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ON COMPACT SEPARABLE RADIAL SPACES

ALAN DOW

ABSTRACT. If A and B are digoint ideals on w, there is a tower preserving o-
centered forcing which introduces a subset of w which meets every infinite member of
A inaninfinite set and isalmost disjoint from every member of B. We can then produce
amodel in which all compact separable radial spaces are Fréchet, thus answering a
question of P. Nyikos. The question of the existence of compact ccc radial spaceswhich
are not Fréchet wasfirst asked by Chertanov (see [Arh78]).

1. Introduction. Nyikos has asked if there exists a compact separable radial space
which is not Fréchet. A space is radial if, for each x and A with x € A, there is a
well-ordered sequence of points from A which converge to x which means that every
neighbourhood of x includes a final segment of the sequence. A spaceis Fréchet if it is
radial in which the well-ordered sequence can always be chosen to be countable.

We produce amodel in which every compact separableradial spaceisactually Fréchet.
Itiseasily seenthat if t = ¢ or if b = wy, then there is a compact separable space which
isradial but not Fréchet (see 1).

Our technique will be to modify the following combinatorial principle of Solovay.

If A.B C [w]” aresuchthat |A UB| < ¢, any finite union from B hasinfinite
complement, and AN B isfinitefor each A € A andB < B, thenthereisaC € [w]¥
such that CN Bisfinitefor all B € B and CN Aisinfinitefor all A € A.

By Bell’stheorem [Bel81], it follows that “ Solovay’sLemma” isequivalentto p = c.
However, we weaken the above property by simply dropping the requirement that C be
infinite (hence if A is empty there is nothing to do). We find some o-centered forcings
which will add sets C to meet every member of an ideal A while missing (mod finite)
every member of adisjoint ideal B which have the additional property that they do not
fill towers. This is a generalization of Baumgartner’s result that the usual o-centered
forcing which adds an increasing dominating real also does not fill towers. Recall that a
tower isamaximal descending (mod finite) chain of infinite subsets of w.

If we assume amore restrictive condition on the family A (which wewill call weakly
o-bounded) then we will in some senseintroduce anew tower (NT). Say that A isdense
in Cif every infinite subset of C meets some member of A in an infinite set. The family
of complements from atower are densein every infinite set. To formulate (NT) we will
need one more simple notion. For each family A C P (w), we will let Al denote the
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downward closureof A in[w]“, i.e. B € Al if Bisaninfinite subset of some member of
A.

DEFINITION 1. Let (NT) be the statement: “for each weakly o-bounded family A c
P (w) and each family B c A of cardinality at most wy, thereisa C C w such that A
isdensein C and C N B is infinite for each infinite B € B”. We say that a family A is
weakly o-bounded, if for each countable subset A’ of Al, thereis an A € A such that
AN A isinfinitefor all A’ € A’

2. Topology. To motivate our approach we begin by recalling a classical (consis-
tent) example of a space whose existence we must refute. In our new terminology, the
hypothesisonthechain {a, : o € w; } isthatitisdenseonly inthosel which areactually
contained in some a,,.

ProPoSITION 1. Supposethereisanincreasing mod finite chain {a, : o < w1} such
that for each | € [w]“ either | — a, isfinite for some « or thereisa J € [I]* such that
JNa, isfinite for all « < ws. Thenthereis a compact separableradial spacewhichis
not Fréchet.

