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POLYNOMIALSWITH {0, +1, —1} COEFFICIENTSAND A ROOT
CLOSE TO A GIVEN POINT

PETER BORWEIN AND CHRISTOPHER PINNER

ABSTRACT. For a fixed algebraic number o we discuss how closely « can be
approximated by aroot of a {0, +1, —1} polynomia of given degree. We show that
the worst rate of approximation tends to occur for roots of unity, particularly those of
small degree. For roots of unity these bounds depend on the order of vanishing, k, of
the polynomial at «.

Inparticular weobtainthefollowing. Let By denotethe set of rootsof all {0, +1, —1}
polynomials of degree at most N and By («, k) the roots of those polynomials that have
aroot of order at most k at «. For a Pisot number « in (1, 2] we show that

) 1
min o — B8] < =,

BEBN\{a} «a
and for aroot of unity o that

1

la — 5] =< N

min
BEBN(ak)\{a}

We study in detail the case of o = 1, where, by far, the best approximations are real.
We give fairly precise bounds on the closest real root to 1. When k = 0 or 1 we can
describe the extremal polynomials explicitly.

1. Introduction. We are interested in studying how well an algebraic number o
can be approximated by aroot 3 # o of a {0,+1, —1} polynomial of a given degree.
In particular if we fix o (typically itself aroot of a {0,+1, —1} polynomial) and plot
the roots of all {0,+1, —1} polynomials of degree at most N how does the size of the
zero-free region around o vary with N. For example, Figure 1 shows the roots of all
{0,+1, —1} polynomials of degree at most eight. We give a related picture (Figure 2)
for roots of all {—1,+1} polynomials of degree twelve, showing some of the fractal
behaviour visible for higher degrees. Similar pictures have been produced for {0,1}
polynomials by Odlyzko and Poonen [11], and for polynomials of low two-norm by
Yamamoto [14]. Barnsley and Harrington [2] consider the limiting case (as the bound N
on the degree tends to infinity) showing that every « in the annulus 1/+/2 < |o| < 1
isaroot of some {0, +1, —1} power series (see also [1, Section 8.2] for pictures of the
boundary of the zero accessible region).

Let By denote the set of roots of all {0, +1, —1} polynomials of degree at most N and
Bn (e, K) the roots of those polynomials that have aroot of order at most k at «r. Around
points away from the unit circle that are themselvesroots of {0, +1, —1} polynomialsor
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power series, we show that the distance to the nearest root decreases exponentially with
degree:
— min log|a — 3] < N.
sin log o — B
For points on the unit circle which are not roots of unity but which have small Mahler
measure we show a similar exponential decrease. For Pisot or Salem numbersin (1,2]
we can makethis fairly precise

— min log|a— 8| ~ (log)N.
sin og | — B ~ (loga)

For ad-th root of unity the growth rate is only subexponential,

aegll\qa} log|a — 3] < v/NlogN.
For roots of unity the closeness of a root depends critically on the order of vanishing
k of the corresponding polynomial at o (off the unit circle the order of vanishing is
bounded and generally less significant). For fixed k we show that the decreaseis merely
polynomia and give the correct order of growth (the slowest growth occurring when
d=1.23,40r6):

1
o — 8] =

min =\
BeBu(ak)\{a} NE&D[ o) [+1

The most interesting case seems to be « = 1 where the best approximations are
overwhelmingly real, as is immediately apparent on looking at a plot. For example,
Figure 3 shows a detail of the plot of the roots of al {—1,+1} polynomials of de-
gree fifteen. This latter picture was generated by the CECM Roots of Polynomials
Interface (URL: http://www.cecm.sfu.ca/organics/papers/odlyzko/support/polyform.html)
developed by Loki Jorgensen. Although the region around 1 appears very similar in
Figures 1 and 2 we show in Theorem 10 that the limited order of vanishing at 1 possible
inthe {—1, +1} caseactually leads to a significantly worse rate of approximation to 1.

In Section 3 we therefore concentrate on bounding the closest real root to 1 and on
making the k dependence of the implied constantsin

1

min 1-8x ——
BeBy(LK\{1} 1=61= (e
explicit. When the multiplicity k of the root at 1 isrestricted to O or 1 we determine the

growth precisely

11-8l~

4 . 32
min 1-06|~ =,
N2"  geBy(L1\{1} 1= 4] N3

min
BeBN(LO\{1}

and in Section 4 give the extremal polynomial. Such explicitness seemsinaccessible for
higher orders.
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FIGURE 1: Zeros of al polynomiaswith {0, +1, —1} coefficients and degree at most eight.

2. Resultsfor general points. Werecall the definition of the Mahler measure M of
apolynomial:

O(il}‘

For an algebraic o we shall use M(«) to denote the Mahler measure of the minimal
polynomial of . We shall write 9 (F) for the degree of F and Fi (x) for the j-th derivative
of F(X).

d d
M(aq 1;[1(X— ai)) = |ag| [[lmax{l,

THEOREM 1. Let o beafixed algebraic number. Let F bea {0, +1, —1} polynomial of
degree N with a root of order k > 0 at «, and (not necessarily distinct) roots 31, . . . , Om
not equal to «.

Then, for fixed k and m,

ci(m, Kk, o)
— Bl — > \
|O.’ 61| |OC ﬁm| = M(a)§N(N+ 1)C2+n'k’
with
5= 1 ifaisreal, _[0if|a] #1,
7| 3 if o iscomplex, T 1if|a] =1,
and

C2 = Ca(k, &) = 6(k + 1)dy,
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FIGURE 2: All zeros of all degree twelve polynomiaswith {+1, —1} coefficients.

where d; denotes the number of conjugates of « (including «) that lie on the unit circle.

Explicit expressions for the constant ¢;(m, k, ) can be found in the proof of Theo-
rem 1. In particular when « is ad-th root of unity we obtain

c(mk.a) = (k!)[%tb(d)] e m

where ¢(d) isthe usual Euler phi-function.

