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A NOTE ON A SPACE HP'A OF HOLOMORPHIC FUNCTIONS

H.O. KIM, S.M. KIM AND E.G. KWON

For 0 < p < °° and 0 S a S 1 s we define a space IFof

holomorphic functions on the unit disc of the complex plane,

2)0 °°
for which It= H , the space of all bounded holomorphic

functions, and W ' = IF } the usual Hardy space. We introduce

a weak type operator whose boundedness extends the well-known

Hardy-Littlewood embedding theorem to IF' 3 give some results

on the Taylor coefficients of the functions of W' and show

by an example that the inner factor cannot be divisible in

lP>a .

1. Introduction.

Let U be the unit disc in the complex plane. For a function

holomorphic in U , we write
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V ^ ; - ' s r f V « * e ' l p M)1/P, o<p<~,
* ' 0

Mjr,f) = max \f(z)\ .
\z\-r

I t i s well-known that M (r,f)(0 < p < <*>) is an increasing function of

r (0 < r < 1) .

The Hardy space IF (0 < p £ <*>) is the class of all functions f

holomorphic in U for which

11/11 = sup M (r,f) < •» .
P 0<r<l P

See [7] for the general theory of W spaces.

For 0 < p < <*> and 0 < a £ 1 j we define IF' as the class of

all functions / in IF for which

sup (1 - \z\)a/p\f(z)\ < - .
zeU

Since i t i s well-known [ I , Theorem 5.9] tha t i f f e IF then

sup(l - \z\)1/p\f(z)\ < oo ,

we have Ip' = if . Also, clearly if' = ff°° .

For / 6 lP'a , we define

I M I p . a - « r | l / l l p . - . H - 1 . 1 / "

It is routine to check that W* is a Banach space in thenorm

if 1 S p < co , and a Frechet space in the invariant metric d(f3g) =

\\f-g\\l3a if o <p < I .

Previous results on the class IF' are in [3]. For example,

Theorem B and Theorem 3.1 in [3D can now be stated respectively as

follows:

THEOREM A. If f e lP'a and 0 < p < q < » , then

https://doi.org/10.1017/S0004972700013447 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013447


473A space of hoiomorphic functions

n qa(——) - 1
(1-r) P 1 M (r,f)qdr < » .

'o q

THEOREM B. If f e lP'a , then. I&f e lfl'a , where I&f is the

fractional integral of f of order &, 0 < B < — and q = ap/(a - $p) .

In view of Theorem A and the Hardy-Littlewood embedding theorem [J,

Theorem 5.11], the following seems to be a reasonable conjecture.

Conjecture 1. If f e lP'a , 0 < p < q < °° and X > p , then

o<l-»)
 P " Mq(r,f)

X*- W ^

where a is a positive constant which does not depend on f .

In section 2, we introduce an operator whose boundedness would prove

conjecture 1, but we prove only that the operator is of weak-type. In

section 3, we give some results on the Taylor coefficients of functions of

the class W' . In section 4, we show by an example that the inner

factor is not divisible in the class lP'a .

2. Weak-type inequality.

We follow the ideas of Jawerth and Torchinsky [2] in introducing

our operator.

LEMMA 1. If f 6 #'a and 0 < p < q < » , then

a( )

Proof. Since \f(z) \ < \\f\\ (1 - \z\)~a/v from the definition,
p 3a

e

M (r,f) = (j- f" \f(reiQ)f \f(reiQ)\q^ d

( )
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From Lemma 1, Conjecture 1 is equivalent to the following.

Conjecture I 1 . If f e lP'a and 0 < p < q < <=° s then

2 j

I (1-r) p «~ M (r}f)
P dr < Cp Q | | / | | P a

where C is a positive constant whiah does not depend on f .

In fact, if conjecture I1 is true and X > p , then we have

A 1, ,

I1 (1-r) "p * M (r,f)h dr
]o q

1 \a( ) - l -a( ) p

(1-r) V H y (r,fr C | | / | | (1-r) p q ] dr
0

' M (r,f)Pdr

We now define an operator T on IF* by

Since

(T f)(r) = (l-r)~a/q M (r,f) .qJ q

p a ~ 2 | p q"Uri^d-r)0-'1 dr = j (1-r) p q M (r,f)pdr „
0 0

we see that Conjecture I1 is now equivalent to the following.

Conjecture 1". T is a bounded operator from lP'a into

LP((l-r)a~1 dr) .