PrOOF. Let B bethe subalgebraof P (w) which isgenerated by the finite setstogether
with the family {a, : @ < w1} and let X be the Stone space of B. It is clear that X
is a compact separable space. The ultrafilters on B can be naturally partitioned into
three sets. The first consists of the fixed ultrafilters which are isolated points of X. The
second are the filters x,, such that there is an « < w; such that x, is generated by
{ax — (@3 UN) : 8 < a and n € w}. The third is the unique ultrafilter x,, which is
generated by {w — (a3 Un) : 3 < wy andn € w}. Since al pointsof X have acountable
neighbourhood base except x,,, , we need only check the radial property at x,,. Itiseasily
seenthat {X, : v < w1} ishomeomorphic to the ordinal spacew; + 1, whichisradial, so
we need only consider the casewhen x,,, isalimit of some A C w. Inthiscase A— a, is
infinite for all o < wy, hence, by hypothesis, thereisaJ C A such that a, N J isfinite
for al o < wy. Clearly J convergesto x,, which completesthe proof that X isradial. =

Noticethat X (asin 1) will remain compact separableand non-Fréchet in any extension
which preservesw; . Thereforeto destroy that X isacompact separableradial non-Fréchet
space we must make it non radial. This requires that we introduce aset | C w such that
{ax N : a < w;} forms a non-extendible chain of coinfinite subsets of I. It is nearly
immediate that (NT) impliesthereissuchan .

We now show that (NT) implies every compact separable radial space is indeed
Fréchet and leave it for the final section to prove that (NT) is consistent. One key step
is supplied by the following result of Juhasz and Szentmiklossy. Recall that a space has
uncountable tightness if there is a point x in the closure of some set A C X such that x
is not the limit point of any countable subset of A. Also, an w;-sequence {X, : o € w1}
is said to be freeif for each o < wy, the closures of the initial segment, {x; : 8 < a},
and of the final segment, {x; : o < g}, are digoint. Finally, such a sequenceis said to
convergeto x if every neighbourhood of x contains a final segment of the sequence.
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PROPOSITION 2 ([JS92]). Each compact space of uncountable tightness contains a
converging free w;-sequence.

Of course a spaceis said to have countable tightness if it does not have uncountable
tightness (perhaps the converseis more accurate). Thefollowing result is one of the first
about radial spaces.

PrROPOSITION 3. A compact radial space is Fréchet if and only if it has countable
tightness.

For the sake of completeness, in this context we can give a simple self-contained
proof of the following corollary.

COROLLARY 1. If acompact radial spaceisnot Fréchet, thenit containsa converging
free w1-sequence.

PROOF. Assume that a compact radial space X is not Fréchet. Since X is not Fréchet
we canfind apoint zand aset A such that zisalimit point of aset A but for whichthereis
no w-sequence from A converging to z. We have just established uncountable tightness:
if zwas alimit point of a countable subset of A, then that countable set, by the radial
property, would have to have a well-ordered (hence w) sequence which converged to z.
By passing to a subset of A, we may assumethat zis not alimit point of any subset of A
which has strictly smaller cardinality.

But now, since X isradial, thereisaminimum ordinal x suchthat thereisar-sequence
of points from A which convergesto z. Since any cofinal subsequence of this sequence
will also convergeto z, it immediately follows that = does not have a countable cofinal
sequence. In addition, by the minimality, x isacardinal and isequal to |A|. The fact that
the sequence converges to z gives us one final key property: for any initial segment, S
of the sequence, thereis afinal segment, F, of the sequenceso that Sand F have disjoint
closures. Indeed, since z is not a limit of S we can simply choose F to be any final
segment contained in a closed neighbourhood of zwhich avoids S,

Now by following along this sequencewe caninductively choosepointsx, for o < wy
which will form a free sequence. At each stage «, also choose a final segment F,, of
the sequence which has the property that its closure is disjoint from the closure of
{X3 : B < a}. When choosing x, be sureto chooseit in F, for eachy < a.

We are amost done. Since X is compact, there is certainly a point x which is in
the closure of {x; : @ < 8 < wy} for every o < wy since this family has the finite
intersection property. Finally, since x is a limit point of the sequence {X, : @ < w1} it
must have a subsegquence converging to x. We have ensured that this sequence will not
be countable because {x, : « € w1} isafree sequence. n

Now we are ready to apply (NT).