For afixed multiplicity k we see in Theorem 1 a clear difference between the roots
of unity where the distance can decrease at most polynomially and non-roots where
exponential growth is allowed. Notice also that exceptionally good approximations
prevent the remaining roots of that polynomial from coming too close. Takingm = 1in
Theorem 1 gives alower bound

c(k. @)

e — 5] = M () NN Didee

for the smallest root, 3. Taking m = 2 it is clear that we can not hope to come close to
achieving this unlessthe remaining roots 3; satisfy o — 3| > N~ when|o| = 1or>> 1
when || # 1. Thisstrongly suggeststhat the best approximations should occur assingle
rootsand that for real o they should probably bereal rather than a pair of conjugateroots
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FIGURE 3: Detail around 1 showing zeros of all degree fifteen polynomiaswith {+1, —1} coeffi-
cients.

(it must certainly bethe casein Corollary 3 and 4 where we have sharpnessin thislower
bound). Note, when 3 is a double root or « isreal and 3 complex applying Theorem 1
with m= 2 gives

c(k, @)

o — 8] = M (ar) 3NN 380w

Now if « is not a root of unity then the maximum multiplicity k of aroot at « is
bounded. To see this observe that for « to be aroot of a {0, +1, —1} polynomial it must
be an algebraic integer and hence, by Kronecker’stheorem, if not aroot of unity it must
have a conjugate «; off the unit circle. It is straightforward to see that away from the
unit circle the multiplicity is necessarily bounded. In [3] we gave explicit bounds on this
multiplicity, Borwein-Erdélyi-K6s [5, Theorem 4.2] in fact show more precisely that

k<cmn———
el |1 — |l |
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for some absolute constant c. It is not known whether the multiplicity for non roots of
unity is bounded by an absolute constant (independent of «). It is aninteresting problem
to decide which non roots of unity « are multiple roots of {0, +1, —1} polynomials. Of
courseany root of a{0, +1, —1} polynomial must certai nIyIieintheannqus% <lof <2
Conversely we know from results of Bombieri-Vaaler [4] that if the minimal polynomial
of o has measure less than 21/K then o must be a k-th order root of some {0, +1, —1}
polynomial (in particular as mentioned in [3] there are at least two Salem numberswhich
must be a fourth order root and infinitely many examples with a triple root). It is not
known whether there exists aroot of multiplicity five or more.
For o ad-th root of unity Theorem 1 gives

(k[ 30@]

a—g>et .
jor =51 2 (N + l)(k+1)|—%¢(d)-|+l

Although for afixed k thisis only polynomial in N, it is easy to seethat for appropriately
large N the multiplicity k can be made arbitrarily large. However for agiven N Borwein-
Erdélyi-K6s[5, Theorem 2.4] have shown that

k< {g\/ﬁJ +1.

From the above comments we readily deduce lower bounds independent of the multi-
plicity k, which decrease exponentially with N when « is not a root of unity but only
sub-exponentially when « is aroot of unity:

CoROLLARY 1. For afixed algebraic «, any root 3 # « of a {0, +1, —1} polynomial
of degree N satisfies

o — B| > exp(—c(@)N +O(logN)),  c(a) := & log M(a).

if & isnot a root of unity and

~I oo

lor — B > exp(—c(a)v/NlogN + O(VN)).  c(a) := Eqﬁ(d)w .

if o isad-th root of unity.

For an « off the unit circle that isaroot of a{0, +1, —1} polynomial or a{0, +1, —1}
power seriesit iseasily seenthat we can construct rootsexponentially closeto . We shall
assumethat || > 1, otherwisewework with o~ and the reciprocals of the polynomials,
x*f (x71).

THEOREM 2. Supposethat « isfixed with || > 1.
(i) If thereexist {0, +1, —1} polynomials F, G with a root of order exactly k > 0 and
s> k at o respectively, then, for fixed F and G,

Ha(X) = XN ?OG(X) — F(x). N> a(FG).
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isa{0,+1, —1} polynomial of degree N with aroot of order k at « and m := (s—Kk)

roots 3j # o with
_ _G(a) [ Ns+2
51_“_aN/m \1+O\aN/m ’

where .
a(G)F (o) /K! e27rji/m_
G() /9!
If aisreal and m= 1 thentherootisalsoreal.
(i) If there exists a power series

G(a) =« i=1,..., m.

F(2) = icixi. G €{0,+1,—1}
i=0

with a root of order exactly k > 1 at o1, then, for fixed F, the polynomial
reciprocal of the truncations

N _
Hn(X) =D on-iX',
i=0
are {0, +1, —1} polynomials of degree N with k roots 3; (counted with multiplicity

and not necessarily distinct from «) such that

c(a)
lo — 6i] < TN

If aisreal and k = 1 thentheroot 3 isalsoreal.

For rea « in (1,2) truncations of the beta-expansion of 1 thus yield exponentially
good approximations:

COROLLARY 2. If aisafixedreal in (1, 2], thenthereexistsa {0, +1, —1} polynomial
of degree N with areal root 8 # « such that

c(a)
|l — 8| < N
for some constant c(«).

If o is aPisot number (that is areal algebraic integer o > 1 with all its conjugates
strictly inside the unit circle) in (1,2] we thus obtain the correct order of growth for the
minimal distance. We let By denote the set of roots of all {0, +1, —1} polynomials of
degree at most N.

COROLLARY 3. If v isa fixed Pisot number in (1,2], then
. 1
min _|a — 3] =< =,
peBy\{a} o

where the implied constants are allowed to depend on «.
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Notice that from Theorem 1 any complex root 8 must have |o — 8| > c(a)aV/?,
so that the approximations 3 in Corollary 3 will certainly be real (for large N). For a
Salem number (that is areal algebraic integer a > 1 with one conjugate o ! inside the
unit circle and the remaining conjugates on the unit circle) in (1,2) the dominant term
is again o~ N although a polynomial function remains undetermined. Similarly if « is
a complex Pisot number (that is o is a complex algebraic integer with || > 1, all of
whose conjugates other than « lie strictly inside the unit circle) which is asingle root of
some {0, +1, —1} polynomial (or «~* asingleroot of a {0, +1, —1} power series) then
the correct order of approximation is again precisely |o|™N.

