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ON COMPACT SEPARABLE RADIAL SPACES

ALAN DOW

ABSTRACT. If A and B are disjoint ideals on °, there is a tower preserving õ-
centered forcing which introduces a subset of ° which meets every infinite member of
A in an infinite set and is almost disjoint from every member of B. We can then produce
a model in which all compact separable radial spaces are Fréchet, thus answering a
question of P. Nyikos. The question of the existence of compact ccc radial spaces which
are not Fréchet was first asked by Chertanov (see [Arh78]).

1. Introduction. Nyikos has asked if there exists a compact separable radial space
which is not Fréchet. A space is radial if, for each x and A with x 2 A, there is a
well-ordered sequence of points from A which converge to x which means that every
neighbourhood of x includes a final segment of the sequence. A space is Fréchet if it is
radial in which the well-ordered sequence can always be chosen to be countable.

We produce a model in which every compact separable radial space is actually Fréchet.
It is easily seen that if » = ∑ or if ∏ = °1, then there is a compact separable space which
is radial but not Fréchet (see 1).

Our technique will be to modify the following combinatorial principle of Solovay.

If A ÒB ² [°]° are such that jA [ Bj Ú ∑, any finite union from B has infinite
complement, and A\B is finite for each A 2 A and B 2 B, then there is a C 2 [°]°

such that C \ B is finite for all B 2 B and C \ A is infinite for all A 2 A .

By Bell’s theorem [Bel81], it follows that “Solovay’s Lemma” is equivalent to ƒ = ∑.
However, we weaken the above property by simply dropping the requirement that C be
infinite (hence if A is empty there is nothing to do). We find some õ-centered forcings
which will add sets C to meet every member of an ideal A while missing (mod finite)
every member of a disjoint ideal B which have the additional property that they do not
fill towers. This is a generalization of Baumgartner’s result that the usual õ-centered
forcing which adds an increasing dominating real also does not fill towers. Recall that a
tower is a maximal descending (mod finite) chain of infinite subsets of °.

If we assume a more restrictive condition on the family A (which we will call weakly
õ-bounded) then we will in some sense introduce a new tower (NT). Say that A is dense
in C if every infinite subset of C meets some member of A in an infinite set. The family
of complements from a tower are dense in every infinite set. To formulate (NT) we will
need one more simple notion. For each family A ² P (°), we will let A# denote the
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downward closure of A in [°]°, i.e. B 2 A# if B is an infinite subset of some member of
A .

DEFINITION 1. Let (NT) be the statement: “for each weakly õ-bounded family A ²
P (°) and each family B ² A of cardinality at most °1, there is a C ² ° such that A
is dense in C and C \ B is infinite for each infinite B 2 B”. We say that a family A is
weakly õ-bounded, if for each countable subset A 0 of A#, there is an A 2 A such that
A \ A0 is infinite for all A0 2 A 0

2. Topology. To motivate our approach we begin by recalling a classical (consis-
tent) example of a space whose existence we must refute. In our new terminology, the
hypothesis on the chain faã : ã 2 °1g is that it is dense only in those I which are actually
contained in some aã.

PROPOSITION 1. Suppose there is an increasing mod finite chain faã : ã Ú °1g such
that for each I 2 [°]° either I � aã is finite for some ã or there is a J 2 [I]° such that
J \ aã is finite for all ã Ú °1. Then there is a compact separable radial space which is
not Fréchet.

PROOF. Let B be the subalgebra of P (°) which is generated by the finite sets together
with the family faã : ã Ú °1g and let X be the Stone space of B. It is clear that X
is a compact separable space. The ultrafilters on B can be naturally partitioned into
three sets. The first consists of the fixed ultrafilters which are isolated points of X. The
second are the filters xã such that there is an ã Ú °1 such that xã is generated by
faã � (aå [ n) : å Ú ã and n 2 °g. The third is the unique ultrafilter x°1 which is
generated by f°� (aå [ n) : å Ú °1 and n 2 °g. Since all points of X have a countable
neighbourhood base except x°1 , we need only check the radial property at x°1 . It is easily
seen that fxç : ç � °1g is homeomorphic to the ordinal space °1 + 1, which is radial, so
we need only consider the case when x°1 is a limit of some A ² °. In this case A� aã is
infinite for all ã Ú °1, hence, by hypothesis, there is a J ² A such that aã \ J is finite
for all ã Ú °1. Clearly J converges to x°1 which completes the proof that X is radial.