THEOREM 1. The principle (NT) implies that every compact separable radial space
is Fréchet.
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PrROOF. Assume that X is a compact separable radial space which is not Fréchet.
By the previous corollary we may fix a point x together with a free w;-sequence {X, :
a € wp} which convergesto x. Since D has a countable dense set we may assume (by
atrivial renaming) that this set is actually the set w. For each o € wy, choose a closed
neighbourhood W,, of x which is disjoint from {x; : 3 < o} (this usesthe fact that we
have a free sequence). Thereforea, = w \ W,, will not have x in its closure and, for each
B < a, xz will not only be alimit point of a, but will also not be alimit point of w \ a,.

Since X isradial we may also choose, for each 8 < o < wy, asequencey(s, a) C ay
such that y(3, «) convergesto xz. Observe that for § < o < 6 < wi, we have that
Y(8, ) meets gs in an infinite set (in fact y(3, «) \ as isfinite). It follows easily now, that
A={a,:a<w}U{y@ a):p < a<w}isaweakly o-bounded family. Finally
we set B = A and we show that the existence of the set C given to us by the principle
(NT) contradicts that X is radia. First of all, since CNy(8, @) is not empty for each
B < «a, it follows that each x, and therefore x, is a limit point of C. So to reach our
contradiction we show that no subsequence from C will converge to x. This, however,
follows immediately from assertion that A isdensein C. Indeed, if | is an infinite subset
of Cwefindsomea € A suchthat an | isinfinite. However, sincea € A, thereisan o
such that a isdisjoint from W,. Clearly thisimpliesthat | does not convergeto x. ]

The following consequence of (NT) may also prove useful (and justifies the term
“new tower”).

PROPOSITION 4. Assume (NT) and that b is greater than w;. For any family A which
has a subfamily {b,, : o € w;} such that for each « € wy, thereisan A € A such that
bs \ Aisfinitefor all 3 € «, thenthereis a set C meeting each b, in an infinite set such
that the family {C\ A: A € A'} contains a tower of cofinality w;.

PROOF. Fix any subsequence{A, : @ € w1} C A suchthat b \ A, isfinite for each
B < a. It is well-known that we can choose a sequence, {c, : « € w;}, of pairwise
disioint mod finite infinite sets so that each ¢, C b,. Choose, inductively, subsets
ay, C A, sothat, for 3 < a < v a3 U cg is amost contained in a,, and a, is amost
contained in Ay U ¢y. One simply uses the assumption that b > w; to choose a finite
subset, F5, of azUc; for each 3 < a, sothat s ,[a3Ucs] \ Fs isstrictly contained mod
finitein every A, U ¢, with v > «a. Set a,, equal to this union intersected with A,. Since
the family {a, : o < w1} is (strictly) increasing mod finite, it is weakly o-bounded.
Apply (NT) to the collection {a, : @ < w1} U{Cy i a < wi}withB ={c, : @ € w1 }.
Since{a, : « € wi}isdensein Cand {C\ a, : « € ws} is strictly descending mod
finite, it isatower. ]

3. Set theory. Recall that the usual Solovay forcing for adding a set which meets
every member of A and is almost disjoint from every member of B isthe set consisting
of (a, B) where a € [w]~“ and B isin the ideal generated by B. A condition is stronger
than another if each coordinateis larger but the new elements of the first coordinate are
not from the weaker condition’s second coordinate. We would like to first note that we
will need a new forcing notion if we are to preserve towers.
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PROPOSITION 5. For each tower there are ideals A and B so that AN B is finite for
each A € A and B € B so that the usual Solovay forcing with respectto A and B will
fill the tower.