When « is an algebraic number (on or off the unit circle), that is not aroot of unity
but whose Mahler measure is small, we show that there are roots exponentially close to
o

THEOREM 3. Supposethat « is a fixed algebraic with
1< M) <2

Then there exists a {0, +1, —1} polynomial of degree at most N with aroot 3 # « such
that

M(a) 25N /L(L+1)
_ 1+(25d/L)
|a — 8] < ()N (—2 ) ,

whereL = L(«) isthe highest order of aroot at « possiblefor a {0, +1, —1} polynomial,
d isthe degree of «, and
_ [1lifaisreal,
§:=407 . fori
5 if aviscomplex.

For roots on the unit circle with M(«) > 2 the situation isless clear. From Dirichlet's
Theorem we can at least say that for any fixed o = €™ on the unit circle that is not a
root of unity there must certainly be infinitely many N such that |0 — p/N| < N2 for

some integer p, and hence have c
|l — 3] < N2

for some root 5 of (xN — 1). Notice that if « is ad-th root of unity we can only obtain
|a — 8] < ¢/dN from such polynomials.
There remains the case when « isaroot of unity. For fixed k we show the following:

THEOREM 4. Let o be a fixed d-th root of unity and k > 0 a fixed positive integer.
For N sufficiently large there exists a {0, +1, —1} polynomial of degree at most N with
aroot of order k at « and aroot 3 # « with

c(er. K)

a—f L ———F——.
| Al = N[ 30 ] +1

From the lower bound of Theorem 1 this is the optimal order of growth for fixed k.
We let By(a, k) denote the set of roots of all {0, +1, —1} polynomials of degree at most
N with aroot of order at most k at c.
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COROLLARY 4. For afixed root of unity «, and fixed integer k > 0,

1
NGRS

| — 4]

min
BeBn(a,k)\{a}
where the implied constants are allowed to depend on o and k.

The bounds of Theorems 2 and 4, together with a variant of the construction in
Theorem 2 allowing the multiplicity of the root at 1 to grow as a function of N, give us
an upper bound analogue of Corollary 1:

THEOREM 5. If o isafixed algebraic integer with M(«) < 2, then thereis a constant
c(«) > 0 such that, for sufficiently large N, thereisa {0, +1, —1} polynomial of degree
at most N with aroot 3 # « satisfying

| — | < exp(—c(a)N)
if a isnot a root of unity, and
|lor — B] < exp(—c(a)(NlogN)¥/?)

if  isaroot of unity.

We have here considered the rate of approximating afixed « by rootsof {0, +1, —1}
polynomials of degree at most N. A somewhat similar question would be to ask for the
minimum separation of two distinct roots «, 3, of a{0, +1, —1} polynomial F of degree
at most N. We observe that bounds of Mignotte [10] using the discriminant A of the
polynomial give
|A|l/2 1

oo — 6] = NN22MF)N-T = (N + )N

on observing that
M(F) = exp(/ollog|F(e2”it)| dt) <|IFll2 < VN+1

It is an old problem of Mahler [9] to determine whether this inequality for M(F) can be
significantly sharpened (Littlewood [8] asks a number of related questions for the sup
norm).

3. Rootscloseto 1. We now concentrate on roots close to 1. From Theorem 1 we
know that a complex root, 3, of a {0, +1, —1} polynomial of degree N with a root of

order k at 1 satisfies /R
k!
16 —1] > CNEZZ

Hencewe restrict ourselvesto real roots 3 wherethe rate of approximation is, aswe saw
in Corollary 4, substantially better.

Let P(N.k) denote the set of polynomials of degree at most N, with {0, +1, —1}
coefficients, and aroot of order exactly k at 1.
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We define 6(N., k) to be the largest real number 6 in [0, 1) such that f(#) = O for some
f in P (N, k). Reversing the order of the coefficientswe could plainly equivalently define
6(N. K)~* to be the smallest real root 6 > 1.

Corollary 4 tells usthat for fixed k the growth in terms of N is precisely

For k > 2 the optimal constantsin these bounds are not clear.
We give the following upper bound on 6(N, k):

THEOREM 6. For a fixed integer k > 0 we have

4K+ 1)! +O< C3 )

G(N’ k) <1- Nk+2 Nk+3

where ¢z = c3(K) isindependent of N.
We also give asimilar lower bound:

THEOREM 7. For afixed k and polynomial g(x) in Z[x], with g(1) # O, such that
G() = (x— 1)*'g(x)
has {0, +1. —1} coefficients,

a(N.k)zl—im( Ca )-

Nk+2 N2k+3

where o
@K (0(6)+1)

Co = C2(0, =
2= 020 E&)

and ¢4 = ¢4(g, K) isindependent of N.
Some NoTes.  The polynomials G(x) = IT¢1(x2 " — 1) giveus

C = 2%(k+1)(k+4)

which, as we shall see, is sharp for k = 0, 1 (but not for higher k). For example when
k = 2 the polynomial G(x) := (x — 1)(x* — 1)(x® — 1) givesc, = 7*/6.

In general one expects there to be suitable G(x) of degree O(k?) (this would be
optimal). It can be shown (see for example [5, Theorem 2.7]) there is a {0, +1, —1}
polynomial of degree O(k? logk) with aroot of at least, though not necessarily exactly,
multiplicity k at 1. Hence, for infinitely many k, we can take

cz2 < exp(2klogk + O(kloglogk)).
This compares favorably with the constant

(k+ 1)1 4" = exp(klogk + O(K))
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in the lower bound.
For k = 0 and k = 1 we can determine the growth precisaly:

4 1
6N.0)=1— = +O<W)'
32 1
6N.1) =1- 3 +O(W)’
For k = 2 our bounds give

384 4001
NS (N, 2)(1+0(1)) < N46.