Notice that X (as in 1) will remain compact separable and non-Fréchet in any extension
which preserves°1. Therefore to destroy that X is a compact separable radial non-Fréchet
space we must make it non radial. This requires that we introduce a set I ² ° such that
faã \ I : ã Ú °1g forms a non-extendible chain of coinfinite subsets of I. It is nearly
immediate that (NT) implies there is such an I.

We now show that (NT) implies every compact separable radial space is indeed
Fréchet and leave it for the final section to prove that (NT) is consistent. One key step
is supplied by the following result of Juhász and Szentmiklossy. Recall that a space has
uncountable tightness if there is a point x in the closure of some set A ² X such that x
is not the limit point of any countable subset of A. Also, an °1-sequence fxã : ã 2 °1g
is said to be free if for each ã Ú °1, the closures of the initial segment, fxå : å Ú ãg,
and of the final segment, fxå : ã � åg, are disjoint. Finally, such a sequence is said to
converge to x if every neighbourhood of x contains a final segment of the sequence.
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PROPOSITION 2 ([JS92]). Each compact space of uncountable tightness contains a
converging free °1-sequence.

Of course a space is said to have countable tightness if it does not have uncountable
tightness (perhaps the converse is more accurate). The following result is one of the first
about radial spaces.

PROPOSITION 3. A compact radial space is Fréchet if and only if it has countable
tightness.

For the sake of completeness, in this context we can give a simple self-contained
proof of the following corollary.

COROLLARY 1. If a compact radial space is not Fréchet, then it contains a converging
free °1-sequence.

PROOF. Assume that a compact radial space X is not Fréchet. Since X is not Fréchet
we can find a point z and a set A such that z is a limit point of a set A but for which there is
no °-sequence from A converging to z. We have just established uncountable tightness:
if z was a limit point of a countable subset of A, then that countable set, by the radial
property, would have to have a well-ordered (hence °) sequence which converged to z.
By passing to a subset of A, we may assume that z is not a limit point of any subset of A
which has strictly smaller cardinality.

But now, since X is radial, there is a minimum ordinal î such that there is a î-sequence
of points from A which converges to z. Since any cofinal subsequence of this sequence
will also converge to z, it immediately follows that î does not have a countable cofinal
sequence. In addition, by the minimality, î is a cardinal and is equal to jAj. The fact that
the sequence converges to z gives us one final key property: for any initial segment, S,
of the sequence, there is a final segment, F, of the sequence so that S and F have disjoint
closures. Indeed, since z is not a limit of S, we can simply choose F to be any final
segment contained in a closed neighbourhood of z which avoids S.

Now by following along this sequencewe can inductively choose points xã forã Ú °1

which will form a free sequence. At each stage ã, also choose a final segment Fã of
the sequence which has the property that its closure is disjoint from the closure of
fxå : å Ú ãg. When choosing xã be sure to choose it in Fç for each ç � ã.

We are almost done. Since X is compact, there is certainly a point x which is in
the closure of fxå : ã Ú å Ú °1g for every ã Ú °1 since this family has the finite
intersection property. Finally, since x is a limit point of the sequence fxã : ã Ú °1g it
must have a subsequence converging to x. We have ensured that this sequence will not
be countable because fxã : ã 2 °1g is a free sequence.

Now we are ready to apply (NT).

THEOREM 1. The principle (NT) implies that every compact separable radial space
is Fréchet.
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PROOF. Assume that X is a compact separable radial space which is not Fréchet.
By the previous corollary we may fix a point x together with a free °1-sequence fxã :
ã 2 °1g which converges to x. Since D has a countable dense set we may assume (by
a trivial renaming) that this set is actually the set °. For each ã 2 °1, choose a closed
neighbourhood Wã of x which is disjoint from fxå : å Ú ãg (this uses the fact that we
have a free sequence). Therefore aã = ° nWã will not have x in its closure and, for each
å Ú ã, xå will not only be a limit point of aã but will also not be a limit point of ° n aã.