PrROOF. Let {t, : « < x} be atower and fix a family {T, : n € w} of pairwise
digioint two element subsets of w. We can simply define a, and b, pairwise digjoint, so
thatt, = {n: ThN (a, Ub,) isempty}. For n ¢ t,, let min(T,) € a, and max(T,) € b,.
An easy density argument showsthat if Aisthe new set added, then {n: T, C A} will be
infinite and contained in t,, for each «. This example has the disadvantagethat thereis a
set in the ground model which meets every a,, (in fact contains) and is digjoint from all
the b, (namely the set {min(T,) : n € w}). If Martin’s Axiom is assumed the example
can be modified to ensure that there is no such set (be more random in whether min(T,)
goesin a, or by). n

DEFINITION 2. Fix agiven anidea A C P(w). Define a forcing notion Qa where
peQaifp=(a.S)forsomea, € [w]<“ anda, ¢ S, C [w]<~ where S, is such that
foreacha ¢ S, and for each A € A, thereisann € w suchthat (aU &) ¢ S, for any
a e [A\n]<~.

Definep < q,ifay D agp, § O §, and ay ¢ S;. It is clear that this is a transitive
ordering.

For eachideal A, Qa is o-centered. To see this supposethat p, q € Qa are such that
ap = ag. Weclaim that (a,, S, U §;) is amember of Qa which is below each of p and q.
It is easily seen to be below each of p and g so we check that it is a member of Qa . Fix
anyAc A andb € [w]<¥\ (S US). Let n, belarge enough sothat bu @’ ¢ S, for any
a € [A—np]<¥ and similarly choose ny. Let n be large than n, and nq and note, then,
thatbUa ¢ S US, foranya’ € [A—n]<«.

Note however, that if each member of A is finite, then Qa is atomic. The purpose of
Qa isto add asubset of w, A = U{ap : p € G}, which meets every member of A inan
infinite set (a simple density argument), while if B is almost digjoint from every member
of A,andp € Qa, then (ay. S, U([a, UB] < — {a,})) isamember of Qa whichisbelow
p and which forcesthat Ag N B is containedin a. If A isP (w), then Qa isjust the usual
Cohen forcing, while if A is a countable family of pairwise digoint infinite sets, then
Qa isessentially just Hechler’sforcing, Qu, for adding a strictly increasing dominating
real.

We will show that the forcings Qa preserve towers which generalizes the following
result (and proof) of Baumgartner and Dordal.

PrROPOSITION 6 ([BD85]). Theforcing Qy preservestowers.
Just asin [BD85] we proceed with aranking on [w]<“ associated with dense sets.

LEMMA 1. If D C Qa is dense, then [w]<¥ can be written as an increasing union
U{Dqy : @ < w1} whereDg = {aq : d € D} and, for each « > 0, a € D, if thereis an
A € A suchthat for eachn, thereisana’ C A\ nsuchthat (aua’) € Uz, Dg.
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Proor. Let D and the D,, be as in the statement of the lemma. Our task is to show
that S= U{Dy : @ < wy} isall of [w]<“. If b ¢ Sandif A € A, thenitisclear that there
isannsuchthat bUa ¢ S=|U{Dy : @ < wi})foranya C A\ n. Thatis, (b.S isa
member of Qa. However the contradiction is now immediate since (b, S) can not have
anextensionin D, i.e.d < (b, S would imply that ay € Do C Sandag ¢ S ]

LEMMA 2. Theforcing Qa preservestowersfor eachideal A C P (w). In fact, more
generally, if a weakly o-bounded family T is dense in w, then it remains both weakly
o-bounded and densein w after forcing with Qa.

PROOF. As mentioned earlier, the family of complements of any tower is densein
w and it is easily seen that the family is weakly o-bounded, hence we fix a weakly
o-bounded family T . Fix any ideal A (which we may assume has at least one infinite
setinit).

Let {n; : i € w} be asequence of Qa-names of integers (listed in increasing order).
Fix any countable elementary submodel M (containing both T and A as elements) and
let t; denote any member of T which meets every member of M N T L. We will show
that {n; : i € w} isforced to meet t; in an infinite set. Since we use nothing more than
that {n : i € w} isamember of M, it also follows from this that T remains weakly
o-bounded.