In the next section we describe the optimal polynomials explicitly in the casesk = 0
or 1.

4. Preciseresultsfor k=0o0r 1. Let F(x; N, k) denote a polynomial of degree N
with {0, +1, —1} coefficientsand aroot at A(N, k).

THEOREM 8. For k=0and N > 2 the extremal polynomials F(x; N, 0) take the form

i‘%ﬁ’fﬂﬂl- if N =2m,
D) N = 2m+ L,

For k=1 and N > 4 the extremal polynomials F(x; N, 1) take the form

(X4rr‘ri-1 _ 2X3m+1 + X2rTH-2 _ X2r’r‘r+1 +2xM _ 1)

n it N = 4m
x—=1 '
M2 W BTH2 _ (BTHL | 2 _ L | oym
L (T2 =) O 4 X — X+ 20— 1) if N = 4m+1,
x—=1 '
3 33 \BMH2 4 MM 2MH2 4 L 4 ym
i(x“m* X X324 X224yl gy 1)~ N = 4m+ 2,
x=1
4 oy3MH3 4 M2 4 ym
1 (KT — 208 + X2 450 — 1) ifN=4m+ 3.

x—-1)

It is perhaps more enlightening to instead write out the pattern of coefficients
Ay . .. ay of F(x,N,K) = =N, ax' (we assumewithout loss of generdlity that ap = 1):

Fork=0
1...1-1...—-1, if N=2m,

e
m m+1

1...10-1...—-1 ifN=2m+1
N—— ———
m m+1
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Fork=1
1...1-1...—-10-1...—11...1, if N=4m,
N/ N/
m m+1 m-1 m
1...1-10-1...—-101...1, if N=4m+ 1,
N — N/ N —
m 2m-1 m

1...10-1...—-10-1...—-101...1 ifN=4m+2,

N N/
m m+1l m-1 m
1...100-1...—11...1 if N=4m+ 3.
N — e
m 2m+1 m+l

5. Somespecial subclasses. If werestrict ourselvesto{—1, 1} or {0. 1} coefficients
then much of the behaviour observed at +1 still occursat -1 inthefirst caseandat —1in
thelatter. For exampleif welet 6*(N, k) denotethe largest real root § < 1 of any {—1.1}
polynomial of degree at most N with aroot of order k at 1, and 6T (N, k) the smallest real
root § > —1 of any {0, 1} polynomial of degree at most N with aroot of order k at —1,
then for fixed multiplicity k we still have:

THEOREM 9. For a fixed integer k > 0,

) 1
1

However the maximum order of vanishing at 1 is significantly less for a {—1, 1}
or {0,1} than for a {0,+1, —1} polynomial. Consequently if By, B; and B/, denote
respectively the zeros of all {0, +1, —1}, {—1.+1} and {0. 1} polynomials of degree at
most N, then the Corollary 1 and Theorem 5 bounds

exp(—ciN IogN)_ﬁeng\ry{l}lﬁ 1] < exp(—cz(NlogN)'/?)

must be drastically reduced in these special cases:
THEOREM 10.

(logN)®

&P ioglogN

) < mingeg. 1y |6 — 1| < exp(—co(logN)?),

exp (—ci(logN)?) < min, i\ (5 8+1] <exp(—ca(logN)?).

for some positive constants ¢y, C,.
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Inthe {0, 1} case we actually obtain the explicit constants
c2=(1+0(1))(4log3)™*. c1=(1+0(1))(log2)~*.

Althoughtheratesof approximationat +1 or —1 arethusvery different in these special
cases, since the polynomials with high multiplicity roots form such a small proportion
of the polynomials, it is not suprising that the pictures remain similar in appearance
(particularly for small degree).

5.1. Proof of Theorem 1. Suppose that F(x) = >N, ax isa {0,+1, —1} polynomial
with a k-th order root at « and roots 31, . . . , , Bm. We set

R
OO = =B = )
so that )
Fé(a) /K
= -l il = G

Supposethat ag IT%, (X — o) is the minimal polynomial of «. Then, by integrality,

lag F(“) > 1,
whereif o iscomplex with o = oy = @3
F@)| _ (]P0 | [Fie) [\
ki |\ K ki
Henceif
5= 1 ifaisred, (2 ifaisred,
~11/2 ifaiscomplex, 7|3 if aiscomplex,
we have
SIGI -
Ia—ﬁll--.|a—ﬁm|z<|ad|““k’ I1|— )
i=p

For |ai| < 1we usethetrivial bounds

F*(c)
k!

(N+D)R1 /K if |og| =1,
— o)~ i o] < 1.

For |ai| > 1 we make use of the vanishing of F at ;. Let
F)
k
(1— (X/O(i))

H(x) :=
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so that
F (a,)

= |H(a)l.