Since X is radial we may also choose, for each å Ú ã Ú °1, a sequence y(åÒ ã) ² aã
such that y(åÒ ã) converges to xå. Observe that for å Ú ã Ú é Ú °1, we have that
y(åÒ ã) meets aé in an infinite set (in fact y(åÒ ã) n aé is finite). It follows easily now, that
A = faã : ã Ú °1g [ fy(åÒ ã) : å Ú ã Ú °1g is a weakly õ-bounded family. Finally
we set B = A and we show that the existence of the set C given to us by the principle
(NT) contradicts that X is radial. First of all, since C \ y(åÒ ã) is not empty for each
å Ú ã, it follows that each xå, and therefore x, is a limit point of C. So to reach our
contradiction we show that no subsequence from C will converge to x. This, however,
follows immediately from assertion that A is dense in C. Indeed, if I is an infinite subset
of C we find some a 2 A such that a \ I is infinite. However, since a 2 A , there is an ã
such that a is disjoint from Wã. Clearly this implies that I does not converge to x.

The following consequence of (NT) may also prove useful (and justifies the term
“new tower”).

PROPOSITION 4. Assume (NT) and that ∂ is greater than °1. For any family A which
has a subfamily fbã : ã 2 °1g such that for each ã 2 °1, there is an A 2 A such that
bå n A is finite for all å 2 ã, then there is a set C meeting each bã in an infinite set such
that the family fC n A : A 2 A#g contains a tower of cofinality °1.

PROOF. Fix any subsequence fAã : ã 2 °1g ² A such that bå n Aã is finite for each
å Ú ã. It is well-known that we can choose a sequence, fcã : ã 2 °1g, of pairwise
disjoint mod finite infinite sets so that each cã ² bã. Choose, inductively, subsets
aã ² Aã so that, for å Ú ã � ç aå [ cå is almost contained in aã, and aã is almost
contained in Aç [ cç. One simply uses the assumption that ∂ Ù °1 to choose a finite
subset, Få, of aå[cå for each å Ú ã, so that

S
åÚã[aå[cå]nFå is strictly contained mod

finite in every Aç [ cç with ç ½ ã. Set aã equal to this union intersected with Aã. Since
the family faã : ã Ú °1g is (strictly) increasing mod finite, it is weakly õ-bounded.
Apply (NT) to the collection faã : ã Ú °1g [ fcã : ã Ú °1g with B = fcã : ã 2 °1g.
Since faã : ã 2 °1g is dense in C and fC n aã : ã 2 °1g is strictly descending mod
finite, it is a tower.

3. Set theory. Recall that the usual Solovay forcing for adding a set which meets
every member of A and is almost disjoint from every member of B is the set consisting
of (aÒB) where a 2 [°]Ú° and B is in the ideal generated by B. A condition is stronger
than another if each coordinate is larger but the new elements of the first coordinate are
not from the weaker condition’s second coordinate. We would like to first note that we
will need a new forcing notion if we are to preserve towers.
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PROPOSITION 5. For each tower there are ideals A and B so that A \ B is finite for
each A 2 A and B 2 B so that the usual Solovay forcing with respect to A and B will
fill the tower.

PROOF. Let ftã : ã Ú îg be a tower and fix a family fTn : n 2 °g of pairwise
disjoint two element subsets of °. We can simply define aã and bã, pairwise disjoint, so
that tã = fn : Tn \ (aã [ bã) is emptyg. For n Û2 tã, let min(Tn) 2 aã and max(Tn) 2 bã.
An easy density argument shows that if A is the new set added, then fn : Tn ² Agwill be
infinite and contained in tã for each ã. This example has the disadvantage that there is a
set in the ground model which meets every aã (in fact contains) and is disjoint from all
the bã (namely the set fmin(Tn) : n 2 °g). If Martin’s Axiom is assumed the example
can be modified to ensure that there is no such set (be more random in whether min(Tn)
goes in aã or bã).

