A REMARK ON A CONJECTURE OF MARCUS ON THE GENERALIZED NUMERICAL RANGE

by YIK-HOI AU-YEUNG and KAM-CHUEN NG

(Received 10 April, 1982)

1. Introduction. Let A be an $n \times n$ complex matrix and $c = (c_1, \ldots, c_n) \in \mathbb{C}^n$. Define the c-numerical range of A to be the set $W_c(A) = \left\{ \sum_{j=1}^n c_j x_j A x_j^* : \{x_1, \dots, x_n\} \text{ is an orthonormal set in } \mathbb{C}^n \right\}$, where * denotes the conjugate transpose. Westwick [8] proved that if c_1, \ldots, c_n are collinear, then $W_c(A)$ is convex. (Poon [6] gave another proof.) But in general for $n \ge 3$, $W_c(A)$ may fail to be convex even for normal A (for example, see Marcus [4] or Lemma 3 in this note) though it is star-shaped (Tsing [7]). In the following, we shall assume that A is normal. Let $\mathcal{W}(A) = \{ \text{diag } UAU^* : U \text{ is unitary} \}$. Horn [3] proved that if the eigenvalues of A are collinear, then $\mathcal{W}(A)$ is convex. Au-Yeung and Sing [2] showed that the converse is also true. Marcus [4] further conjectured (and proved for n = 3) that if $W_c(A)$ is convex for all $c \in \mathbb{C}^n$, then the eigenvalues of A are collinear. Let $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$. We denote by $\overline{\lambda}$ the vector $(\overline{\lambda_1}, \dots, \overline{\lambda_n})$ and by $[\lambda]$ the diagonal matrix with $\lambda_1, \ldots, \lambda_n$ lying on its diagonal. Since, for any unitary matrix $U, W_c(A) =$ $W_c(UAU^*)$, the Marcus conjecture reduces to: if $W_c([\lambda])$ is convex for all $c \in \mathbb{C}^n$, then $\lambda_1, \ldots, \lambda_n$ are collinear. For the case n = 3, Au-Yeung and Poon [1] gave a complete characterization on the convexity of the set $W_c([\lambda])$ in terms of the relative position of the points $\sum_{i=1}^{3} c_i \lambda_{\sigma(i)}$, where $\sigma \in S_3$, the permutation group of order 3. As an example they showed that if $\lambda_1, \lambda_2, \lambda_3$ are not collinear, then $W_{\bar{\lambda}}([\lambda])$ is not convex (Lemma 3 in this note gives another proof). We shall show that for the case n = 4, $W_{x}([\lambda])$ is not convex if $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are not collinear. Thus for n = 3, 4 the Marcus conjecture is answered and improved.

2. The convexity of *c*-numerical range. A real nonnegative $n \times n$ matrix $S = (s_{ij})$ is said to be *doubly-stochastic* if every row and column sum of S is 1 and orthostochastic (o.s.) if there exists a unitary matrix $U = (u_{ij})$ such that $s_{ij} = |u_{ij}|^2$, i, j = 1, ..., n.

The following two lemmas are obvious.

LEMMA 1. $W_{c}([\lambda]) = \{\lambda Sc^{T} : S \text{ is o.s.}\}, \text{ where } T \text{ denotes the transpose.}$

LEMMA 2. Let $\mu = \alpha \lambda + \beta(1, 1, ..., 1)$, where $\alpha, \beta \in \mathbb{C}$ and $\alpha \neq 0$. Then, for any $c \in \mathbb{C}^n$, $W_c([\lambda])$ is convex if and only if $W_c([\mu])$ is convex.

