# Marker automorphisms of the one-sided *d*-shift

JONATHAN ASHLEY

Department of Mathematical Sciences, IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA

(Received 18 April 1988)

Abstract. We identify a set of generators for the automorphism group of the one-sided *d*-shift. For the 3-shift, this set of generators has an application to the dynamics of cubic polynomials.

1. Introduction

The one-sided d-shift,  $X_d$ , is defined to be the set

$$X_d = \prod_{i=0}^{\infty} \{0, 1, \ldots, d-1\},\$$

with the topology given by the product of the discrete topologies on the coordinate spaces. The shift map  $\sigma: X_d \to X_d$  defined by

 $(\sigma(x))_i = x_{i+1}$ 

is a continuous d-to-1 map. In this paper we study the group of homeomorphisms  $\psi: X_d \to X_d$  that commute with the shift  $\sigma$ . We denote this group by aut  $(X_3, \sigma)$ ; it is the group of automorphisms of the dynamical system  $(X_d, \sigma)$ .

The system  $(X_d, \sigma)$  is *isomorphic* to the system  $(J_p, p)$ , where p is a degree d complex polynomial all of whose critical points escape to infinity and  $J_p$  is the Julia set of p [B]. For  $(X_d, \sigma)$  and  $(J_p, p)$  to be *isomorphic* or *conjugate* as dynamical systems means that there is a homeomorphism  $\psi: J_p \to X_d$  with  $\psi \circ p = \sigma \circ \psi$ .

Blanchard et al. [BDK] have constructed automorphisms of  $(J_p, p)$  where p is a cubic polynomial all of whose critical points escape to infinity. These automorphisms are given by traversing loops in a parameter space for cubic polynomials. In conversation with me, Linda Keen and Robert Devaney posed the question: Does this construction give all of the automorphisms of  $(J_p, p)$ ? The answer is yes. We prove this by identifying the automorphisms of  $(J_p, p) \cong (X_3, \sigma)$  arising from their construction as those given by a simple combinatorial algorithm; and, using the algorithm, prove that these automorphisms generate the automorphism group of  $(X_3, \sigma)$ , aut  $(X_3, \sigma)$ .

In § 2, we state a result of Boyle et al. [BFK] giving a certain set of generators for aut  $(X_d, \sigma)$ , called *marker* automorphisms.

In §§ 3 and 4 we show a way to factor a marker automorphism into a composition of *minimal marker* automorphisms; these are the automorphisms arising from the construction of Blanchard, Devaney and Keen (as shown in § 6).

In §5 we present a simplified algorithm for constructing minimal marker automorphisms.

In §6 we show that the minimal marker automorphisms of  $(X_3, \sigma)$  are exactly the automorphisms constructed by Blanchard, Devaney and Keen.

# 2. Marker automorphisms and state splitting

Let  $G_{st} \subseteq \operatorname{aut}(X_d, \sigma)$  be that subgroup of automorphisms g such that

$$g(x)_i = x_i$$
 if  $x_i \neq s$  and  $x_i \neq t, x \in X_d$ .

Thus  $g \in G_{st}$  fixes all symbols except perhaps s and t. In [**BFK**], Boyle, Franks and Kitchens show that  $\{G_{st}: 0 \le s, t \le d-1\}$  generate aut  $(X_d, \sigma)$  and that  $G_{st}$  is generated by *marker automorphisms*. To describe the construction of marker automorphisms we must first explain the state splitting algorithm.

## State splitting

Let  $G_0$  be the directed graph with one state,  $\varepsilon$ , and d directed edges  $e_0, \ldots, e_{d-1}$  from state  $\varepsilon$  to itself. Edge  $e_i$  is labeled with symbol i; we denote the labeling function as  $L_{G_0}$ , or L if no confusion is possible. Thus  $L(e_i) = i$ . The system  $(X_d, \sigma)$  is obviously conjugate to the symbolic system  $(\Sigma_{G_0}, \sigma)$ , where for a directed graph G, we define

$$\Sigma_G = \{e_{i_0}e_{i_1}e_{i_2}\ldots : \text{edge } e_{i_{i+1}} \text{ follows } e_{i_i} \text{ in } G\}$$

The conjugacy is given by extending the map L to  $\Sigma_{G_0}$  by setting

 $L(e_{i_0}e_{i_1}\cdots)=L(e_{i_0})L(e_{i_1})\cdots=i_0i_1\cdots$ 

We say that a labeled graph G presents  $X_d$  if  $L_G: \Sigma_G \to X_d$  is a conjugacy from  $(\Sigma_G, \sigma)$  to  $(X_d, \sigma)$ .

Given any labeled directed graph G presenting  $X_d$  we may define a new graph G' as follows. Denote by  $\mathscr{F}(S)$  the set of edges in G whose initial state is state S. For each state  $S_i$  in G, choose a partition  $\{S_i^{(1)}, \ldots, S_i^{(r_i)}\}$  of the set of edges  $\mathscr{F}(S_i)$ . The states of G' are defined to be  $\{S_i^{(j)}: S_i \text{ is a state of } G \text{ and } 1 \le j \le r_i\}$ . For each edge  $e \in S_i^{(j)}$  whose terminal state is  $S_k$ , G' has  $r_k$  edges:

$$S_i^{(j)} \xrightarrow{a} S_k^{(l)}, \quad 1 \le l \le r_k$$

each labeled with  $a = L_G(e)$ . The graph G' is said to be obtained from G by one round of (forward) state splitting. We show in Corollary (2.2) that G' presents  $X_d$ .

