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Abstract

A quasi-steady-state approximation to the Navier-Stokes equation is the corre-
sponding equation with nonhomogeneous forcing term f(z,t), but with the term
vt deleted. For solutions that are zero on the boundary, the difference z between
the solution of the Navier-Stokes equation and the solution of this quasi-steady-
state approximation is estimated in the L% norm ||z|| with respect to the spatial
variables. For sufficiently large viscosity or sufficiently small body force f, the
inequality

||z(.,t)| |2<||z(.,0)||2exp{-/3«} + C sup ||f(||
0<t<T

holds for 0 < t < T and certain real numbers C, j3 > 0.

1. Introduction

For fluid problems governed by systems of partial differential equations of Navier-
Stokes type, the theory for boundary value problems and the steady equations
is generally more complete than that for the corresponding initial boundary
value problems and the time-dependent equations. For example, see the books
of Ladyzhenskaya [4], Shinbrot [5] and Temam [6] for treatment of the well-
posedness of problems involving the Navier-Stokes equation. One situation in
which the present theory of the unsteady equations is markedly less developed
than that for the steady equations occurs in [1] and [2], where convective Stefan
problems governed by Boussinesq systems (see, e.g., Joseph [3]) are investigated.
In [1], the existence of a weak solution was proved for a nonlinear stationary
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free-boundary problem describing the motion, freezing and thawing of a mixture
of ice and water occupying a region of three-dimensional space. The associated
non-stationary initial boundary value problem was studied in [2]; however the
existence result there was restricted to two space dimensions, and convection
was limited to the temperature equation.

Such limitations lead to the question of whether intermediate problems can
be found allowing some time dependence and offering some of the advantages of
the steady theory, while yielding a reasonable approximation to the fully nonsta-
tionary problem. The class of problems studied here concerns the Navier-Stokes
equation for a viscous incompressible fluid, when the motion is nearly steady,
with slow variations in time due to external force variations. We drop the time
derivative from the equations and apply the term "quasi-steady-state" to the
resulting equations and problems. Here we begin a study of quasi-steady-state
matters by investigating whether the solution of a quasi-steady-state problem
offers a good approximation to the solution of the corresponding fully nonsta-
tionary Navier-Stokes problem. We show that the difference between the two
solutions remains small if it is initially small, if the time derivative of the ex-
ternal force is small and if a certain parameter P (see Section 4), similar to a
Reynolds number, is small.

2. Formulation of the problem and results

In this section we describe the quasi-steady-state approximation, establish the
setting for our work and state the approximation theorem.

Let x = (xi,... ,xn) denote a point in Euclidean space Rn, n = 2,3, and let
fi denote a bounded domain in Rn with boundary dfi. For T > 0, we define
QT = fi x (0,T], ST = dQ x (0,T] and QT = (fiU dfi) x [0, T] = fi x [0,T}. Let
v: QT —* Rn denote the solution velocity of the initial boundary value problem
for the Navier-Stokes equation

vt + v • Vv + Vp = i/Av -I- f in QT,

and continuity equation

divv = 0 in QT, (1)

subject to boundary condition

v = 0 on ST,

and initial condition

v(z,0) = a ( i ) , z e f i ,
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and let w: QT —> Rn denote the solution velocity of the following quasi-station-
ary problem

w • Vw + Vq = uAw + f in QT,

divw = 0 in QT, (2) '

w = 0 on ST,

where v? = dw/dt. V denotes the gradient with respect to the spatial variables
xt, i = 1 , . . . , n, A denotes the Laplacian with respect to the spatial variables,
divv = V • v, p and q denote scalar-valued functions representing the pressures
of the fluid, f = f (x, t) is a vector-valued function which represents the body
forces, a = a(x) satisfies div a = 0, and the scalar v > 0 denotes the viscosity.

In this article we shall study the difference z = v — w, which satisfies the
system

zt + z • Vz + w • Vz + z • Vw -I- Vh — l/Az — wt in QT,

divz = 0, inQr,

z = 0, on ST,

z(x,0) =a(x) - w(z,o), x € fi,

where h = p—q denotes the pressure difference. Before stating the approximation
theorem it is convenient to recall some well-known facts and introduce some
additional notation.

For square-integrable vector fields g: fi —> Rn, let

llffll2 = f !
Jn

ggdx. (4)
i

If, in addition, g is smooth with compact support in fi we write

Vg:Vg= ]T(%/«9xfc)
2,

»,fc=l

HVgfl;2 = f Vg: Vgdx,
Jn

and denote by W^C^) the closure of such vector fields in the norm {||g||2 +
livgll2}1/2.

Define, for w(x,t) and z(x, t) satisfying (2) and (3),

02(t)= f Vz: Vzdx, (5)
./n

and

4>2{t)= f Vw: Vwdx. (6)
Jn

https://doi.org/10.1017/S0334270000005932 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000005932


[4j Quasi-steady-state Navier-Stokes 443

From Lemmas 1 and 2 of [4, pp. 8-9] and their application for z e ^ ( f i ) , there
follows

X <2||z||V(<), if" = 2 ,„
( 7 )

By an application of the Schwarz inequality for vectors and integrals, together
with (7), we obtain

I /" / C \ 1 / 2

/ (z -Vw)-zdz < I / |z |4di <j>{t)
\Jn \Jn J ,o\

< ( V2\\z\\<l>(t)4>(t), ifn = 2 W

Let fit denote the smallest positive eigenvalue of —A in fi with zero boundary

conditions. Then the Poincare" inequality [4, p. 11] for g €

||g||2 < ^-HVgll2. (9)

From (8) and (9) we have

/ (z • Vw) • z dx

where

<cj(t)4>2(t), n = 2,3, (10)

Cn= < _ 1 / 4 (11)
[ 2/ii 1 / 4 , n = 3.