We shall denote $W_{\bar{\lambda}}([\lambda])$ by $W(\lambda)$. Let \mathcal{P}_n be the set of all $n \times n$ permutation matrices and $\mathcal{P}(\lambda) = \{\lambda P \lambda^* : P \in \mathcal{P}_n\}$. Then, by Lemma 1 and Birkhoff's Theorem (for example, see Mirsky [5]), we have $\mathcal{P}(\lambda) \subset W(\lambda) \subset$ convex hull of $\mathcal{P}(\lambda)$. Let $m(\lambda) = \lambda I \lambda^*$, where I is the identity matrix. Then $m(\lambda)$ is positive if $\lambda \neq 0$ and is of largest magnitude

Glasgow Math. J. 24 (1983) 191-194.

among points in $\mathcal{P}(\lambda)$. It is obvious that both $\mathcal{P}(\lambda)$ and $W(\lambda)$ are symmetric about the real axis. Suppose $\lambda_1, \ldots, \lambda_n$ are not collinear. Consider the lines joining a point in $\mathcal{P}(\lambda) \setminus \{m(\lambda)\}$ and $m(\lambda)$; we see that there are two such lines L (in fact one is the reflection of the other about the real axis) such that all points in $\mathcal{P}(\lambda)$ lie on or on one side of L. For n = 4, we shall show that if $m \in \mathcal{P}(\lambda) \setminus \{m(\lambda)\}$ is a point on L which is nearest to $m(\lambda)$, then there are points in the open line segment $(m, m(\lambda))$ which are not in $W(\lambda)$. Before we prove our result, we need the following lemma.

LEMMA 3. If $\lambda = (1, \alpha, 0, 0, ..., 0) \in \mathbb{C}^n$, where α is not real, then $W(\lambda)$ is not convex for $n \ge 3$.

Proof. Obviously, we have $m(\lambda) = 1 + \alpha \bar{\alpha}$ and the non-real points in $\mathcal{P}(\lambda)$ are α and $\bar{\alpha}$. Let $V(\xi) = \{P \in \mathcal{P}_n : \lambda P \lambda^* = \xi\}$, where $\xi \in \mathbb{C}$. If $(p_{ij}) \in V(\alpha)$, then $p_{11} = p_{12} = 0$ and $p_{21} = 1$ and if $(p_{ij}) \in V(1 + \alpha \bar{\alpha})$, then $p_{11} = p_{22} = 1$. Suppose that 0 < t < 1 and $z = (1 - t)\alpha + t(1 + \alpha \bar{\alpha}) \in W(\lambda)$. Then, by Lemma 1, there exists an o.s. matrix S such that $z = \lambda S \lambda^*$. By Birkhoff's theorem, S is a convex combination of permutation matrices. Since z is on the open line segment $(\alpha, 1 + \alpha \bar{\alpha})$ and all other points in $\mathcal{P}(\lambda)$ lie on one side of the line joining α and $1 + \alpha \bar{\alpha}$, we have

$$S = (1-t) \left(\sum_{p \in V(\alpha)} t_{\mathbf{P}} P \right) + t \left(\sum_{P \in V(1+\alpha\overline{\alpha})} t_{\mathbf{P}} P \right),$$

where $\sum_{P \in V(\alpha)} t_P = \sum_{P \in V(1+\alpha\bar{\alpha})} t_P = 1$ and $t_P \ge 0$ for all $P \in V(\alpha) \cup V(1+\alpha\bar{\alpha})$.

Considering the first two columns of S, we see that S cannot be o.s. Hence $W(\lambda)$ is not convex.

THEOREM 4. Let $\lambda = (\lambda_1, \lambda_2, \lambda_3, \lambda_4) \in \mathbb{C}^4$. If $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are not collinear, then $W(\lambda)$ is not convex.

Proof. There are at most 24 points in $\mathcal{P}(\lambda)$ and since there are 10 symmetric permutation matrices in \mathcal{P}_4 , there are at most 7 points in $\mathcal{P}(\lambda)$ lying on the upper (lower) half-plane. By Lemma 2 and Lemma 3, we may assume $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are distinct. Then I is the only permutation matrix corresponding to $m(\lambda)$. Using Lemma 2 and the fact that $W(\lambda) = W(\overline{\lambda})$, we may assume $\lambda = (r_1, r_2, r_3 e^{i\theta}, -r_4 e^{i\theta})$ or $\lambda = (r_1, -r_2, r_3 e^{i\theta}, -r_4 e^{i\theta})$, where $r_1 \ge 0, r_2 \ge 0, r_3 > 0, r_4 > 0$ and $0 < \theta \le \pi/2$ according as the convex hull of $\{\lambda_1, \lambda_2, \lambda_3, \lambda_4\}$ has 3 or 4 vertices.