Denote the set  $\{x \in X_d : x_0 = b_0, \ldots, x_{k-1} = b_{k-1}\}$  by the string  $b = b_0 b_1 \ldots b_{k-1}$ . The set b is called a k-block.

LEMMA 2.1. Let G be a graph obtained from  $G_0$  by a finite number  $k \ge 0$  of rounds of state splitting. The states  $\mathcal{G}$  of G partition  $X_d$  where we identify state  $S \in \mathcal{G}$  with the set

 $S = \{x \in X_d : L(p) = x \text{ where } p \text{ is a path in } G \text{ starting at state } S\}.$ 

The edges  $\mathscr{E}$  of G also partition  $X_d$ , where we identify  $e = \mathscr{E}$  with the set

 $e = \{x \in X_d : L(p) = x \text{ where } p \text{ is a path in } G \text{ with } p_0 = e\}.$ 

Moreover, the states of G are unions of k-blocks and the edges of G are unions of

(k+1)-blocks. Each state of G has exactly d incoming edges, labeled distinctly from the set  $\{0, 1, \ldots, d-1\}$ .

*Proof.* The proof is an induction on k. When k = 0,  $G = G_0$ . The edge  $e_i$  of  $G_0$  is identified with the 1-block i of  $X_d$ . Thus the edges

$$\mathscr{E}_0 = \{e_0, \ldots, e_{d-1}\} = \{0, \ldots, d-1\}$$

partition the space  $X_d$  into 1-blocks. The single state of  $G_0$  is identified with the set  $X_d$ ; in block notation, the single state of  $G_0$  is the 0-block denoted by the empty word  $\varepsilon$ : no coordinates are specified.

Let  $\mathscr{S}$  and  $\mathscr{C}$  be the set of states and of edges of G. The state splitting rule says exactly that if G' is obtained from G by a round of splitting then

$$\mathcal{G}\!\leq\!\mathcal{G}'\!\leq\!\mathcal{C}$$

and

$$\mathscr{E}' = \mathscr{E}_0 \vee \sigma^{-1} \mathscr{G}'$$

where  $\mathscr{G}'$  and  $\mathscr{C}'$  are the states and edges of G' and

$$\sigma^{-1}\mathscr{G}' = \{\sigma^{-1}S'_1, \ldots, \sigma^{-1}S'_n\}$$

where

$$\mathcal{G}' = \{S'_1, \ldots, S'_n\}.$$

Thus if each  $S \in \mathcal{S}$  is a union of k-blocks and each  $e \in \mathcal{E}$  is a union of (k+1)-blocks, then each  $S' \in \mathcal{S}'$ , being a union of elements of  $\mathcal{E}$ , is a union of (k+1)-blocks and each  $e' \in \mathcal{E}'$  is a union of (k+2)-blocks. Now for each edge  $e' \in \mathcal{E}'$ , we have  $\sigma(e') = S'$ , where S' is the terminal state of e' in graph G'. Thus, the incoming edges of state S' in  $\mathcal{S}'$  are  $0S', 1S', \ldots, (d-1)S'$ .

COROLLARY 2.2. If graph G is as in Lemma (2.1), the map  $L: \Sigma_G \to X_d$  is a conjugacy. Thus G presents  $X_d$ .

*Proof.* If  $x \in X_d$ , then the unique path p in G labeled by x is given by  $p_0p_1...$ , where  $p_0 \supseteq x_0x_1...x_k$ ,  $p_1 \supseteq x_1x_2...x_{k+1}$ , etc. Thus  $L^{-1}: X_d \to \Sigma_G$  is given by the (k+1)-block map  $L^{-1}(x_ix_{i+1}...x_{i+k}) = e$  where e is that edge in graph G with  $e \supseteq x_i...x_{i+k}$ .

#### Marker automorphisms

Define, after Nasu [N], a simple automorphism of  $X_d$  to be an automorphism  $\varphi$  of the form

$$\varphi = L \circ \psi \circ L^{-1},$$

where  $L: \Sigma_G \to X_d$  is the label conjugacy for some graph G obtained from  $G_0$  by state splitting and  $\psi$  is an automorphism of  $\Sigma_G$  given by switching two fixed edges  $e_{i_0}$  and  $e_{i_1}$  in graph G, where  $e_{i_0}$  and  $e_{i_1}$  are *parallel* edges: they have a common initial state P and a common final state M.

In terms of  $X_d$ ,  $\varphi$  is a marker automorphism: it acts on  $x \in X_d$  only where a marker occurs in x as follows. If  $L(e_{i_0}) = a$  and  $L(e_{i_1}) = b$ , then  $\varphi$  switches symbol

a with symbol b wherever a or b is followed by a k-block  $c \subseteq M$  (recall that states of G are unions of k-blocks in  $X_d$ ). To emphasize the marker M we denote  $\varphi$  by  $\varphi_M$ . It follows from a more general result in **[BFK]** that

THEOREM 2.3. The simple automorphisms generate aut  $(X_d)$ .

We concentrate on describing markers for automorphisms of  $X_d$  switching symbols 1 and 2 for definiteness. Marker automorphisms switching other symbols are conjugate to these.

Definition 2.4. A k-block marker M is a union of k-blocks that occurs as a union of states, each with parallel incoming edges labeled 1 and 2, occurring in a graph G obtained from  $G_0$  by state splitting. We say that graph G presents marker M.