The following theorem supports the truth of Conjecture 1".

THEOREM 2. T is of weak-type (p,p) from lf'a into

LP((l-r)a-2dr) .
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Proof. We note that by Lemma 1

Hence

(Tqf)M

(1-rf1 dr < I (1-rf'1 dr

(1-rf'1 dr

r=l

0

We remark that the Marcinkiewicz interpolation theorem does not seem

to apply immediately because of the nature of the norm || • ||

The following theorem also supports the truth of Conjecture 1.

i

THEOREM 3. If f e lP'a and 0 < p < q < X , then

, A J. ,
f (l-r)™p q' " M (r,f)X dr

Proof. Since M (r3f) < M (r,f) , we haveq A

A 1

(1-r)

' 0

f (1-r) P q Mq(r,f)
X dr

,1 \a(---)-l ,

I (1-r) p q Mx(r,f) dr <
0

by Theorem A. 0

In the negative direction, conjecture 1 with q = °° is false as the

following example shows.

EXAMPLE 4. consider

f(z) = j-^ {j log j—J .
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We know that / e H e for 0 < p < 1 14, p.96].

Since

we see that f e ff'^,0 < p < 1 .

0

But

(1-r) p Mjr,f)K dr

J (I-*)'1 (L log J->C I (l-r)^(i- log ^ - r X dr
' 0

if X < 1 .

3. Taylor coefficients.

The following is an extension of a familiar result of Hardy and

Littlewood [I, Theorem 6.4] on functions of W , (0 < p < 1) .

THEOREM 5. If f(z) = Z a zn e lP'a , (0 < p < 1) , then

where C is a positive constant.

Proof. From the equality

n 1 [ ^ „ , id. -inQ ,„a r = -5— f fre ) e de
ft oTT I

we have

\\f\\Ptau-»>
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If we set r = 1 - — 3 we get

Using Theorem A, we have the following which reduces to the familiar

theorem of Hardy and Littlewood [I, Theorem 6.2] when p = q .

THEOREM 6. If f(z) = 1 azn e iP'a and 0 < p * q $ 2 , then
0 n

a(l--))-2
\q <~ .P ^ \a

0 n

Proof. From Theorem A, we have

A 1\ i
' > 1

[1 ~l~"v a' , n*Q i

(1-r) v H M (*}f) dr < °° .

K q
I 2

Multiplying by (1-r) " q and integrating both sides of the

following inequality of Hardy and Littlewood [I, Theorem 6.2]

00

E (y
0

we have

I (n+Vq-2\a \q I r^a-r? P q dr < <° .
0 " )0

But, by Stirling's formula, we have

7 7
tl . q dr = B(nq
' 0

Y(nq

V(nq+1 + q a ( )

t
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as n -*• °° . Hence we have

q(la())2
Z (n+1) p 1 \an\

q < - . D
n

Now, suppose that Conjecture 1 were true and let f(z)=Z a zneHP*a1

(0 < p < 1) . We note that \a r"| < M (r,f) . We then have

rl ap(--l)-l
00 > I (1—r) " M (r,f) dr

-1- 1
n+2 ap(--l)-l

p

oo t n+2 ap(--l)-l
= Z (1-r) p M.(r,f)p dr

n=0 I i 1

l-ap(^-l)

o (n+lf(n+2)

1 (n,V-
1-aP(p

n=0

, cp ̂
ap( ! - - ) -

where C and C are positive constants.

Hence the truth of Conjecture 1 would imply that of the following.

Conjecture 2. If f(z) = Z a zn e iP'a , (0 < p < 1) , then

a p ( l h l
Z (n+1) p \a \P < ~ .

n
a \

n=0 n

We note that Conjecture 2 reduces to the well-known theorem of Hardy and

Littlewood [1, Theorem 6.2] when a = l .

4. An example.

We give an example which shows that the inner factor of a function

in lP'a is not divisible in tP'a .
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EXAMPLE 7. Consider

_
1 1-z

TT e

It is trivial that f e if for 0 < p < 1 . Now

1 - r2

\f(rei>S) | = 1 e
 2~2r c o s 6

VI - 2r cose + rz

By a routine calculation, we see that

M (r,f) = max \f(re ) \
6

is attained when cos6 = r ; so

Hence / e iP'P'2 for 0 < p < 1 . But •=— I FpjP' . So the inner

_ 1+z

factor e of /Yz,) is not divisible int IF'"
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