The important thing about M and t; hereis that if we have an infinite subset Z of w
which isamember of M, then we know that ZNt; isinfinite since by elementarity there
willbeat e MNT ! suchthat t C Z.

We proceed by contradiction. Assume that pg is a member of Q = Qa which forces
that {n; : i € w} Nt isfinite. Then fix any p; below py and an integer my so that p;
forcesthat n; ¢ t; for eachi > my.

For eacha € [w]<*, defineZ,(a) = {j : (Vp € Q) if ap =athenp J-n, #j}. Thatis
Z,(a) isthe set of all j such that any condition with first coordinate a has an extension
which forces n, to take on valuej. Note that if p |- n, ¢ t;, then Z,(a,) is disjoint from
t; and, being amember of M, must be finite.

Now we prove that Z,(a) is non-empty for each a such that there is a p such that
a, =aandp |- n, ¢ ts. Note that Z,(a) isfinitefor any @’ D asuchthata’ ¢ S, since
(@, ) would beless than p and so also forces that n, ¢ t;.

Fix suchapanda = a,. Let D bethe denseset of conditions which decidethe value of
n,. By Lemma 1 thereisaminimal o < w; suchthat a € D,. We proceed by induction
on a, i.e. for each g such that g |- 0, ¢ ts and aq € Uz, Dg, We assume that Z,(ag)
is non-empty. By elementarity, there isan A € M N A such that for each n there is an
an C [A\n]~* suchthataUua, € Uz, Ds. Fix suchasequence{a, : n € w} C Ug, Dg,
which is an element of M. Since this sequenceisin M, soistheset | J,Z,(aU a,). This
set is digjoint from ts, hence it is finite. Therefore there is some z which is a member
of Z,(aU a,) for infinitely many n. Now z € Z,(a). Indeed, suppose that q is such that
aq = a. By thedefinitionof Qa, thereisann’ sothat a;Ua’ ¢ S, foreacha’ C A\n’. Now
choosen > n' sothat z € Z,(aUa,). Therefore (agUa’. S) < ¢, butsincez € Z,(au )
thereisanr < (aqU &', S suchthatr |-z =n,. Sincer < q, it followsthat z € Z,(a).
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We areready for thefinal contradiction. Since Z,(a) N ¢ isempty for each ¢, it follows
that J,~m, Z/(ap,) isan infinite subset of w. Since it is also a member of M, thereis an
¢ > my such that Z,(ap,) N ts is not empty. However this is the contradiction we seek,
since p; was assumed to force that i, is not amember of ts and o0 Z,(ay,) must disjoint
from t;. [

We will need aresult about preserving dense families through an iteration. For towers
this was proven in [BD85]. The argument for dense weakly o-bounded families seems
to bealittle harder (unless we unnecessarily strengthen the hypothesisto reflect what we
can redly provefor the Qa’s). In fact we will need a preliminary lemma; the technique
seems interesting on its own.

LEMMA 3. For a o-centered poset P the following are equivalent:

1. P preservesdense weakly o-bounded families;

2. for each P-nameof aninfinite subset of w, thereisacountablefamily {C, : n € w}
of infinite subsets of w such that P forces that 7 N a is not empty (hence infinite)
for every set a which meets each C, in an infinite set;

3. P preservesweakly o-bounded families.

PrROOF. We start with the implication (1) implies (2) by proving the contrapositive;
i.e. we assume that (2) fails and prove that (1) aso fails. Let P = [J,,c,, Pn Where each
P, is a centered subfamily of P. Fix a P-name 7 and assume that it is forced by 1 to be
an infinite subset of w which is a witness to the failure of (2). Since P is ccc, asimple
density argument establishesthat thereis a condition p € P such that for eachq < p and
each family {C, : n € w}, thereisanr < gand ana C w suchthat |an C,| = |C,| for
eachn, andr |-7Naisempty.