Observation 2.5. If a graph G simultaneously presents markers  $M_1, \ldots, M_r$ , then the automorphisms  $\varphi_{M_1}, \ldots, \varphi_{M_r}$  pair-wise commute. If in addition the  $M_i$  are disjoint sets, then the product of  $\varphi_{M_1}, \ldots, \varphi_{M_r}$  is given by the marker automorphism with marker  $\bigcup_i M_i$ .

**Proof.** The automorphism  $\varphi_{M_i}$  is given by  $L \circ \psi_i \circ L^{-1}$ , where  $\psi_i$  is the automorphism of  $\Sigma_G$  given by switching certain pairs of edges of graph G. The  $\psi_i$  pair-wise commute because each leaves any pair of edges switched by another set-wise fixed. If the  $M_i$  are disjoint, no two of the  $\psi_i$  switch the same pair of edges. Therefore, the set of pairs of edges switched by the product of all  $\psi_i$ ,  $1 \le i \le r$ , is the union over  $1 \le i \le r$  of the set of pairs switched by  $\psi_i$ .

In fact, a converse to (2.5) is true, but we do not use it.

We now show that any k-block marker M is presented by a graph G that is obtained from  $G_0$  by k rounds of state splitting. First we must characterize those partitions  $\mathscr{G}$  of  $X_d$  obtained by state splitting the graph  $G_0$ .

If  $a \subseteq X_d$  and  $\mathscr{S}$  is a partition of  $X_d$ , we denote by  $\mathscr{S}|a$  the induced partition of the set a.

LEMMA 2.6. Let  $\mathscr{G}$  be a partition of  $X_d$  coarser than the partition of  $X_d$  into all k-blocks. Then  $\mathscr{G}$  is given by state splitting  $G_0$  iff

$$\mathscr{G} \ge \sigma(\mathscr{G} \mid a)$$
 for all 1-blocks  $a \subseteq X_d$ .

Moreover, if the condition is satisfied,  $\mathscr{S}$  is obtained from  $G_0$  by k rounds of splitting. *Proof.* We prove ( $\Leftarrow$ ). The other direction is an easy consequence of Lemma 2.1. If a is a k-block, denote |a| = k. Now

$$\mathcal{G} \geq \bigvee_{|a|=1} \sigma(\mathcal{G}|a)$$

so

$$\bigvee_{|b|=l} \sigma^{l}(\mathcal{G}|b) \geq \bigvee_{|b|=l} \sigma^{l} \left( \left[ \bigvee_{|a|=1} \sigma(\mathcal{G}|a) \right] \middle| b \right)$$
$$= \bigvee_{|b|=l} \bigvee_{|a|=1} \sigma^{l} \left( \left[ \sigma(\mathcal{G}|a) \right] \middle| b \right)$$
$$= \bigvee_{|b|=l} \bigvee_{|a|=1} \sigma^{l+1}(\mathcal{G}|ab)$$
$$= \bigvee_{|c|=l+1} \sigma^{l+1}(\mathcal{G}|c), \quad l \geq 1.$$

If we denote

$$\mathscr{G}_{l} = \bigvee_{|a|=k-i} \sigma^{k-l}(\mathscr{G}|a) \text{ and } \mathscr{G}_{k} = \mathscr{G},$$

we have

$$\mathcal{G} = \mathcal{G}_k \geq \mathcal{G}_{k-1} \geq \cdots \geq \mathcal{G}_1 \geq \mathcal{G}_0 = \{X_d\}.$$

Let

$$\mathscr{E}_l = \mathscr{E}_0 \vee \sigma^{-1} \mathscr{S}_l, \quad 0 \le l \le k,$$

where  $\mathscr{C}_0 = \{0, 1, \dots, d-1\}$ . We claim that  $\mathscr{G}_{l+1}$  and  $\mathscr{C}_{l+1}$  are the states and edges of a graph  $G_{l+1}$  obtained by one round of state splitting from a graph  $G_l, 0 \le l \le k-1$ . It only remains to show

$$\mathscr{G}_{l} \leq \mathscr{C}_{l-1} = \mathscr{C}_{0} \vee \sigma^{-1} \mathscr{G}_{l-1} = \mathscr{C}_{0} \vee \sigma^{-1} \bigvee_{|b|=k-l+1} \sigma^{k-l+1} (\mathscr{G}|b).$$

If e and e' are in the same atom of the right-hand-side, then e = ad and e' = ad', where |a| = 1, and where for all (k - l + 1)-blocks b, bd and bd' are in the same atom of  $\mathcal{S}$ . In particular, for all (k - l)-blocks c, cad and cad' are in the same atom of  $\mathcal{S}$ . Hence e = ad and e' = ad' are in the same atom of  $S_l$ .

We denote the complement of a subset M of  $X_d$  by  $M^c$ .

LEMMA 2.7. Let M be a finite union of k-blocks. The partition

$$\mathscr{S} = \bigvee_{\substack{\{b: b \text{ is a} \\ b \text{ lock, and} \\ 0 \le b | s \le k\}}} \{\sigma^{|b|}(M \cap b), \sigma^{|b|}(M^c \cap b)\}$$

is the unique coarsest partition having M as a union of atoms among all partitions of  $X_d$  obtained by rounds of state splitting from graph  $G_0$ . Moreover, the partition  $\mathcal{S}$  can be obtained by k rounds of splitting from graph  $G_0$ .