DEFINITION 2. Fix a given an ideal A ² P (°). Define a forcing notion QA where
p 2 QA if p = (apÒ Sp) for some ap 2 [°]Ú° and ap Û2 Sp ² [°]Ú° where Sp is such that
for each a Û2 Sp and for each A 2 A , there is an n 2 ° such that (a [ a0) Û2 Sp for any
a0 2 [A n n]Ú°.

Define p Ú q, if ap ¦ aq, Sp ¦ Sq, and ap Û2 Sq. It is clear that this is a transitive
ordering.

For each ideal A , QA is õ-centered. To see this suppose that pÒ q 2 QA are such that
ap = aq. We claim that (apÒ Sp [ Sq) is a member of QA which is below each of p and q.
It is easily seen to be below each of p and q so we check that it is a member of QA . Fix
any A 2 A and b 2 [°]Ú° n (Sp [ Sq). Let np be large enough so that b [ a0 Û2 Sp for any
a0 2 [A � np]Ú° and similarly choose nq. Let n be large than np and nq and note, then,
that b [ a0 Û2 Sp [ Sq for any a0 2 [A � n]Ú°.

Note however, that if each member of A is finite, then QA is atomic. The purpose of
QA is to add a subset of °, AG =

S
fap : p 2 Gg, which meets every member of A in an

infinite set (a simple density argument), while if B is almost disjoint from every member
of A , and p 2 QA , then

�
apÒ Sp[ ([ap [B]Ú°�fapg)

�
is a member of QA which is below

p and which forces that AG \B is contained in ap. If A is P (°), then QA is just the usual
Cohen forcing, while if A is a countable family of pairwise disjoint infinite sets, then
QA is essentially just Hechler’s forcing, QH, for adding a strictly increasing dominating
real.

We will show that the forcings QA preserve towers which generalizes the following
result (and proof) of Baumgartner and Dordal.

PROPOSITION 6 ([BD85]). The forcing QH preserves towers.

Just as in [BD85] we proceed with a ranking on [°]Ú° associated with dense sets.

LEMMA 1. If D ² QA is dense, then [°]Ú° can be written as an increasing unionS
fDã : ã Ú °1g where D0 = fad : d 2 Dg and, for each ã Ù 0, a 2 Dã if there is an

A 2 A such that for each n, there is an a0 ² A n n such that (a [ a0) 2
S
åÚã Då.
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PROOF. Let D and the Dã be as in the statement of the lemma. Our task is to show
that S =

S
fDã : ã Ú °1g is all of [°]Ú°. If b Û2 S and if A 2 A , then it is clear that there

is an n such that b [ a Û2 S(=
S
fDã : ã Ú °1g) for any a ² A n n. That is, (bÒ S) is a

member of QA . However the contradiction is now immediate since (bÒ S) can not have
an extension in D, i.e. d Ú (bÒ S) would imply that ad 2 D0 ² S and ad Û2 S.

LEMMA 2. The forcing QA preserves towers for each ideal A ² P (°). In fact, more
generally, if a weakly õ-bounded family T is dense in °, then it remains both weakly
õ-bounded and dense in ° after forcing with QA .

PROOF. As mentioned earlier, the family of complements of any tower is dense in
° and it is easily seen that the family is weakly õ-bounded, hence we fix a weakly
õ-bounded family T . Fix any ideal A (which we may assume has at least one infinite
set in it).

Let fṅi : i 2 °g be a sequence of QA-names of integers (listed in increasing order).
Fix any countable elementary submodel M (containing both T and A as elements) and
let té denote any member of T which meets every member of M \ T #. We will show
that fṅi : i 2 °g is forced to meet té in an infinite set. Since we use nothing more than
that fṅi : i 2 °g is a member of M, it also follows from this that T remains weakly
õ-bounded.

The important thing about M and té here is that if we have an infinite subset Z of °
which is a member of M, then we know that Z \ té is infinite since by elementarity there
will be a t 2 M \ T # such that t ² Z.

