)Pn(T- T.)PJ

- O(max{ &£„, «nen
2, yjn, en

3}). (4.7)

PROOF. The proof is exactly similar to that of Theorem 1 and of Theorem 2.

REMARK. It follows from Lemma 2 and 5 of Chatelin and Lemordant [4], that
£„ —> 0 and /?„ -> 0 as n —» oo. It can also be seen that an is bounded as n —> oo
and yB < H^Hd2. Further, if Tfx -* T*x for all x G dom(r*), then £n* ->0.
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278 R. P. Kulkarni and B. V. Limaye |91

Let nn denote the expansion of X of order 1; that is,

A . - \ , + t r ( r - Tn)Pn.

If <j>n is a normalized eigenvector of Tn associated with \n and <f>* is an
eigenvector of 7]f associated with Xn satisfying (<£„, <j>*) = 1, then fin = tr TPn =
(T<t>n, ft). From (4.3) and (4.4) we have

X = Mn + O(anin),

x = M + o(e;o ' ( 4 8 )

If vn denotes the expansion of X of order 2, that is,

vn = X_ + t r ( r - rn)/>n - t r ( r - Tn)Sn(T - Tn)Pn,

then it follows from (4.5) and (4.6) that

X = vn + 0(max{ /?„£„, dn£2}) 1

X = »<„ + 0(max{ <*„£„£„*, en
2en*})-}

If en —> 0, but E* -+* 0, from (4.3) and (4.5) we see that vn improves on fin.
If both in and e* tend to zero, it is clear from (4.4) and (4.6) that vn and jun are

approximations of the order of O(ini*). Thus vn does not always improve on fin.
If dn —» 0, irrespective of the behaviour of e*, vn improves on jû ,.
Chatelin has considered the following special case in [5]: T: X - » X is a

bounded linear operator, and irn, n = 1, 2, . . . , is a seqence of projections of X
on a family of finite dimensional subspaces Xn = irnX. It is assumed that
TTnx —* x, x e X. Then T is approximated by Tn

c = wn7Vn, which is Galerkin's
method. For compact T then Tn

G is a collective compact approximation of T. If T
is not compact, it is assumed that Tf is a strong approximation of T. Let
en<? = ||(T - Tf)pG\\ and let /8n

c and an
c be defined similarly. It is claimed in

Chatelin [5], page 1120, that

I* - Mn
C| = O(en

Ge;G),

a n d

\\ - VG\ = ( ° ( ^ £ ) i

1 0(| |(1 - vn)T\\en
Ge:c) if Tis compact.

(In the notations used there, rn
c = \*s = X2C, pin

c = Xn
G.)

As we can see from (4.9) above, when T is bounded but not compact, the
error bound for |X — vG\ should be modified to
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11 o 1 Error bounds for eigenvalue problems 279

It is said in Chatelin [5] that v£ always improves on /nn
G = \ , c as a consequence

of the stepwise convergence. But stepwise convergence is proved there only for
the collectively compact convergence and not for the strong convergence.

We now consider an approximation of the order of e2. Let T be a (densely
defined) self-adjoint operator on a Hilbert space H. If pn = (T<f>n, </>„) denote the
Rayleigh quotients, it can be seen easily that pn —> X as n —> oo. In fact, if we let dn

to be the distance of pn from o(T) — {A}, then

I* - (T<t>n, </>„)! < -J- [ | | ( r - Tn)4>n

This can be seen as follows:

11(7-- r>j |2- |((r- r>a,^)|2

- 7>B, (T - 7>J
2 - (Xn<t>n, T<j>n) - (T<j>n, Xv^) + \Xn\

2 - \pn

2 - 2Pn Re Xn + \Xf - pi - |\,|2 + 2Pn Re

Hence, by using the Kato-Temple inequality [6],

Since the dn's are bounded away from zero, we see that

X = pn + O(%). (4.10)

Let us now consider the following two particular kinds of approximations: T
is a bounded self-adjoint operator on a Hilbert space H and irn: H -> Hn is a
projection, where Hn is a closed subspace of H. Let T^ = wn 7Vn be the
approximating operator in Galerkin's method. In Sloan's method, T is approxi-
mated by r / = T7rn (Sloan [8]). Assume that T° and Tn

s are strong approxima-
tions of T (which is the case, for example, if T is compact, and mnx -* x,
x G H). If <>/ denotes a normalized eigenvector of Tj[ associated with \ f and

ps = (Ttf, <f>?), then (4.10) shows that

x - P ) f + 0(11(7-- r / )^ | | 2 ) .
But

H ( r - Tn
s)pn

s\\ = \\T(\ - vn)pn
s\\

- on n(i - O
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280 R. P. Kulkarni and B. V. Limaye 111]

Also,

- Tn
G)Pn

G\\),

as proved on page 1118 of Chatelin [5].
If we let eG = \\(T - TG)PG\\, and similarly for /?n

G and dG, then

= Pn
s + o(in

G) (4.11)

This should be compared with

= vG + o(iG), (4.12)

as obtained from (4.9). Thus, pn
5 and vG are both approximations of A of the

order of o(eG).
Further, since PGH c WB,we see that

i? = \\(T- v.TvJPfW = O(\\T- VmT\\).

Hence, by (4.11) and (4.12),

A = Pn
s + O(||T - T*£\\T- *nTtf), (4.13)

and

A = vG + 0 ( m a x { | | r - vnTirn\\
2\\T - *HT\\, \\T - vHTvH\\ \\T - mnTf}).