*Proof.* We first show that  $\mathscr{S}$  is a partition obtained by state splitting  $G_0$ . If a is a 1-block then

$$\sigma(\mathscr{G}|a) = \bigvee_{\{b: 0 \le |b| \le k\}} \{\sigma^{|ba|}(M \cap ba), \sigma^{|ba|}(M^c \cap ba)\}$$
$$= \{\phi, X_d\} \lor \bigvee_{\{b: 0 \le |b| \le k-1\}} \{\sigma^{|ba|}(M \cap ba), \sigma^{|ba|}(M^c \cap ba)\}$$
$$\le \mathscr{G}.$$

Now the elements of  $\mathscr{S}$  are unions of k-blocks, so  $\mathscr{S}$  is obtained by k rounds of state splitting from  $G_0$  by Lemma 2.6. We now show  $\mathscr{P} \ge \mathscr{S}$  for any partition  $\mathscr{P}$  of  $X_d$  obtained by splitting  $G_0$  having M as a union of atoms. For each  $P \in \mathscr{P}$ , either  $P \subseteq M$  or  $P \subseteq M^c$ . Hence for each block b, either  $\sigma^{|b|}(P \cap b) \subseteq \sigma^{|b|}(M \cap b)$  or  $\sigma^{|b|}(P \cap b) \subseteq \sigma^{|b|}(M^c \cap b)$ . Hence

$$\sigma^{|b|}(\mathscr{P}|b) \geq \{\sigma^{|b|}(M \cap b), \sigma^{|b|}(M^c \cap b)\}.$$

Because  $\mathcal{P}$  is obtained by splitting, we have by Lemma 2.6 and an induction on the length of b that

$$\mathscr{P} \geq \sigma^{|b|}(\mathscr{P} \mid b)$$

Thus

$$\mathscr{P} \geq \bigvee_{|b|\geq 0} \{ \sigma^{|b|}(M \cap b), \, \sigma^{|b|}(M^c \cap b) \} = \mathscr{G}.$$

We can now show

THEOREM 2.8. Any k-block marker M is presented by a graph G obtained from  $G_0$  by k rounds of splitting.

**Proof.** Let G, by Lemma 2.7, be the graph obtained from  $G_0$  by k rounds of splitting whose states  $\mathscr{S}$  give the unique coarsest partition of  $X_d$  among all graphs obtained by splitting  $G_0$  and having M as a union of states. We must show G presents M as a marker. Let G' be any graph with states  $\mathscr{S}'$  that presents M as a marker. The states of G' are invariant under the automorphism  $\varphi_M$ , and since  $\mathscr{S} \leq \mathscr{S}'$ , the states  $\mathscr{S}$  of G are invariant as well, In particular, if  $S \in \mathscr{S}$  is such that  $S \subseteq M$ , then 1S and 2S are contained in the same state  $P \in \mathscr{S}$ . Thus there are parallel edges labeled 1 and 2 from state P to state S in G. Thus graph G presents the marker M.

### 3. Minimal markers

In this section we show that any k-block marker M can be partitioned into a union of k-block markers that are minimal with respect to inclusion among all k-block markers. These markers are defined by a particular kind of state splitting.

Notation. Denote the union of 1-blocks  $1 \cup 2$  by  $\overline{0}$ .

Definition 3.1. Let M be a marker presented by a graph G and let  $U \subseteq M$  be any subset of M. The U-complete round of state splitting of G is defined as follows: each state P of G is partitioned into states

$$\{a_1Q_1,\ldots,a_kQ_k,\overline{0}M_1,\ldots,\overline{0}M_l\},\$$

where

(i)  $M_i$  is a marker state with  $\overline{0}M_i \subseteq P$  and  $M_i \cap U \neq \emptyset$ ,

(ii)  $Q_j$  is a state with 1-block  $a_j \notin \{1, 2\}$  or  $\overline{0}Q_j \not\subseteq P$  or  $Q_j \cap U = \emptyset$ .

The U-complete round of splitting gives the finest possible partition of the states of G subject to the constraint that the set U remain contained in a marker in G'. Definition 3.2. Let M be a marker presented by a graph G and let  $U \subseteq M$  be any subset of M. A round of splitting on G is U-preserving if for each state P of G, the partition of P given by the splitting is coarser than the partition of P given by the U-complete splitting.

A U-preserving splitting preserves U as a subset of a marker in G'.

**Definition** 3.3. Let a be a k-block in  $X_d$ . Define the marker  $m_a$  to be the state containing a in the graph  $G_k$  obtained from graph  $G_0$  from k rounds of a-complete splitting.

LEMMA 3.4. The set of k-blocks in  $X_d$  is partitioned by

 $\{m_a: a \text{ is } a \text{ k-block in } X_d\}.$ 

*Proof.* Suppose b is a k-block with  $b \subseteq m_a$ . We show  $m_b = m_a$  giving that if  $m_a \cap m_b \neq \emptyset$ , then  $m_a = m_b$ . Let  $G_j$  be the graph resulting from j rounds of a-complete splitting applied to  $G_0$ . The k-blocks a and b are contained in the same single state of  $G_j$ ,  $0 \le j \le k$ , since this is true of  $G_k$ . Thus the k rounds of splitting leading to  $G_k$  are also b-complete. Thus  $m_a = m_b$ .