Now, to establishthefailure of (1), set | to betheset of al infinitel suchthatp |- 1NT
isfinite. We will be done once we have established that | is a dense weakly o-bounded
family. That is, if {Cp : n € w} isafamily of infinite subsets of w, thereis somel € |
suchthat I N C, isinfinite for each n. To construct | we define, inductively, an antichain
{pi : i € w} of conditionsp; < p together with sets {b; : i € w} so that, for each n and
eachi,

1. Cy\ Uj<i by isinfinite; and

2. pi |7 Chj;and

3. if pi can be chosen from |Jj; P, then it is.

We construct p; and b;. If every q < p is comparable with some member of {p; : j <i},
we simply stop and set | = [J{Cn \ Uj< bj : n € w}. Weleaveit to the reader to check
that p |1 N7 is empty. Otherwise we find a minimal k such that some member g of
Py isincompatible with each p; (j < i). Next, for each n, set D, equal to the infinite set
Cn \ Uj<i by and apply the hypothesis to choose pi < g (again minimizing k such that
pi € Py) such that there is an a meeting each Dy, in aninfinite set and yet p; -7 Nais
empty. Finaly, set bj = w \ a and observethat all the conditions are met.

Finally, definel by choosing a sequence of pairwise disjoint finite sets, {I, : n € w},
so that, for each n, I, is digoint from J;, bi and I, N C; is not empty for eachi < n.
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Thisis easily done. Set | to be the union of the I,,. Clearly | meets each C, in an infinite
set, so it suffices to show that p |7 N1 is finite. Notice that it follows immediately
that, for eachi, pi [~ 7M1 C U« lj, and so isfinite. So to finish, just check that, by the
third inductive hypothesis, {p; : i < w} isdense below p since thisimplies that if G is
P-genericand p € G, thenthereisani suchthat p; € G.

Now assume that (2) holds and let A be aweakly o-bounded family. For each n, let
T, beaP-namewhich isforced by 1 to be an infinite subset of some member of A. Since
P is o-centered, there is a countable subfamily A’ C A such that for each n, 7, is forced
to be contained in some member of A’.

Fix asinglefamily {C, : n € w} asgiven by (2) which worksfor each . By choosing
infinite subsets of the C,,, we may arrange that for each n, either C,, is almost disjoint
with every member of A or it is a member of A'. We can also add A’ to the list and
then arrange that if Cy, ¢ A', then C,, is digjoint from or contained in C, for each
n < m. Fix aseta € A such that an C, isinfinite for each n such that C, € A'. Let
b=aUU{Ck: Ck ¢ Al'}. Clearly b meets every C, in an infinite set, hence in the
extension, b N 7, is infinite for each n. However, (b \ a) is amost disjoint with each
member of A’, hencewe actualy havethat an, isinfinite for each n. Thisimplies that
A remains weakly o-bounded.

Finally we show that (3) implies (1). Assume that A is a dense weakly o-bounded
family. We know that A will remain weakly o-bounded but not that it will remain dense.
Assumeotherwise and fix aP-namer whichisforced by somep € P to bealmost digjoint
from every member of A. It suffices to construct a new weakly o-bounded family on
w X w which P does not preserve. We put B = Bo U B; where

Bo={axwUwxa:acA}

and
Bi={{n} xw:newl

For any sequence{by, : n € w} C Bl,leta, € A bechosensothat b, = a, x wUw x a,
incase b, € B, and b, D {ky} x a, in case b, € By (recall that A is dense). Choose
a € A suchthat an a, isinfinite for al n. It is easily checkedthatb =ax wUw x a
meets each b, which showsthat B is weakly o-bounded.