(4.14)

If each -nn is an orthogonal projection, then iG = i*G so that, by (4.13) and (4.9),

A = P / + o ( | | r - W n r | | 4 ) (4.15)

and
A = vG + O(max{\\T - «HTK\\ \\T - KT\\2, \\T - vnT\\3}). (4.16)

In the case that the Galerkin approximations and the Sloan approximations are
uniform, that is, if ||wB7Vn - T\\-*0 and ||T<nn - T\\ -+ 0 (which is the case, for
example, if T is compact, Tinx -»x and Tr*x^> x), then the results (4.13) and
(4.14) give comparative estimates for the two approximations p / and vG of A. In
particular, if each mn is orthogonal, then (4.15) and (4.16) show that p / is a better
approximation than vG. This is borne out by the following example.

5. A numerical example

Let X = L2([0, 1]), and The the operator defined by

Tx(s) = ('*:(•*> t)x(t) dt,Jo
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k(s, t) =
(1 - t)s, if t > s

(1 - s)t, if / <s.

Then T is a self-adjoint compact operator on L2([0, 1]). The eigenvalues of T are
given by Xk = l/(&2w2), k = 1, 2, . . . . Consider the following orthonormal
basis in L2([0, 1]):

ex{s) = 1, £*(•*) = 21 / 2 cos(A: — \)TTS, k = 2, 3, . . . .

Let A',, = span{e,, e2, . . . , en) and wn: A" -* Xn denote the orthogonal projection
of X onto A^.The matrix corresponding to the Galerkin approximation •nnTmn is

An = (Tej, e), i,j = 1, . . . , n.

The matrix An is real and symmetric with

j_
12

-V2

(y -

u-

j -1)2('- -

if / = y = i,

if/ = 1,7 > 2,7 odd,

if / = 1,7 > 2,7 even,

if / = 7, / odd,

if / = 7, / even,

if / ¥=j, either / or^ is odd,

if / 7^7', both / andj are even.

If (<£„),, / = 1, 2, . . . , n, is an eigenvector for An corresponding to an eigenvalue
\ , , then <}>n = 2"_ ](<»„),«,• is an eigenvector of 77-n77rn associated with the eigen-
value \ , and T<j>n = 2?_ ,(<>„), 7e, is an eigenvector of Tmn associated with \ .
The Rayleigh quotient p / = {T§*, <j>?) where ||^>n

5|| = 1 is then
( T \ , T4>n)/(T<j>n, T<t>n).

Also, it follows, since 4>* = <j>n, that v° = (T2<j>n, ^>n)/\ with S " . , ^ ) 2 = 1.
(See page 269 of Chatelin and Lemordant [4].)

To compute p / and v°, we note that

i - i
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Te,(s)

- s)
if i = 1,

I — U, + | l—r~)ei,
\ ( i - i ) V / \ ( / - i ) V / "

if / > 2, i odd,

if / > 2, i even.

Hence

1 - 1

where

24 if/ = l,

c" l f / > 2 ' l o d 4

(/ -
i > 2, /' even.

We compute, in double precision, the first four eigenvalues \J , . . . , \* of the
matrix An and the corresponding eigenvectors for n = 4, 8, 12, 16, 20 and 30,
and obtain the corresponding values of p / and v£. In Table 1 the values of
A1 — A,|, A1 — vx

n, A
4 — \% and A4 - v4 are taken from Chatelin and Lemordant

[4], while other values are computed by us using the above method. As noted
earlier, pn

s turns out to be a better approximation of A than j»n
c since the

Galerkin and the Sloan approximations converge uniformly in this case and the
projections mn are orthogonal.
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TABLE 1

Calculations for the numerical example

n

X ' - ,„•

A'-P/1

A 2 - A , 2

A2 " "I
A2 - P / 2

A3-Ai
A3 - - 3

A3 - P / 3

A 4 - A 4

A4 - »t
A4 - P / 4

9

4.2

4

4.5

5.4

1.2

3

6.4

-2.2

1.7

4.3

4

4

X

X

X

X

X

X

X

X

X

X

X

X

10-*
io-'
10"*

io-4

1 0 '

io-'

10"3

io-'

io-3

io-4

10"'

7.8

8.9

2.6

5.4

1.9

1.6

8.6

8.7

1.2

6.1

8.7

1.8

8

X

X

X

X

X

X

X

X

X

X

X

X

io-'
io-'
io-8

io-'
10"6

io-7

10"'
io-*
lO" 6

io-'
io-*
10"*

2

1.2

1.5

1.6

2.4

1.2

2.1

8.9

5.5

1.7

1.1

1.1

12

X

X

X

X

X

X

X

X

X

X

X

X

io-'
io-'
10"9

10"'

1 0 '

io-8

io-'
io-'
io-8

10"'
io-*
io-'

8

4.8

2.2

6.7

4.6

2

8.2

2

6.9

6.9

2.7

1.6

16

X

X

X

X

X

X

X

X

X

X

X

X

10"*
io-*
io-'°

io-6

10^

io-»

io-*
10"'
io-9

io-6

io-'
lO"8

3.9

2.2

5.1

3.4

3.2

4.8

4

6.2

1.4

3.5

9.8

3.7

20

X

X

X

X

X

X

X

X

X

X

X

X

io-6

10"«

io-"

io-6

1O*
,0-io

io-6

io-8

io-9

io-6

io-8

10"9

1.1

1.7

3.9

1

1.5

3.9

1.1

1.2

8.7

1

2.6

2.7

30

X

X

X

X

X

X

X

X

X

X

X

X

10"*

io-«
10~2

io-6

10"*
io-"

10"*
io-8

io-"

10"*
io-8

io-'°
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