LEMMA 3.5. Let G be a graph presenting marker M and let  $U \subseteq M$ . If  $G_1$  is the graph obtained from G by n rounds of U-complete splitting and  $G_2$  is any graph obtained from G by n rounds of U-preserving state splitting, then the partition of  $X_d$  given by the states of  $G_1$  refines the partition of  $X_d$  given by the states of  $G_2$ .

*Proof.* An easy induction on the number of rounds of splitting.  $\Box$ 

We can now prove the main theorem of this section.

THEOREM 3.6. Any k-block marker M is partitioned by

 $\{m_a: a \text{ is a } k\text{-block contained in } M\}.$ 

**Proof.** By Theorem 2.8, M is presented by a graph G obtained from  $G_0$  by k rounds of state splitting. For any k-block  $a \subseteq M$ , each of the k rounds of splitting is a-preserving (because it is M-preserving). By Lemma 3.5, the partition of  $X_d$  given by the graph G' obtained from  $G_0$  by k rounds of a-complete splitting refines the partition of  $X_d$  given by the states of G. Thus the state  $m_a$  of G' is contained in that state S of G with  $a \subseteq S$ . Now  $a \subseteq M$ , so  $S \subseteq M$ , so  $m_a \subseteq M$ . Now apply Lemma 3.4 to conclude that M is partitioned by  $\{m_a: a \text{ is a } k\text{-block contained in } M\}$ .  $\Box$ 

We may introduce a tree  $\mathcal{T}$  of markers defined as follows:

(i) the root of  $\mathcal{T}$  is the 0-block marker  $\varepsilon$ .

(ii) the children of a marker m of length k are the markers

 $\{ma: a \text{ is a } (k+1)\text{-block contained in } m\}$ 

in the partition of m into (k+1)-block markers.

COROLLARY 3.7. Given a k-block a, there is unique marker minimal with respect to inclusion among all k-block markers that contain a: namely,  $m_a$ .

*Proof.* By Theorem 3.6 any k-block marker M containing the k-block a also contains  $m_a$ .

4. Factoring a marker automorphism

We now show that aut  $(X_d, \sigma)$  is generated by

 $\{\varphi_m: m \text{ is a minimal marker}\}.$ 

We do this by showing that any marker automorphism  $\varphi_M$  factors into minimal marker automorphisms and then apply Theorem 2.3.

THEOREM 4.1. Let M be an n-block marker for the automorphism  $\varphi_M$  of  $X_d$  switching the symbols 1 and 2 in  $x \in X_d$  when followed in x by any n-block in M.

- (1) The automorphism  $\varphi_M$  can be factored into the automorphisms  $\varphi_{\bar{m}_1}, \ldots, \varphi_{\bar{m}_l}$ , where  $\{\bar{m}_1, \ldots, \bar{m}_l\}$  is the partition of M into minimal markers of length n.
- (2) The automorphism  $\varphi_M$  can be iteratively factored as follows:

$$\varphi_{M \cap m} = \varphi_{M \cap m^{(1)}} \circ \varphi_{M \cap m^{(2)}} \circ \cdots \circ \varphi_{M \cap m^{(r)}}$$

where m is a minimal marker of length  $k \ge 0$  and  $\{m^{(1)}, \ldots, m^{(r)}\}$  is the partition of m into minimal markers of length k+1. Moreover, the factors

 $\varphi_{M\cap m^{(1)}},\ldots,\varphi_{M\cap m^{(r)}}$ 

pair-wise commute.

**Proof.** Statement (1) follows from statement (2) and an induction on the length k of m: observe that  $M = M \cap \varepsilon$  and that statement (2) enables us to work our way down the tree  $\mathcal{T}$  of minimal markers to factor  $M \cap \varepsilon$  as claimed.

We prove statement (2). Let  $\bar{m}_1$  be one of the *n*-block minimal markers  $\{\bar{m}_1, \ldots, \bar{m}_l\}$  that partition *M*. Let

$$\varepsilon = m_0^{(1)} \supseteq m_1^{(1)} \supseteq \cdots \supseteq m_n^{(1)} = \bar{m}_1$$

be the sequence of minimal markers leading from the root of the tree  $\mathcal{T}$  to the *n*-block marker  $\bar{m}_1$ . For  $1 \le k \le n-1$ , let

$$\{m_k^{(1)}, m_k^{(2)}, \ldots, m_k^{(r_k)}\}$$

be the partition of  $m_{k-1}^{(1)}$  into minimal markers of length k.

For  $0 \le k \le n$ , let  $G_k$  be the graph obtained from  $G_0$  by k rounds of  $m_n^{(1)}$ -complete splitting. Notice that  $m_k^{(1)}, m_k^{(2)}, \ldots, m_k^{(r_k)}$  all occur as marker states in graph  $G_k$ . Thus  $G_{k+1}$  is obtained from  $G_k$  by one round of  $m_k^{(1)}$ -complete splitting.

Let  $G'_0$  be any graph obtained from  $G_0$  by state splitting that presents marker M. For  $0 \le k \le n-1$ , inductively define  $G'_{k+1}$  as the graph obtained from  $G'_k$  by one round of  $M \cap m_k^{(1)}$ -complete splitting.