Now in the extension (by a generic filter containing p), consider the sequence
{{n} xT\n:nE¢€ r}. Each member of this sequence is contained in a member of
B;. However no member b of B meets each member. Clearly b could not come from By,
sofixanya € A. Pickn € rsothatan \ nisempty. Thena x w U w x aisdisoint
from {n} x 7\ n. "

LEMMA 4. A finite support iteration of o-centered forcings each of which preserves
dense weakly o-bounded familiesin P (w), will itself preserve such families.
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PrROOF. Suppose that for each . < A, the poset P, from the iteration sequence of
o-centered posets {Py; Qy : o < A} preserves dense weakly o-bounded families and
that X is alimit. We leave it as an exercise for the more advanced reader that we may
assumethat A is no larger than the successor of ¢ (the less ambitious reader would be
satisfied with knowing that this is the only case for which we apply the lemma). The
advantage of this assumption is that we then know that P, is o-centered and therefore
P, satisfies condition (2) of the previous lemma. We show that P, also satisfies this
condition and then simply note that the implication (2) implies (1) does not require the
assumption that P be o-centered.

Let 7 be any P,-name of an infinite subset of w and choose a suitable countable
elementary submodel M with T € M. Let § denote the supremum of MM A. We claim that
the family of infinite subsets of w which arein M witness that (2) holds for 7. Assume
otherwise and fix a set a C w which meets every infinite b C w whichisin M and is
such that thereisap € P, which forcesthat + N ais empty.

Let F be the support of p in the iteration and, since F isfinite, fix ¥ € M such that
FNé C v. By inductive assumption, for each ¢ € M which is a Py-name of an infinite
subset of w, pIy forces, with respect to Py, that a meets o. There is such a Py-name 7,
where for each q € P, and integer k

g |Fkes iff gql-ker.

Since p[y forces that a meets 7, fix any k € aand g < plv in Py suchthat g |-k € 7.
Now, by the elementarity of M, there is a dense set of conditions, each in M, which
decide the truth value of k € 7. Since q is incompatible with each of those that force
k ¢ 7, it follows that p!y is compatible with g/ for someq € M suchthat q |-k € 7.
Since g € M, its support is a subset of M and therefore p and q are compatible on their
common domain. It follows that p and g are compatible which is the contradiction we
seek, since any extension of p and q will forcethatk € an. n

The following combinatorial statement is an easy consequence.

THEOREM 2. It is consistent with t < ¢ that the following weakening of Solovay’s
principle holds: Given A,B C [w]” such that |A UB| < ¢ and AN B is finite for all
Ac A andB < B, thereisaC C w suchthat CNn Aisinfinitefor all Ac A andCN B
isfinitefor all B € B.

However we must still work harder to prove that (NT) is consistent (it is easy to see
that (NT) implies the statement in the previoustheorem). Thefollowing isreally thefinal

key.

LEMMA 5. If A C P(w) is weakly o-bounded and G is a generic filter for Qa, then
A isdensein CwhereC = (J{a, : p € G}.
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PROOF. Supposethat {f; : j € w} isasequence of Qa-namesand that someq forces
that {n; : j € w} (indexed in increasing order) is contained in C and is aimost disjoint
from every member of A. Fix a countable elementary submodel M which includes A,
{fj :j € w}andg. Since M is countable and A isweakly o-bounded, thereisan Ain A
suchthat AN A’ isinfinite for each A’ € MN AL

Fix p < gand msuchthat p forcesthat i isnotin Afor all j > m. Noticethat if some
p’ € Qa forces avalue on some f;, then this value is a member of ay (since otherwise
we can easily force C to avoid the value). Choose any j > m such that a, C j (hence
N, ¢ ap). Let D bethe dense set of conditionswhich forceavalueon nj. SinceD isin M,
thereisan A’ € A N'M, by Lemma 1, such that for each n, thereis asomed in D such
that ag \ a, C A’ — n. Again notice that the value this d forceson fj isin aq \ j, hence
in A” — n. Now we look at the second coordinate of p (which need not be in M) and find
annsuchthat a,Ua’ isnotin S, for any a C A’ — n. Therefore, as before, we have that
any (apUa’,S) € Qa iscompatiblewith pif & Cc A" —n.