We proceed by contradiction. Assume that p0 is a member of Q = QA which forces
that fṅi : i 2 °g \ té is finite. Then fix any p1 below p0 and an integer m1 so that p1

forces that ṅi Û2 té for each i Ù m1.
For each a 2 [°]Ú°, define Z‡(a) = fj : (8p 2 Q) if ap = a then p 6k– ṅ‡ 6= jg. That is

Z‡(a) is the set of all j such that any condition with first coordinate a has an extension
which forces ṅ‡ to take on value j. Note that if p k– ṅ‡ Û2 té, then Z‡(ap) is disjoint from
té and, being a member of M, must be finite.

Now we prove that Z‡(a) is non-empty for each a such that there is a p such that
ap = a and p k– ṅ‡ Û2 té. Note that Z‡(a0) is finite for any a0 ¦ a such that a0 Û2 Sp since
(a0Ò Sp) would be less than p and so also forces that ṅ‡ Û2 té.

Fix such a p and a = ap. Let D be the dense set of conditions which decide the value of
ṅ‡. By Lemma 1 there is a minimal ã Ú °1 such that a 2 Dã. We proceed by induction
on ã, i.e. for each q such that q k– ṅ‡ Û2 té and aq 2

S
åÚã Då, we assume that Z‡(aq)

is non-empty. By elementarity, there is an A 2 M \ A such that for each n there is an
an ² [Ann]Ú° such that a[an 2

S
åÚã Då. Fix such a sequencefan : n 2 °g ²

S
åÚã Då,

which is an element of M. Since this sequence is in M, so is the set
S

n Z‡(a [ an). This
set is disjoint from té, hence it is finite. Therefore there is some z which is a member
of Z‡(a [ an) for infinitely many n. Now z 2 Z‡(a). Indeed, suppose that q is such that
aq = a. By the definition of QA , there is an n0 so that aq[a0 Û2 Sq for each a0 ² Ann0. Now
choose n Ù n0 so that z 2 Z‡(a[ an). Therefore (aq [ a0Ò S) � q, but since z 2 Z‡(a[ a0)
there is an r � (aq [ a0Ò S) such that r k– z = ṅ‡. Since r � q, it follows that z 2 Z‡(a).
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We are ready for the final contradiction. Since Z‡(a)\‡ is empty for each ‡, it follows
that

S
‡Ùm1

Z‡(ap1 ) is an infinite subset of °. Since it is also a member of M, there is an
‡ Ù m1 such that Z‡(ap1 ) \ té is not empty. However this is the contradiction we seek,
since p1 was assumed to force that ṅ‡ is not a member of té and so Z‡(ap1 ) must disjoint
from té.

We will need a result about preserving dense families through an iteration. For towers
this was proven in [BD85]. The argument for dense weakly õ-bounded families seems
to be a little harder (unless we unnecessarily strengthen the hypothesis to reflect what we
can really prove for the QA ’s). In fact we will need a preliminary lemma; the technique
seems interesting on its own.

LEMMA 3. For a õ-centered poset P the following are equivalent:
1. P preserves dense weakly õ-bounded families;
2. for each P-name úof an infinite subset of°, there is a countable family fCn : n 2 °g

of infinite subsets of ° such that P forces that ú \ a is not empty (hence infinite)
for every set a which meets each Cn in an infinite set;

3. P preserves weakly õ-bounded families.

PROOF. We start with the implication (1) implies (2) by proving the contrapositive;
i.e. we assume that (2) fails and prove that (1) also fails. Let P =

S
n2° Pn where each

Pn is a centered subfamily of P. Fix a P-name ú and assume that it is forced by 1 to be
an infinite subset of ° which is a witness to the failure of (2). Since P is ccc, a simple
density argument establishes that there is a condition p 2 P such that for each q Ú p and
each family fCn : n 2 °g, there is an r Ú q and an a ² ° such that ja \ Cnj = jCnj for
each n, and r k– ú \ a is empty.