Now the coefficients of H(x) = ¥ h,-xJ plaj nly satisfy

L(i+k—1\ _ i
=3 (1Rt e <@l b
=0
F(a) ail™ o |[NTK*
< =
K| = T Jo 1>k2'“" = Qo — DR

It remains to estimate G(cr) /k!. Set

G _ F(9)
x— o X~ FX—B1) (X~ Bm)’

K(x) =

so that GX(a) /! = K(«).
Notice that if S
I‘iXI _ i
o) =

then _
(i +)max{1,|ul"t} foranyu,
@—|uHt if |u] > 1.

sl = \Zr. S| < ax I

Now if |a| > 1 we can assume that all the |3| > 1 (otherwise |« — §i| is greater

than a constant and we can omit those 3; and adjust the constant accordingly). Hence the
coefficients of K(x) = =™ kix! clearly satisfy

K < o (1 — |a|*1>*kf; 1B — (6

and

|Gk(a) N—m—k

< (jo]-1)" H(Iﬁll—l)l 5 |a|J's|a|N*H+1<|a|—1r<k+1>fgwn—lrl.

j=0

Hencewhen |a| > 1 and all the || > 1 we obtain

= o o] > e )
where . m
Ci(a. m.k, 3) = By(ar, K)||™ Hll 16i| — 1.
with

Bi(a, k) := |ad|5M(a)6(k—1)(k!)5dl ‘I—II | o] — 1|6(k+1).
oG ;‘1
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The resuilt follows since we can clearly assume |3i| — 1 > 3(|r| — 1) (or elsewe can
omit that term from the product). The result for |a| < 1 follows by working with o~*
and g

If || =1 we similarly seethat the coefficients of G(x) = Zj]-’ia”‘ gX satisfy

gl < + 1>mﬁ max{1. |},

and hence
GX(a N — m)k N
) = Tmacn oy S S ey
Nk+m+l
< [ ma({L. 5" —
Thusin this case
Caer. m k. 5)

|(X — [31| s |05 - 5m| > M(a)’N(N + 1)5(k+1)d1+m’

where "
Cafer, m k. ) := By(er. ) [T min{L. |5 I

with By (o, k) as above.

The result follows since we can assume that 5| > 1 — (N + 1)~ (otherwise
|l — Bi] > 1/(N + 1) and the result follows by simply omitting the term |& — (]
from the product). ]

5.2. Proof of Theorem2. (i) Observing that the derivatives of Hy satisfy
IH(@)] = O™,

expanding Hy around o gives

I:"(oc)

HN() = (x — o) (aNa(G) —Gss(!“) (x— o)™ — + E( ))

where, for N|x — o] < 1/2,
E() = O(|x — af) + ON*?|aN|x — o|™?).

The result follows at once from Rouch€&'s Theorem.
(il) Wewrite

Fn(X) = % cX
=0

for the N-th truncation of F.
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Observing that _
Fae™)
il

<@ o0,
Ik '

and . . | |
Fia ™) =Pa ) +O(Na N1 — [afH~0+D),

expanding Fn(x) around o~ gives

e = - o ) L gy
where

£ = O (a™) +O (jx— a~1f*1).

for |x — Y[ < $min{N=%, (1— |a|™)}. Theresult is plain (with the 3; denoting the
reciprocals of roots of Fy). ]

5.3. Proof of Corollary 2. Wefirst recall the definition [13] of the beta-expansion {cn}
(of 1) for «;
Cn=|aVn-1]s M= aV¥n1—Cy Vo=l

Notice that for « in (1,2) al thec; =0 or 1.
For o # 2 we write

FX):=1— i X,
=1

so that F(a™1) = 0 (the beta-expansion of 1 for o). Moreover by Descartes Rule of
Signs ot isasimpleroot (the only real root in (0,1)).

If the sequence {c; } terminatesin zeros (that is o is asimple betanumber) then ot is
asimpleroot of the {0, +1, —1} polynomial F and the result follows from Theorem 2(i).
If the sequence {c; } is infinite then by Theorem 2(ii) the polynomial reciprocal of the
N-th truncation of F hasareal root 8 # « suitably closeto a.

We should remark that Parry’s proof [12, Theorem 5] of the denseness of the simple
beta-numbersin (1, co) shows that the 3 convergeto o.

For oo = 2wesimilarly take F =1 — 32, X.

Corollary 3 follows at once from the upper bound of Corollary 2 and the lower bound
of Theorem 1 on observing that for a Pisot number M(«) = «. ]

5.4. Proof of Theorem 3. We assume that |«| < 1. Suppose that L is the maximum
multiplicity at « possible for aroot of a {0, +1, —1} polynomial. We are assuming that
M(a) < 2sothat L > 1 but that o isnot aroot of unity so that L = L(«) isfinite. Wefirst
usethe box principleto show the existenceof a{0, +1, —1} polynomial F with F-(ar) = 0
and Fi() small for all j < L. Thevanishing of the L-th derivative at « isto ensurethat at
least one of the earlier derivativesis non-vanishing. Supposethat o, . . . , o arethereal
conjugatesand ar+1, 041 - - - 5 Orts, Oir4s the complex conjugatesof or. Wewrited = r +2s
for the degree of «.
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For apolynomial of theformf = Zji’ial ax, with coefficientsa; in {0, 1}, we consider
avector u(f) in R%*4 with components consisting of
( Refi(a) ifj=2i+1,i=0,.... L—1,
Imfi(a) ifj=2i+2,i=0,....L—1,
u(f)j := < () ifj=2L+i,i=1,....r,
Refl(apsi+1) ifj=2L+r+2i+1,i=0,...,5s—1,
Imfl(opsisg) ifj=2L+r+2i+2, i=0,.... s—1.

When « is real weignore the Imf'(a) entries. We set

2 ) —25N/L(L+1)

A= N1+(2§d/L) (M(a) c= (4\/5)1+(5d/L).

and assumethat cA < 1 (if cA > 1 then Theorem 3 isimmediate). Observing that each
of the 2N polynomials have

()] < N [ fh(e)] < NSt max{ L foq [},

the box principle shows that we must have two u(f1), u(fz), with

1 .
|U(f1)j - U(fz)j| <—, ]>2L,

V2

C .
[u(f1)zi+1 — U(f2)aiea ], [U(F1)zie2 — U(F2)2i42] < ﬁAL_E

fori=0,..., L — 1 (these restrictions requiring the product of

d L-1 (L\/chlAjfLZNﬁlJ + 1)1/5 <N

11 ([v2 2N max{ 1, fos 1N + 1) T

i=1 j=0
boxes). Hence F = f; — f, will bea {0, +1, —1} polynomial of degree at most (N — 1)
with _ _