Case 1. $\lambda = (r_1, r_2, r_3 e^{i\theta}, -r_4 e^{i\theta})$

In this case, for definiteness, we assume $r_1 > r_2$. Then the 7 possible points in $\mathcal{P}(\lambda)$ and on the upper half-plane are:

$$m_{1} = \lambda P_{1}\lambda^{*} = r_{3}^{2} + r_{1}r_{2} - (r_{1}r_{4} + r_{2}r_{4})\cos\theta + i(r_{1}r_{4} - r_{2}r_{4})\sin\theta,$$

$$m_{2} = \lambda P_{2}\lambda^{*} = r_{2}^{2} - r_{3}r_{4} + (r_{1}r_{3} - r_{1}r_{4})\cos\theta + i(r_{1}r_{3} + r_{1}r_{4})\sin\theta,$$

$$m_{3} = \lambda P_{3}\lambda^{*} = r_{4}^{2} + r_{1}r_{2} + (r_{1}r_{3} + r_{2}r_{3})\cos\theta + i(r_{1}r_{3} - r_{2}r_{3})\sin\theta,$$

$$m_{4} = \lambda P_{4}\lambda^{*} = r_{1}^{2} - r_{3}r_{4} + (r_{2}r_{3} - r_{2}r_{4})\cos\theta + i(r_{2}r_{3} + r_{2}r_{4})\sin\theta,$$

A CONJECTURE OF MARCUS

$$\begin{split} m_5 &= \lambda P_5 \lambda^* = (r_1 + r_2)(r_3 - r_4) \cos \theta + i(r_1 - r_2)(r_3 + r_4) \sin \theta, \\ m_6 &= \lambda P_6 \lambda^* = r_1 r_2 - r_3 r_4 + (r_1 r_3 - r_2 r_4) \cos \theta + i(r_1 r_3 + r_2 r_4) \sin \theta, \\ m_7 &= \lambda P_7 \lambda^* = r_1 r_2 - r_3 r_4 + (r_2 r_3 - r_1 r_4) \cos \theta + i(r_2 r_3 + r_1 r_4) \sin \theta. \end{split}$$

The permutations corresponding to the permutation matrices P_1, P_2, \ldots, P_7 are (142), (143), (123), (243), (1423), (1432) respectively. Let $m \in \{m_k : k = 1, \ldots, 7\}$ be the point on L which is nearest to $m(\lambda)$. Suppose that $0 < t \le \frac{1}{2}$ and $z = (1-t)m(\lambda) + tm \in W(\lambda)$; then using similar argument as in the proof of Lemma 3, there exists an o.s. matrix S such that $z = \lambda S \lambda^*$ and

$$S = t_1 P_1 + t_2 P_2 + \dots + t_7 P_7 + t_8 I$$

$$= \begin{bmatrix} t_4 + t_8 & t_3 + t_6 & 0 & t_1 + t_2 + t_5 + t_7 \\ t_1 + t_7 & t_2 + t_8 & t_3 + t_5 & t_4 + t_6 \\ t_2 + t_3 + t_5 + t_6 & t_4 + t_7 & t_1 + t_8 & 0 \\ 0 & t_1 + t_5 & t_2 + t_4 + t_6 + t_7 & t_3 + t_8 \end{bmatrix}$$

where $\frac{1}{2} \leq 1 - t \leq t_8 < 1$, $\sum_{j=1}^{8} t_j = 1$ and $t_j \geq 0$ (j = 1, ..., 8). Since $t_8 \geq \frac{1}{2} \geq t_7$, from the first and the third columns of S, we have $t_2 = t_3 = t_5 = t_6 = 0$ and then from the first and the second columns of S, we have $t_1 = t_7 = 0$. Now columns 3 and 4 give $t_4 = 0$. This is a contradiction.