Now, to establish the failure of (1), set I to be the set of all infinite I such that p k– I\ú
is finite. We will be done once we have established that I is a dense weakly õ-bounded
family. That is, if fCn : n 2 °g is a family of infinite subsets of °, there is some I 2 I
such that I \ Cn is infinite for each n. To construct I we define, inductively, an antichain
fpi : i 2 °g of conditions pi Ú p together with sets fbi : i 2 °g so that, for each n and
each i,

1. Cn n
S

j�i bj is infinite; and
2. pi k– ú ² bi; and
3. if pi can be chosen from

S
j�i Pi, then it is.

We construct pi and bi. If every q Ú p is comparable with some member of fpj : j Ú ig,
we simply stop and set I =

S
fCn n

S
jÚi bj : n 2 °g. We leave it to the reader to check

that p k– I \ ú is empty. Otherwise we find a minimal k such that some member q of
Pk is incompatible with each pj (j Ú i). Next, for each n, set Dn equal to the infinite set
Cn n

S
jÚi bj and apply the hypothesis to choose pi Ú q (again minimizing k such that

pi 2 Pk) such that there is an a meeting each Dn in an infinite set and yet pi k– ú \ a is
empty. Finally, set bi = ° n a and observe that all the conditions are met.

Finally, define I by choosing a sequence of pairwise disjoint finite sets, fIn : n 2 °g,
so that, for each n, In is disjoint from

S
i�n bi and In \ Ci is not empty for each i � n.
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This is easily done. Set I to be the union of the In. Clearly I meets each Cn in an infinite
set, so it suffices to show that p k– ú \ I is finite. Notice that it follows immediately
that, for each i, pi k– ú \ I ²

S
jÚi Ij, and so is finite. So to finish, just check that, by the

third inductive hypothesis, fpi : i Ú °g is dense below p since this implies that if G is
P-generic and p 2 G, then there is an i such that pi 2 G.

Now assume that (2) holds and let A be a weakly õ-bounded family. For each n, let
ún be a P-name which is forced by 1 to be an infinite subset of some member of A . Since
P is õ-centered, there is a countable subfamily A 0 ² A such that for each n, ún is forced
to be contained in some member of A 0.

Fix a single family fCn : n 2 °g as given by (2) which works for each úk. By choosing
infinite subsets of the Cn, we may arrange that for each n, either Cn is almost disjoint
with every member of A or it is a member of A#. We can also add A 0 to the list and
then arrange that if Cm Û2 A#, then Cm is disjoint from or contained in Cn for each
n Ú m. Fix a set a 2 A such that a \ Cn is infinite for each n such that Cn 2 A#. Let
b = a [

S
fCk : Ck Û2 A#g. Clearly b meets every Cn in an infinite set, hence in the

extension, b \ ún is infinite for each n. However, (b n a) is almost disjoint with each
member of A 0, hence we actually have that a\ ún is infinite for each n. This implies that
A remains weakly õ-bounded.

Finally we show that (3) implies (1). Assume that A is a dense weakly õ-bounded
family. We know that A will remain weakly õ-bounded but not that it will remain dense.
Assume otherwise and fix a P-name ú which is forced by some p 2 P to be almost disjoint
from every member of A . It suffices to construct a new weakly õ-bounded family on
° ð ° which P does not preserve. We put B = B0 [ B1 where

B0 = fað ° [ ° ð a : a 2 Ag

and

B1 =
n
fng ð ° : n 2 °

o


For any sequencefbn : n 2 °g ² B#, let an 2 A be chosen so that bn = anð°[°ðan

in case bn 2 B0 and bn ¦ fkng ð an in case bn 2 B1 (recall that A is dense). Choose
a 2 A such that a \ an is infinite for all n. It is easily checked that b = a ð ° [ ° ð a
meets each bn which shows that B is weakly õ-bounded.

Now in the extension (by a generic filter containing p), consider the sequencen
fng ð ú n n : n 2 ú

o
. Each member of this sequence is contained in a member of

B1. However no member b of B meets each member. Clearly b could not come from B1,
so fix any a 2 A . Pick n 2 ú so that a \ ú n n is empty. Then a ð ° [ ° ð a is disjoint
from fng ð ú n n.