Our principal result is contained in the following theorem.

THEOREM. Let z(x, t) satisfy (3), and let z and w lie in W\{ti) forO<t<
T. Then, for

Pn(t) = A«I(«/ - c B i / - V r 1 / 2 | | f I I ) > 0- (12)

r* f r* 1 (13)

f (A,(n))-3||f,(-^)||2exp{-/ ^n(r)dr d;,
0 ( Jrj )

y
holds for 0 < t < T. Moreover, for 0 < /? < Hi v and

sup m.,t)\\<c;lS»\/2(l--f-), (14)

sup \
0<T)<t

holds forO<t<T.
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3. Proof of the theorem

The following proof of the theorem stated in Section 2 employs the methods
and notation of Ladyzhenskaya [4, pp. 168-172].

PROOF. By taking the scalar product of the first partial differential equation
in (3) with z(i, t), integrating over fi, and noting that div z = div w = 0 implies

/ (z • Vz) • zdx = f (w • Vz) • zdx = f z Vhdx = 0, (16)
Jn Jn Jn

we obtain
/ z • zt dx + I (z • Vw) • z dx = v I z • (Az) dx — I wt • z dx. (17)

Jn Jn Jn Jn
Integrating the first term on the right hand side of (17) by parts we obtain the
equation

5 ^ N l + ^ ( 0 = - / ( z - V w ) - z d x - /wt -z .dx . (18)
l at J J

Then, recalling (10), we see that

i | j (19)

holds via Schwarz's inequality applied to the second term on the right side of
(18). From (9) and the assumption (v — cn4>{t)) > 0, we obtain

(20)

Hence, applying ab < ea? + 62/4e with e = \p\{v - cn<j>(t)), we see that

i ^ N | 2 + \^{v - cJ{t))\\A? < | |w t | |
2 /{2^ - cj(t))}. (21)

Let
() ( (22)

Then, we have

| | | z | | 2 + Mt)||z||2 < (anWr'Wwtf. (23)

Multiplying by the integrating factor exp{fg an(r) dr} and integrating from 0
to t, we see that

1 (24)

J TJ )
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In order to complete our study of the difference z = v — w, we need estimates
of 4>(t) and ||w*||2 in terms of the data f. Taking the scalar product of the first
equation in (2) with w and integrating over Q we obtain

vj>2(t) = f f wdx. (25)
Jn

Estimating the right hand side of (25) by Schwarz's inequality, we see that

^2(0<| |w| | | | f | |</ i r 1 / 2^) | | f | | (26)

via the Poincar6 inequality (9). Hence,

* a ( 0 < " - 3 M r W (27)
and another application of (9) yields

||w||2 < (i/Mi)-a||f||a. (28)

Next we differentiate the equations in (2) with respect to t to obtain

W( • Vw + w • Vwt + Vgt = i/Awt + ft in QT,

divwt = 0 in QT, wt = 0 on ST-

By taking the scalar product of wt with the first equation in (29), integrating
over fi, and using divwt = 0 as in (16), we find that

and that

where

/ (w • Vwt) • wt dx = / wt • Vqt dx = 0, (30)
Jn Jn

u\j)2{t) = - / (w, • Vw) • wt dx + I wt • ft dx, (31)
./n Jn

^2{i) = / Vwt:Vwtdi. (32)
Jn

Proceeding as in the derivation of (10), we obtain

f t). (33)

From (9) we have

| ^Wff tdz </ir1/2^WI|ft||. (34)

Thus, we see that

vpw < cnkt)i>2(t)+/iri/2vi(oiiftii- (35)
applying ab < ea2 + b2/4e, we obtain

(u - cj{t) - en^ftit) < ||ft||2/4<r. (36)
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Selecting e = an(t)/2, we see that

al(t), (37)

and from (37) it follows via the Poincare' inequality that

||wt||
2 < (an(<))-2||ft||

2. (38)

\ V P 2,35111116 til2.t

Hn{t) = m(v - cnt/-V:1 / 2 | | f | | ) > 0. (39)

Then, from (27)
«»(*) > Pn(t), (40)

and inequality (24) becomes

(41)

This concludes the proof of the portion (13) of the theorem. For

Pn(t) > 0 > 0, (42)

the inequality (13) reduces to

sup I
0<TI<t

We see that (42) holds for

sup ||f(-,«)ll<c;>Vr1/2(l-— V 0<P<nlV, (44)
Q<t<T \ PlV J

which concludes the proof of the theorem.

4. Concluding remarks

In this section we make some observations regarding the theorem of Section
2. The main hypothesis (12) of the theorem is essentially a condition, P < 1, on
the dimensionless parameter

P = (cn||f||/Ul/ai/3))1/2. (45)

Thus, the theorem is valid if the fluid is sufficiently viscous, the forcing term is
sufficiently small or the flow region has sufficiently small diameter (so that HI is
large).
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From the conclusions (13) or (15) of the theorem, one sees that the error
z(x,t), between the solution of the exact problem (1) and that of the quasi-
stationary problem (2), has small norm if w(z,0) is close to a(z) and f(x,t) is
slowly varying with time. Note that ||f(•, t)\\ need not be small, but need merely
obey the restriction P < 1 of the previous remark.

Thus, we have demonstrated that the quasi-steady-state approximation yields
useful information for a reasonable class of problems. Although the ideas were
developed here for the problem (1), it appears likely that the quasi-steady-state
approach will also prove valid for a variety of problems related to (1), such as
those encountered in [1], and [2].
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