Case 2. $\lambda = (r_1, -r_2, r_3 e^{i\theta}, -r_4 e^{i\theta})$

In this case we cannot use the method as in case 1. We first have to eliminate two points in $\mathcal{P}(\lambda)$ and on the upper (closed) half-plane that cannot lie on L. Replace r_2 by $-r_2$ in m_k (k = 1, ..., 7) in case 1 and still denote them by m_k . Since we are considering points in the upper half-plane, we take \bar{m}_4 instead of m_4 . If $r_1r_3 - r_2r_4 < 0$, we take \bar{m}_6 and if $r_1r_4 - r_2r_3 < 0$, we take \bar{m}_7 . By comparing the slopes of the lines joining $m(\lambda)$ and m_5 , $m(\lambda)$ and m_l (or \bar{m}_l) (l = 6, 7), and by direct calculation, we see that m_6, \bar{m}_6, m_7 and \bar{m}_7 cannot lie on L. So the possible points in $\mathcal{P}(\lambda)$ and on the upper half-plane that lie on L are m_1, m_2, m_3, \bar{m}_4 and m_5 . Let $m \in \{m_1, m_2, m_3, \bar{m}_4, m_5\}$ be the point on L which is nearest to $m(\lambda)$. Suppose 0 < t < 1 and $z = (1-t)m(\lambda) + tm \in W(\lambda)$. Then, as in case 1, there is an o.s. matrix S such that $z = \lambda S \lambda^*$ and

$$S = t_1 P_1 + t_2 P_2 + t_3 P_3 + t_4 P_4^{T} + t_5 P_5 + t_6 I$$

=
$$\begin{bmatrix} t_4 + t_6 & t_3 & 0 & t_1 + t_2 + t_5 \\ t_1 & t_2 + t_6 & t_3 + t_4 + t_5 & 0 \\ t_2 + t_3 + t_5 & 0 & t_1 + t_6 & t_4 \\ 0 & t_1 + t_4 + t_5 & t_2 & t_3 + t_6 \end{bmatrix}$$

where $0 < 1 - t \le t_6 < 1$, $\sum_{j=1}^{6} t_j = 1$ and $t_j \ge 0$ (j = 1, ..., 6). From the first and the third columns of S, we have

$$(t_2 + t_3 + t_5)(t_1 + t_6) = t_1(t_3 + t_4 + t_5).$$
⁽¹⁾

Since $t_6 > 0$, we have $t_4 \ge t_2$. From the second and the fourth columns of S, we have

$$(t_1 + t_4 + t_5)(t_3 + t_6) = t_3(t_1 + t_2 + t_5).$$

Since $t_6 > 0$, we have $t_2 \ge t_4$. Hence $t_2 = t_4$. From (1) $t_2 = t_3 = t_4 = t_5 = 0$. Now column 1 and 2 give $t_1 = 0$. This is a contradiction.

Hence in both cases $W(\lambda)$ is not convex.

ADDED IN PROOF. Very recently Au-Yeung and Tsing by using less constructive method have proved that for arbitrary n if the coordinates of λ are not collinear, then there is a very small portion of the line L which is not in $W(\lambda)$ and consequently have proved Theorem 4 for general n. This will be published in due course.

REFERENCES

1. Y. H. Au-Yeung and Y. T. Poon, 3×3 orthostochastic matrices and the convexity of generalized numerical ranges, *Linear Algebra and Appl.* **27** (1979), 69–79.

2. Y. H. Au-Yeung and F. Y. Sing, A remark on the generalized numerical range of a normal matrix, *Glasgow Math. J.* 18 (1977), 179–180.

3. A. Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630.

4. M. Marcus, Some combinatorial aspects of numerical range, Ann. New York Acad. Sci. 319 (1979), 368–376.

5. L. Mirsky, Proofs of two theorems on doubly-stochastic matrices, Proc. Amer. Math. Soc. 9 (1958), 371-374.

6. Y. T. Poon, Another proof of a result of Westwick, Linear and Multilinear Algebra 9 (1980), 35-37.

7. N. K. Tsing, On the shape of the generalized numerical ranges, *Linear and Multilinear Algebra* 10 (1981), 173-182.

8. R. Westwick, A theorem on numerical range, *Linear and Multilinear Algebra* **2** (1975), 311–315.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HONG KONG

194