IP(a) <cAJ, j=0,....L—-1 [FY)| <1l i=1,....d
Since T, |F-(aq)] is an integer we must certainly have F-(ar) = 0. Moreover, since F
cannot havearoot of order (L +1) at or, we must have F?(ar) # 0for some0 <J < L—1.
Suppose that G(x) is afixed polynomial with aroot of order L at o and consider

HX) = X OF(x) + G(x).
ThenH isa{0, +1, —1} polynomial with

F(o) , G

HX) = (x— &)’ (w”(G) J(! X

(x— )+ E(X)>

where L
E() = ON""x — o =) + 37 O(A (A |x— oy ).
j=J3+1
for N|x — o < 1/2.
Hence by Rouché&'s Theorem H has (L — J) roots in the disc |[x — o] < CAfor a
sufficiently large constant C = C(L). ]

https://doi.org/10.4153/CJM-1997-047-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-047-3

904 PETER BORWEIN AND CHRISTOPHER PINNER

5.5. Proof of Theorem 4. Suppose that « is a d-th root of unity. We first construct
{0,+1, —1} polynomials of degree N, with specified vanishing at «, whose first non-
vanishing derivativeis large:

For a constant ¢ and fixed k we set
D+1 (XD B 1) k=L

[16¢° —1). D:=|N/dc(2* +1)

o(¥) =x X=1) 4

and take
Gi(X¥) = X"ge(x®).  m:=N — (2 + 1)dcD.

Hence G(x) isa {0, +1, —1} polynomial of degree N with aroot of order k at « and
GX(« ik " -
k(! ) — 2%k(k l)Dk l(dC)kO(m k.

We next show the existence of {0, +1, —1} polynomials with a prescribed order of
vanishing at o« whosefirst non zero derivative at « is small.

We first suppose that ¢(d) # 1.2. Let B be a set of positive integers with b < B for
each of the bin B, then, by the box principle, there are certainly integers

a=hb—b, bbeB,
not all zero, such that

o1
0< _ ,‘<2x/§¢(d)5

Z aia — |B|%q’)(d) :

i=0
The non-vanishing isimmediate since the g; are integers (not all zero) and the degree of
o over Q is ¢(d).

Weset M = |D/2%*1(k + 1) | and take

B:={b:0<b<M"}, B:=mMm.

Now for any 0 < b < M¥*! we can write
k
b=>bM, 0<b <M,
1=0

and hence construct a {0, +1, —1} polynomial
Ko k=l-1 _ b=1 .\ k=1
FOcb) = 3 ((TT @ = 1) (0 X ) ( TT M2 —1)x2,
L8 .

=0\ j= =0 j=k—I

of degree
3 (F(x b)) <2k+DM =L,

with a k-th order root at 1 and

Fk%; b) _ 3kk-D)p
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With the integers by, b from the box principle we set

o(d)-1 .
F= > (FOxby) — x“F (% b)) X
i=0
Then Fy(x) isa {0, +1, —1} polynomial of degree
d(Fy) < 2Ld < Dd,

with a k-th order root at o and

= N
k(!Ol) - ‘ k(d—1) dk 12(:) (bj bj )O(J
2V/2¢(d)c

- M(k+1)(%¢(d)—l) ’

For ¢(d) = 1 or 2 we simply set Fy(X) = TIKL (0@ — 1).
Hence in each case F¢(x) is a {0, +1, —1} polynomial of degree at most Dd with a
k-th order root at « and

k+1

) _ b
Fi()| < C(k, ) NI

We set
Hk(X) = Fi(X) + Gy+1(X)

and observe that

(F@) | (FEo) + Gii()

) = (- ) | Dk E(x))

with

1
E(X) = O((DA)**3|x — af?). f —al <=
(¥) = O((Dd)**3|x — af?) or [x — af = oN

Since [F*(@)| < (Dd)**2 it is clear by Rouché's Theorem that for a suitably large
constant ¢ = ¢(d) the polynomials Hy(X) have aroot 3y with

(k + 1)FK(a) /1+/ 1 ))

(Gm(a) +FL (@) \ © \ D[ 20(@]

Bk—o=—

of 1
\ DD [ bo@]+1
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5.6. Proof of Theorem5. When « is not aroot of unity the result follows from Theo-
rems 2 and 3.

Itis plainly enough to show the existence of a {0, +1, —1} polynomial G of degree at
most N with aroot 3 # 1 satisfying

8 — 1] < exp(—c(NlogN)*/?).

theresult for ageneral d-th root of unity then following from considering the polynomial
G(x9).

Suppose that we have a {0, +1. —1} polynomial F of degree (M — 1) with aroot of
order exactly L at 1. Then

66 = ¥ — D) XD__ 11> —F()

\ x

isa{0, +1, —1} polynomial with aroot of order L at 1 and degreeN < 3MD.
Expanding G around 1 and using the trivial bounds

IGI(1)] < (3MD)I*™,
it is easy to seethat for (3MD)|x — 1| < 1/2we have

P

GX¥)=(x—1) )

(—=1+MD""?(x — 1) + E())

where, since |[F-(1)|/L! > 1,

ML+1 3MD L+3
E(X) =0 (mb(— 1|> +0 (ﬁv— 1|2> .

Observing that the choice

D= {ﬂJ 1
gives . -
col(o) o
and hence
E(X)=O ((M—lD)(MDL+2|x — 1|)) +0 (%(MD"+2|X — 1|)2) .

it iseasily seen that G hasaroot 3 # 1 with

p-1- i (1e0(2)).
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Now we can assume (see for example [5, Theorem 2.7]) that

M
L>a logM

for some absolute constant ¢y, so that

N < CZMTZ < csM%¥2(log M)Y/?
and
18— 1] < exp(—csLlog(M /L)) < exp(—csy/MlogM) < exp(—cs(N logN)*/?).
asrequired. ]

5.7. Proof of Theorem6. We need a preliminary lemma:

LEMMA 1. Suppose that the polynomial F has bounded coefficients |a| < A. Then
for a fixed positive integer k we have

A . 1 k-1 o
FE)] < e (1+op.k (N)) +3: Ou(NIF ).