LEMMA 4. A finite support iteration of õ-centered forcings each of which preserves
dense weakly õ-bounded families in P (°), will itself preserve such families.
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PROOF. Suppose that for each ñ Ú ï, the poset Pñ from the iteration sequence of
õ-centered posets fPã; Qã : ã Ú ïg preserves dense weakly õ-bounded families and
that ï is a limit. We leave it as an exercise for the more advanced reader that we may
assume that ï is no larger than the successor of ∑ (the less ambitious reader would be
satisfied with knowing that this is the only case for which we apply the lemma). The
advantage of this assumption is that we then know that Pñ is õ-centered and therefore
Pñ satisfies condition (2) of the previous lemma. We show that Pï also satisfies this
condition and then simply note that the implication (2) implies (1) does not require the
assumption that P be õ-centered.

Let ú be any Pï-name of an infinite subset of ° and choose a suitable countable
elementary submodel M with ú 2 M. Let é denote the supremum of M\ï. We claim that
the family of infinite subsets of ° which are in M witness that (2) holds for ú. Assume
otherwise and fix a set a ² ° which meets every infinite b ² ° which is in M and is
such that there is a p 2 Pï which forces that ú \ a is empty.

Let F be the support of p in the iteration and, since F is finite, fix ç 2 M such that
F \ é ² ç. By inductive assumption, for each õ 2 M which is a Pç-name of an infinite
subset of °, p ç forces, with respect to Pç, that a meets õ. There is such a Pç-name ú̃,
where for each q 2 Pï and integer k

q ç k– k 2 ú̃ iff q k– k 2 ú

Since p ç forces that a meets ú̃, fix any k 2 a and q Ú p ç in Pç such that q k– k 2 ú̃.
Now, by the elementarity of M, there is a dense set of conditions, each in M, which
decide the truth value of k 2 ú̃. Since q is incompatible with each of those that force
k Û2 ú̃, it follows that p ç is compatible with q ç for some q 2 M such that q k– k 2 ú.
Since q 2 M, its support is a subset of M and therefore p and q are compatible on their
common domain. It follows that p and q are compatible which is the contradiction we
seek, since any extension of p and q will force that k 2 a \ ú.

The following combinatorial statement is an easy consequence.

THEOREM 2. It is consistent with » Ú ∑ that the following weakening of Solovay’s
principle holds: Given A ÒB ² [°]° such that jA [ Bj Ú ∑ and A \ B is finite for all
A 2 A and B 2 B, there is a C ² ° such that C \ A is infinite for all A 2 A and C \ B
is finite for all B 2 B.

However we must still work harder to prove that (NT) is consistent (it is easy to see
that (NT) implies the statement in the previous theorem). The following is really the final
key.

LEMMA 5. If A ² P (°) is weakly õ-bounded and G is a generic filter for QA , then
A is dense in C where C =

S
fap : p 2 Gg.
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PROOF. Suppose that fṅj : j 2 °g is a sequence of QA -names and that some q forces
that fṅj : j 2 °g (indexed in increasing order) is contained in C and is almost disjoint
from every member of A . Fix a countable elementary submodel M which includes A ,
fṅj : j 2 °g and q. Since M is countable and A is weakly õ-bounded, there is an A in A
such that A \ A0 is infinite for each A0 2 M \ A#.

Fix p Ú q and m such that p forces that ṅj is not in A for all j Ù m. Notice that if some
p0 2 QA forces a value on some ṅj, then this value is a member of ap0 (since otherwise
we can easily force C to avoid the value). Choose any j Ù m such that ap ² j (hence
ṅj Û2 ap). Let D be the dense set of conditions which force a value on ṅj. Since D is in M,
there is an A0 2 A \ M, by Lemma 1, such that for each n, there is a some d in D such
that ad n ap ² A0 � n. Again notice that the value this d forces on ṅj is in ad n j, hence
in A0 � n. Now we look at the second coordinate of p (which need not be in M) and find
an n such that ap [ a0 is not in Sp for any a0 ² A0 � n. Therefore, as before, we have that
any (ap [ a0Ò S) 2 QA is compatible with p if a0 ² A0 � n.