By all the abovethen, it follows that

B={k:(3d € D)(ag\a) C A —nandd |Fk=1}

isamember of MM A! and for each k € B thereisad € D N M which is compatible
with p and which forces the value k on ;. Since A meets B (in an infinite set) we have
the contradiction to the fact that p |- iy ¢ A. n

THEOREM 3. It is consistent (with ¢ = b = wy) to have the statement (NT) holding,
that is, for each weakly o-bounded family A and each B c A of cardinality at most wy,
thereisa C C w suchthat A isdensein C and CN B isinfinite for eachinfinite B € B.

PrROOF. We start with a model V of GCH. We construct a finite support iteration
{Ps; Qs : @ < wy} inwhich each Q,, isthe P,-name of ao-centered poset of cardinality
X; which preserves dense weakly o-bounded subsets of P (w). Clearly then, if G is
P.,-generic over V, the R, of V will be the continuumin V[G].

We will need a standard enumeration technique (from Martin and Solovay’s original
proof of the consistency of Martin’s Axiom). Since the exact details of this technique
are standard but nonetheless somewhat technical we have to chosen to essentially just
remind the reader of the key consequenceof thistechnique. Thereisalist, in the ground
model, {Y, : @ € wy} so that for each A\ € w, and each family A C P () of size w;
in the model V[G,], there is an « greater than or equal to A such that Y,, is a P, name
whichisforced by 1to equal A. Of coursewe can also assumethat each Y, isaPy-name
of afamily of subsets of w. Theiteration sequenceis simply that Q, is chosento be the
P,-name of the poset Qv, .

Having defined the iteration we check that (NT) holds in the resulting model. Since
there will be cofinally many A such that Q, is forced to be Qa for some countable
family of pairwise disjoint infinite sets (which addsa dominating real), we will havethat
b =w,. Let{a, : o < wy} beaset of P,,-names for which it is forced, by 1, that the
collection forms a weakly o-bounded family. We may assume that the subfamily B is
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simply {a, : @ < w;}. Fix ageneric filter G and for each A < w;, let G, denote the
P,-generic filter GN P,. By a standard closing off argument, thereisa A < w, (bigger
than wq) such that, for each & < A, a, is a member of V[G,] and {a, : o« < A} is
a weakly o-bounded family in V[G,]. Choose any 3 > X such that Y; is the family
{ay : @ < A}; hence Q4 was chosento be Qa.

By Corollary 3, A = {a, : a < A} is still weakly o-bounded in V[Gg]. Therefore,
by Lemma5, thereis, in V[Gg.1], an infinite set C which meets every member of A and
such that A isdensein C. Clearly the family {w \ C} U A isadenseweakly o-bounded
family in V[Gg.1]. Finally, by Lemma4, thisfamily isstill densein V[G], which implies
that A isdensein C asrequired. "

It may be useful to note that we also proved that each (dense) weakly o-bounded
family contains a (dense) weakly o-bounded family of cardinality w;.

REMARK. Nyikosalso asksabout the existence of separableradia non-Fréchet spaces
(i.e. no compactness assumption). If there is not one in ZFC it appears that it may be
significantly more difficult to produce a model in which there are none. Indeed, by
Example 1 we know there is a compact example if b = w; and let us note here that
if b = ¢, then there is a non-compact example. Suppose that {f, : a« < x} isascale
in (w,<),i.ef, < fzgfora < @ < kandforeachg € w”, thereisan o« < k SO
that g <* f,. We defineaspace X = (w X w) U {Xy : « < k}. For each a < &, the
neighbourhood basefor x,, are setsof theform {x, } unionacofinite subset of the graph of
f,. Thepointsof w x w areisolated and a set is aneighbourhood of x;; if thereisan o < k
suchthat it containsx; for each 3 > « and also acofinite subset of {(n, m) : f,(n) < m}.
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