Here Oy denotesthat the implied constant in the order result is permitted to depend
on p and k.

PROOF. Setting
j—1
QX ::’1_10(x— ). Q=1

it isreadily seen that the Q;(x) can be written
ot
Q) =X+ §7ijQi(X)
1=

for appropriate constants vj;.
Hence in particular, if F(x) = YN asx,

, N
F(1) = > aQ(9
s=0
N I .
= > as + > vF'(D).
s=0 i=0
Thus for afixed polynomial p(x) = x* + St' b we have

S:= N¥ XN(; asp(s/N)
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=~

ZbN“%Pa)ii%fm»
=0

j=0

](1)(bj Nk_J - Z'\/ |b|Nk I)
j=0

i>j

=~

ﬂm+§o@0kmwﬂwm)
]=

It iseasily seen that
N s 1
SS ANk+l p ~ (_)
2P () (%
_ ankrt [ 1 1
= AN (/0 |p(x)|dx) (1+Op(N .
Theresult follows on observing that, by a classical result of Korkin and Zolotarev [7],
1
; — 4k
inf " 1p0g] de =47,

achieved for
p(x) = Uk(2X -1
where U, denotes the n-th Chebyshev polynomlal of the second kind

sin(n arccosx)
sin(arccosx)

Un(X) :=

PROOF OF THEOREM 6. Taking the Taylor expansion of F around 1 we have

k ]
@ L =
k! j=k+1
We may clearly assume that
c(k)
|6 —1| < Nz < N

for some suitably large c(k) else there is nothing to show. Hence, from the trivial bound
PO <N*

we have

N F(l) )j k

k ) (k+ 2)[ | _ 1|2Nk+3 - O(|9 _ 1|Nk+1).
j=k+
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where the implied constant in the O is allowed to depend on k. From the above lemma

we have o1 oo / )
FY(1) N« 1 |F*(1)|
K+ D)!| = (ke 1)1 4o (“O(ND O\ )

So (1) becomes

&t (2+0(g)) < (k+'\'1k)+!24k+1 (2+0(§)) -

and the result follows on observing that [F¥(1)| /! is aninteger and henceat least 1. m

5.8. Proof of Theorem7. The lower bound is completely constructive:

LEMMA 2. Suppose that f(x) and g(x) are integer polynomials, with f (1), g(1) # 0,
such that the polynomials

F() = (x— (0. G := (x— 1)""g(x)

have {0. +1, —1} coefficients.

Then for
N> (a(F)+3(G)+1)
the polynomial
H(x) = xG(x) (’S__ 11> FEW).
where

_|N=0a(F) —
d:= {WJ e:=N—da(G)— (d—1).

isa{0,+1, —1} polynomial of degree N with a k-th order root at 1 and a root of size

1—%+0(%).

where -
o= ealf. 0.0 = L (0(6) 1

)k+2
and c; = ¢y(f, g, k) isindependent of N.
PrROOF. From the Taylor expansionsabout 1 we have;
HX) = (x — D¥{f() + (x — 1)d""?g(1) + E(x) }.
where, for [x — 1| < 2,

E(x) = O(|x — 1]) + O(d*3|x — 1]).
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From examining sign changes, H must have aroot at

—f(1)
dk+29(1)

(x—1)= (1+0(dtMy).

as claimed. n
To show Theorem 7 there remains only to justify that for any k we can always find
a suitable polynomia f with f(1) = 1. This is immediate from the following simple
construction:
Letng,..., ngand my, . .., my be two sets of integers satisfying

(nl...nk,rm...n"():]_

and
n>m+---+n_g, Mm>m+---+m

foradlt=2,....k.
Let A and B be two positive integers such that

Anl...nk_Bml...rn(:l

then, writing
u=l+n+---+n, v=1+mp+---+me.

the polynomials

— /XAU -1\ kK no_ —. _
F(x) == \ T i1:[1(x 1) = (x — 1) (x).
/XBV —1\ k

G(X) = \e—1 ) [{(xm —1) = (x — 1)*g(x).

have {0, +1, —1} coefficientsand
UK = X OFx) — G(x) = (x — 1)u(x).
isa{0,+1, —1} polynomial with u(1) = 1. "
5.9. Proof of Theorem8. Supposethat
N
F(x) =2 ax
i=0

isa{0,+1, —1} polynomial with the extremal root (N, k) in (0,1). We shall use simple
perturbation ideas to show that the coefficients must have the stated patterns.

https://doi.org/10.4153/CJM-1997-047-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-047-3

POLYNOMIALSWITH {0, +1, —1} COEFFICIENTS 911

THE CAse k = 0. We assume (taking +F(x) as necessary) that F(1) < 0.

Supposethat n > 0issuch that
an=—1or0, anp=1foralm<n,

then

ant = —1. foralt > 1,
since otherwise N

F0O = FOO +X'(1— %)
would be a {0, +1, —1} polynomial with

F(1) = F(1) < 0.

and hencewould have aroot in (6, 1) contradicting the maximality of 6.
Clearly to have any positive real roots F(x) must have at least one sign change, and

F9) =6"(1— 6" >0,

thus the coefficients must take the form;
1...1{0or1} —1...—1.

Now F(1) = —1 otherwise, taking an nwith a, =0 or —1,
F(X) = F(x) + X"

would have {0, +1, —1} coefficients,

F()=FQ)+1<0. F@®) =6">0.

and alarger root in (0,1). The form given follows immediately.
THE CASEk = 1. We suppose (taking +£F as needed) that
F(¥) = (x—Df(x), f(@)>0.