We have two sequences of graphs:

$$G_0 \xrightarrow{\epsilon} G_1 \xrightarrow{m_1^{(1)}} G_2 \xrightarrow{m_2^{(1)}} \cdots \xrightarrow{m_{n-1}^{(1)}} G_n$$
$$G'_0 \xrightarrow{M \cap \epsilon} G'_1 \xrightarrow{M \cap m_1^{(1)}} G'_2 \xrightarrow{M \cap m_2^{(1)}} \cdots \xrightarrow{M \cap m_{n-1}^{(1)}} G'_n$$

We will show by induction on k that the partition  $\mathscr{G}'_k$  of  $X_d$  given by the states of  $G'_k$  refines the partition  $\mathscr{G}_k$  of  $X_d$  given by the states of  $G_k$ . This is clear for k = 0 because  $\mathscr{G}_0 = \{\varepsilon\} = \{X_d\}$ .

Now suppose  $\mathcal{G}_k \leq \mathcal{G}'_k$ . We have

$$\mathscr{G}_{k+1} \leq \mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}_k$$

and

$$\mathscr{G}_{k+1}' \leq \mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}_k'$$

by the proof of Lemma 2.1. Now  $\mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}_k \leq \mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}'_k$  by the inductive hypothesis. We need only show that if two atoms e and f of  $\mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}'_k$  are contained in the same atom of  $\mathscr{G}'_{k+1}$ , then e and f are contained in the same atom of  $\mathscr{G}_{k+1}$ .

Assume e and f are such atoms of  $\mathscr{C}_0 \vee \sigma^{-1} \mathscr{G}'_k$ . By the definition of  $m_k^{(1)} \cap M$ -complete state splitting, we have that e = 1m' and f = 2m', where:

- (i) m' is an atom of  $\mathscr{G}'_k$
- (ii)  $\overline{0}m'$  is contained in an atom p' of  $\mathscr{G}'_k$
- (iii)  $m' \cap m_k^{(1)} \cap M \neq \emptyset$ .

Now since  $\mathscr{G}_k \leq \mathscr{G}'_k$ , there are atoms  $m, p \in \mathscr{G}_k$  with  $m' \subseteq m$  and  $p' \subseteq p$ . Now  $1m \cap p \supseteq 1m' \cap p' = 1m' \neq \emptyset$ . But  $\mathscr{G}_k \leq \mathscr{E}_0 \vee \sigma^{-1} \mathscr{G}_k$ , so  $1m \subseteq p$ . Similarly,  $2m \subseteq p$ . Also,  $m \cap m_k^{(1)} \supseteq m' \cap m_k^{(1)} \cap M \neq \emptyset$ . Thus, by the definition of  $m_k^{(1)}$ -complete splitting,  $\overline{0}m$  is an atom of  $\mathscr{G}_{k+1}$ . But  $e \cup f = \overline{0}m' \subseteq \overline{0}m$ ; in particular e and f are in the same atom of  $\mathscr{G}_{k+1}$ . Thus  $\mathscr{G}_{k+1} \leq \mathscr{G}'_{k+1}$ , completing the induction.

We now show by induction that the graph  $G'_k$  presents each of

$$M \cap m_k^{(1)}, M \cap m_k^{(2)}, \ldots, M \cap m_k^{(r_k)}$$

as a marker, for  $0 \le k \le n$ . This is true for k = 0, since  $M = M \cap \varepsilon = M \cap m_0^{(1)}$ . Now suppose that the hypothesis is true for k. As  $G'_{k+1}$  is obtained from  $G'_k$  by a round of  $M \cap m_k^{(1)}$ -complete splitting, the graph  $G'_{k+1}$  also presents  $M \cap m_k^{(1)}$  as a marker (perhaps spread over more states). As  $\mathcal{G}_{k+1} \le \mathcal{G}'_{k+1}$  and as  $m_{k+1}^{(i)}$ ,  $1 \le i \le r_{k+1}$ , occur as states of the graph  $G_{k+1}$ , the sets  $m_{k+1}^{(i)}$ ,  $1 \le i \le r_{k+1}$ , occur as unions of states in the graph  $G'_{k+1}$ . Hence the set  $(M \cap m_k^{(1)}) \cap m_{k+1}^{(i)} = M \cap m_{k+1}^{(i)}$  occurs as a union of states in the graph  $G'_{k+1}$ , for  $1 \le i \le r_{k+1}$ . But all states of  $G'_{k+1}$  contained in  $M \cap m_k^{(1)}$ are marker states. Thus  $M \cap m_{k+1}^{(i)}$  is presented as a marker in graph  $G'_{k+1}$ , for  $1 \le i \le r_{k+1}$ . This completes the induction.

That

$$\varphi^{M \cap m_{k}^{(1)}} = \varphi^{M \cap m_{k+1}^{(1)}} \circ \varphi^{M \cap m_{k+1}^{(2)}} \circ \cdots \circ \varphi^{M \cap m_{k+1}^{(r_{k+1})}}$$

and that the factors commute follows from Observation (2.5). This completes the proof of statement (2).

*Example* 4.2. Minimal marker automorphisms do not always commute even if they have the same length. For example,

## $\varphi_{210}\varphi_{10\bar{0}} = \varphi_{10\bar{0}}\varphi_{110\bar{0}}\varphi_{2100}$

and  $\varphi_{210} \neq \varphi_{110\bar{0}}\varphi_{2100}$ . The automorphism  $\varphi_{210}\varphi_{10\bar{0}}$  has order 4. The automorphism  $\varphi_{01\bar{0}}\varphi_{210}$  has infinite order, as can be seen by observing the orbit of the point  $(2220)^n 1(2)^\infty$ . In particular, the size of the orbit is at least n/2. Thus a union of minimal markers need not be a marker.