By all the above then, it follows that

B = fk : (9d 2 D)(ad n ap) ² A0 � n and d k– k = ṅjg

is a member of M \ A# and for each k 2 B there is a d 2 D \ M which is compatible
with p and which forces the value k on ṅj. Since A meets B (in an infinite set) we have
the contradiction to the fact that p k– ṅj Û2 A.

THEOREM 3. It is consistent (with ∑ = ∂ = °2) to have the statement (NT) holding,
that is, for each weakly õ-bounded family A and each B ² A of cardinality at most °1,
there is a C ² ° such that A is dense in C and C \ B is infinite for each infinite B 2 B.

PROOF. We start with a model V of GCH. We construct a finite support iteration
fPã; Qã : ã Ú °2g in which each Qã is the Pã-name of a õ-centered poset of cardinality
@1 which preserves dense weakly õ-bounded subsets of P (°). Clearly then, if G is
P°2 -generic over V, the @2 of V will be the continuum in V[G].

We will need a standard enumeration technique (from Martin and Solovay’s original
proof of the consistency of Martin’s Axiom). Since the exact details of this technique
are standard but nonetheless somewhat technical we have to chosen to essentially just
remind the reader of the key consequence of this technique. There is a list, in the ground
model, fYã : ã 2 °2g so that for each ï 2 °2 and each family A ² P (°) of size °1

in the model V[Gï], there is an ã greater than or equal to ï such that Yã is a Pï name
which is forced by 1 to equal A . Of course we can also assume that each Yï is a Pï-name
of a family of subsets of °. The iteration sequence is simply that Qï is chosen to be the
Pï-name of the poset QYï

.
Having defined the iteration we check that (NT) holds in the resulting model. Since

there will be cofinally many ï such that Qï is forced to be QA for some countable
family of pairwise disjoint infinite sets (which adds a dominating real), we will have that
∂ = °2. Let faã : ã Ú °2g be a set of P°2 -names for which it is forced, by 1, that the
collection forms a weakly õ-bounded family. We may assume that the subfamily B is

https://doi.org/10.4153/CMB-1997-050-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-050-0


432 ALAN DOW

simply faã : ã Ú °1g. Fix a generic filter G and for each ï Ú °2, let Gï denote the
Pï-generic filter G \ Pï. By a standard closing off argument, there is a ï Ú °2 (bigger
than °1) such that, for each ã Ú ï, aã is a member of V[Gï] and faã : ã Ú ïg is
a weakly õ-bounded family in V[Gï]. Choose any å ½ ï such that Yå is the family
faã : ã Ú ïg; hence Qå was chosen to be QA .

By Corollary 3, A = faã : ã Ú ïg is still weakly õ-bounded in V[Gå]. Therefore,
by Lemma 5, there is, in V[Gå+1], an infinite set C which meets every member of A and
such that A is dense in C. Clearly the family f° nCg [ A is a dense weakly õ-bounded
family in V[Gå+1]. Finally, by Lemma 4, this family is still dense in V[G], which implies
that A is dense in C as required.

It may be useful to note that we also proved that each (dense) weakly õ-bounded
family contains a (dense) weakly õ-bounded family of cardinality °1.

REMARK. Nyikos also asks about the existence of separable radial non-Fréchet spaces
(i.e. no compactness assumption). If there is not one in ZFC it appears that it may be
significantly more difficult to produce a model in which there are none. Indeed, by
Example 1 we know there is a compact example if ∂ = °1 and let us note here that
if ∂ = ∑, then there is a non-compact example. Suppose that ffã : ã Ú îg is a scale
in (°°Ò ÚŁ), i.e. fã ÚŁ få for ã Ú å Ú î and for each g 2 °°, there is an ã Ú î so
that g ÚŁ fã. We define a space X = (° ð °) [ fxã : ã � îg. For each ã Ú î, the
neighbourhood base for xã are sets of the form fxãg union a cofinite subset of the graph of
fã. The points of°ð° are isolated and a set is a neighbourhood of xî if there is anã Ú î
such that it contains xå for each å Ù ã and also a cofinite subset of f(nÒm) : fã(n) Ú mg.
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