Now if n > 1 issuch that

ah=1 a-1=00r —1,

then
0<t<N-—n.

an+t = 1,

To see this supposethat for somer > 1

awr =00r =1, aw=1L0<j<r,

then
|E(X) = F(X) 4 =1 yn -1

x— D(F) + XX — 1)) = (x— 1) F(x).
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has {0, +1, —1},
f=f@>o0 fO=—0"1-6¢)<o0,
contradicting the maximality of 6.
In the sameway if

then

using the perturbed polynomials
F() = F(X) +x™"(x" — 1)(x — 2).

By Descartes' Rule of Signs the coefficients of F must have at least two sign changes,
and therefore must take the form

1...1{0or —1}...{Oor —1}1...1.
Further we cannot have the configurations
&-1=00r =1, & =0. a+=0, aws1=00r —1,

else the polynomial
FX) = F(X) +X 1 (x — 1) — 1)

would have alarger root than 6. Hence the coefficients of F take the form
1...1{0or —1}—-1...—1{0or —1}—1...—1{0or —1}1...1

Finally we must also have
F@)=1f1=1

sinceif f(1) > 2 then, taking an n such that a, = 1, a,—1 = 0 or —1, we could perturb
F)=F+X" (1 —x) = (x— D)(f) —x" 1),

to obtain alarger root.
There remains only to show algebraically the exact form of F:
We know from the abovethat F must take the form

F(X) =1+-- .+Xnk1_xm_ . —Xm+k71+Xm+k+- . .+X|”n+k+|71+AerTH-j +/\2Xm+>\sxm+kfl
for some A1, A2, A3 =0 or 1, and positive integers m, j. k, | > 1 such that

F()=0, F()=1

https://doi.org/10.4153/CJM-1997-047-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-047-3

POLYNOMIALSWITH {0, +1, —1} COEFFICIENTS 913

Thus, writing
A=A+ Ao+ As,
we have
l=k—m— X\
giving
k>2+\

and, after some rewriting,

rwn=(k—%g(k_zn_gx+h)+%2—M0—2&waﬂ=1

If Ay =0then

(M2, 23)=(L,0) = (Zk—1)(2k—4m—3) =3,k > 3,
(M2.23)=(0,1) = (2Zk—1)(2k—4m—1) =5k > 3,
Mo X3)=(LD) = (k—1)(k—2m—-2) =1,k >4,
(A2:23) =(0.0) = k(k—2m) =1,k > 2,
and plainly the only solution is given by (A2, A3) = (0.1), k =3, m=1,1 = 1,

correspondingto N = 4.
Hence we can assumethat A\; = 1. Now from the bounds

1 1

<M <k—-2 -—><=
1< Mj<k-2 21517

@-N0 -2 < 5.
itisnot hard to seethat if (k —2m— 3 + A3) > 3 then

1 1 1 1 1 3
"M>Zk=ZA==+1>=[24+2)\|+=>
F(l)_z(k ZA) Z 1_2(2 2)\) 222
whileif (k — 2m— 3\ + \5) < —1then

F(D) g—(k—%/\) +%+(k—2)§—%.

Sok=|2m+3) — A3| and

(M2, 23) =(1,0) = k=2m+3, j=1, | =m+1, (N=4m+3),
M2y A3)=(0,1) = k=2m+2, j=1 I=m, (N=4m+1),
(M2, 23)=(L,) = k=2m+3, j=m+2 |I=m, (N=4m+2),
(A2, 23) =(0,0) = k=2m+1, j=m+1, | =m, (N=4m),

giving the polynomials of the stated forms. L]
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5.10. Proof of Theorem 9. The lower bound is immediate from Theorem 6. For the
upper bound we use the {—1, +1} and {0, 1} polynomials

k—1 . k—1 '
Fi(X) = _1:]O(x2 —-1), Fl:= 1210 03 +1),

to form the {—1, +1} and {0, 1} polynomials

H* () = X2l () (%) +Fi(%)

and

K X2Ld/2j -1
HI () 1= x¥ Fl, (<) (—Xz —

1 >+Fl(x). d odd,

and proceed just asin Lemma 2.
Asregardsthe implied constantsin these bounds notice that the lower bound constant
41 (k+ 1)! still holdsin these cases, whilein place of Theorem 7 the above polynomials

readily yield
. 2ok (3k+l + 1)k+2
C2§2 +2+2q CLSW
(although we have made no attempt to obtain optimal constants here). ]

5.11. Proof of Theorem 10. The lower bounds follow from Theorem 1, a result of
Boyd [6] showing that the order of vanishing of a {—1, +1} polynomial at 1 satisfies

(logN)?
loglogN’

and a simple observation of Borwein-Erdélyi-Koés [5] that for a {0, 1} polynomial the
order of vanishing at —1 satisfies

k< 1IN+
— log2

For the upper bounds we follow the Proof of Theorem 5.
Inthe {—1, 1} casewe take F to be the {—1, 1} polynomial

L-1
F=1[0% -1, M=2,
i=0

and log(N /18 3eM
L= {—Og(/ e)J D= {e—J+1.
log4 L
so that
/XD—l

\x—l) — F(x),

G(x) := xM(MP — 1)F(xP)
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isa{—1,1} polynomial of degree at most N.
Inthe {0, 1} case we take

F:=Lﬁl(x'—1), M=/3L+1>.
i=0

W

_[logN/278) | __|3eM
L_Z{TQQJ. D—Z\‘ZLJ‘F.’L

choose

and set
x2D/2] _ 1

ﬁ) — F(¥).

Hence M and D are odd and —G(—x) isa {0, 1} polynomial of degree at most N.
It isreadily checked (in the manner of the proof of Theorem 5) that in both cases G(x)
hasaroot 3 # 1 with

G(x) := xM(MP — 1)F(xP) (

16—1| = O(exp(—(l +0(1))L log D)) = O(exp(—cz(log N)z)),

for some constant ¢, > 0. n
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