## 5. A minimal marker algorithm

We have already stated an algorithm that computes the minimal marker  $m_a$  containing a given k-block a: namely, perform k rounds of a-complete splitting on the graph  $G_0$  and observe the contents of the state containing the k-block a in the resulting graph.

The algorithm we present below keeps track of only a few states of the graph after each round of *a*-complete splitting. In the algorithm, the elements of the set  $M_i$  are the states in the graph  $G_i$  that partition the marker state  $m_{i-1}$  containing the k-block *a* in graph  $G_{i-1}$ , for  $i \ge 1$ . The elements of the set  $P_i$  are the states in the

graph  $G_i$  that partition the state  $p_{i-1}$  containing  $\overline{0}m_{i-1}$  in graph  $G_{i-1}$ ,  $i \ge 1$ . In understanding the algorithm it might be helpful to keep in mind that all of the states in graph  $G_i$  are of the form  $b_1b_2...b_i$  with  $b_j \in \{\overline{0}, 0, 1, 2, ..., d-1\}$ .

We present the algorithm for the case d = 3. The only change needed when d > 3 is in the initialization step 0, where the set  $P_1$  should be set to  $P_1 := \{\overline{0}, 0, 3, 4, \dots, d-1\}$ .

ALGORITHM 5.1. Given a k-block a, construct the minimal marker  $m_a$  containing a. 0. Initialize:

 $i \coloneqq 1,$   $M_0 \coloneqq \{\varepsilon\},$   $m_0 \coloneqq \varepsilon,$   $P_0 \coloneqq \{\varepsilon\},$  $P_1 \coloneqq \{\overline{0}, 0\}.$ 

1. *Loop*:

If  $\overline{0}$  occurs in  $m_{i-1}$  then:

 $u \coloneqq prefix \text{ of } m_{i-1} \text{ preceding the first occurrence of } \overline{0}.$ 

If  $\overline{0}$  does not occur in  $m_{i-1}$  then:

 $u \coloneqq m_{i-1}$ 

 $j \coloneqq |u|$ .

- 2.  $M_i \coloneqq \{ux \colon x \in P_{i-j}\}.$
- 3.  $m_i \coloneqq$  that marker in  $M_i$  such that  $m_i \cap a \neq \emptyset$ .

4. If i = |a| then:

$$m_a \coloneqq m_i$$
 and stop,

otherwise

$$P_{i+1} \coloneqq \{\overline{0}m_i\} \cup \{1x: x \in M_i \text{ and } x \neq m_i\} \cup \{2x: x \in M_i \text{ and } x \neq m_i\}.$$

5.  $i \coloneqq i+1$  and go to 1.

THEOREM 5.2. Algorithm 5.1 correctly computes the minimal marker  $m_a$  containing the n-block a.

**Proof.** Let  $G_i$  be the graph obtained from  $G_{i-1}$  by one round of *a*-complete state splitting, for  $1 \le i \le n$ . We make two inductive hypotheses:

- (i) The sets in M<sub>i</sub> are those states in G<sub>i</sub> that partition the unique state m<sub>i-1</sub> in G<sub>i-1</sub> with m<sub>i-1</sub> ∩ a ≠ Ø,
- (ii) The sets in  $P_i$  are those states in  $G_i$  that partition the unique state  $p_{i-1}$  in  $G_{i-1}$  with  $\overline{0}m_{i-1} \subseteq p_{i-1}$ .

These statements are clear for the case i = 1. We assume (i) and (ii) are true for  $1 \le i \le k-1$ , and show that they are true for i = k, where  $k \ge 2$ .

We show (ii). By the application of step 4 when i = k - 2 (or by step 0 if k = 2) we have  $p_{k-1} = \overline{0}m_{k-2}$  in graph  $G_{k-1}$ . By hypothesis (i), state  $m_{k-2}$  in graph  $G_{k-2}$  is partitioned into the states in  $M_{k-1}$  in graph  $G_{k-1}$ . Thus, in graph  $G_{k-1}$ , state  $p_{k-1}$  has outgoing edges

$$\{1x: x \in M_{k-1}\} \cup \{2x: x \in M_{k-1}\}.$$

Now  $m_{k-1} \in M_{k-1}$  is that unique state in graph  $G_{k-1}$  with  $m_{k-1} \cap a \neq \emptyset$  (by step 3 when i = k-1). Thus, a round of *a*-complete splitting applied to  $G_{k-1}$  partitions state  $p_{k-1}$  into the elements of

$$P_k = \{\bar{0}m_{k-1}\} \cup \{1x: x \in M_{k-1} \text{ and } x \neq m_{k-1}\} \cup \{2x: x \in M_{k-1} \text{ and } x \neq m_{k-1}\}.$$

This proves (ii).

In showing (i), it is helpful to establish the following

Claim. If p is a state of  $G_i$  and  $u_j u_{j-1} \dots u_1$  is a string over  $\{0, 1, \dots, d-1\}$  where  $i+j \leq k$ , then the following are equivalent:

(a) For  $1 \le l \le j$ , either  $u_l \notin \{1, 2\}$  or  $u'p \cap a = \emptyset$ , where u' is the suffix of u of length l-1,

(b) up occurs as a state of  $G_{i+j}$ .

**Proof of claim.** If (a), then  $u_i u_{l-1} \dots u_1 p$  occurs in graph  $G_{i+l}$ ,  $1 \le l \le j$ , by the definition of *a*-complete splitting and an induction on *l*.

If not (a), let *l* be the least integer such that  $u_l \in \{1, 2\}$  and  $u'p \cap a \neq \emptyset$ . Since u'p occurs as a state in graph  $G_{i+l-1}$  (by (a) $\Rightarrow$ (b)) and since  $G_{i+l-1}$  was obtained from  $G_0$  by rounds of *a*-complete splitting, u'p is a marker state. Thus  $\overline{0}u'p$  occurs as a state of  $G_{i+l}$ . Thus any state in  $G_{i+j}$  which contains up also contains  $u_j \dots u_{l+1} \overline{0}u'p$ . Therefore (b) is false. This proves the claim.

We show (i). If  $u \coloneqq \varepsilon$  in step 1 when i = k, then  $m_{k-1} = p_{k-1}$  and  $M_k = P_k$  (by step 3). But we have already shown that  $P_{k-1}$  is partitioned by a round of *a*-complete splitting into the states in  $P_k$ .

If u is not set equal to  $\varepsilon$  in step 1, then  $u = u_j u_{j-1} \dots u_1$  for some  $j \ge 1$ , and  $m_{k-1} = u_j u_{j-1} \dots u_1 p$  where p is, by step 2, some element of  $P_{k-1-j}$ . In fact  $p = \varepsilon$  if k-1-j=0 (by step 0), or  $p = \overline{0}m_{k-2-j}$  if k-1-j>0 (by step 4). In either case  $p = p_{k-1-j}$ , the unique state of  $G_{k-1-j}$  with  $\overline{0}m_{k-1-j} \subseteq p_{k-1-j}$  (by inductive hypothesis (ii)).

By inductive hypothesis (ii), the state  $p_{k-1-j}$  in graph  $G_{k-1-j}$  is partitioned into states  $P_{k-j} = \{q^{(1)}, \ldots, q^{(r)}\}$  in graph  $G_{k-j}$ . Since  $m_{k-1} = u_j u_{j-1} \ldots u_1 p_{k-1-j}$ , we have by the claim ((b) $\Rightarrow$ (a)) that for  $1 \ge l \le j$ ,

either 
$$u_i \notin \{1, 2\}$$
 or  $u' p_{k-1-i} \cap a = \emptyset$ ,

where u' is the suffix of u of length l-1. Hence we also have

either 
$$u_l \notin \{1, 2\}$$
 or  $u'q^{(i)} \cap a = \emptyset$  where  $q^{(i)} \in P_{k-j}$ .

Thus, by the claim  $((a) \Rightarrow (b))$ ,  $uq^{(i)}$  occurs as a state of  $G_k$ . Since  $\{uq^{(1)}, \ldots, uq^{(r)}\}$  is a partition of  $up_{k-1-j} = m_{k-1}$ , we have that state  $m_{k-1}$  in graph  $G_{k-1}$  is partitioned into

$$\{ux: x \in P_{k-j}\}$$

in graph  $G_k$ . This proves hypothesis (i) and the theorem.

https://doi.org/10.1017/S0143385700005538 Published online by Cambridge University Press

J. Ashley

*Example 5.3.* We apply the algorithm to a = 020.

| i | $M_i$             | $m_i$           | $P_i$                                      |
|---|-------------------|-----------------|--------------------------------------------|
| 0 | $\{\varepsilon\}$ | ε               | $\{\boldsymbol{\varepsilon}\}$             |
| 1 | { <b>0</b> , 0}   | 0               | { <b>0</b> , 0}                            |
| 2 | {0 <b>0</b> , 00} | $0\overline{0}$ | { <b>0</b> 0, 10, 20}                      |
| 3 | {000, 010, 020}   | 000             | $\{\overline{0}0\overline{0}, 100, 200\}.$ |

6. An application to the dynamics of cubic polynomials

In this section we describe a construction of Blanchard et al. [BDK] that motivated this paper. We apologize to those authors for the shortcomings of this description. If  $R: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$  is a rational map then the *Fatou set*  $F_R$  is defined by

> $F_R = \{z \in \overline{\mathbb{C}} : \exists a \text{ neighborhood } U \text{ of } z \text{ so that the iterates of } R,$ when restricted to U, form a normal family}.

The Julia set  $J_R$  is defined to be the complement of  $F_R$ .

If p is a degree d polynomial over  $\mathbb{C}$  all of whose critical points escape to infinity under iteration of p, then

 $J_p = \{z \in \mathbb{C} : \{p^n(z)\} \text{ is a bounded sequence}\}$ 

and  $J_p$  is a Cantor set. As a dynamical system,  $(J_p, p)$  is conjugate to the one-sided *d*-shift [**B**].

Blanchard, Devaney and Keen have constructed automorphisms of  $(J_p, p)$  for cubic polynomials p [**BKK**]. In their construction, an automorphism of  $(J_p, p)$  is obtained by traversing a loop starting and ending at the polynomial p in the space  $\mathcal{P}_3$  of cubic polynomials both of whose critical points escape to infinity. We are not qualified to delve into the parameterization or description of this space [**BH**].

For  $p \in \mathcal{P}_3$  one can define (we do not) the rate-of-escape function  $h_p: \mathbb{C} \to \mathbb{R}^+$ [**BH**]. The function  $h_p$  has the properties that

- (i)  $h_p(p(z)) = 3h_p(z), \quad z \in \mathbb{C}$
- (ii)  $J_p = \{z \in \mathbb{C} : h_p(z) = 0\}$

(iii)  $h_p$  is continuous and  $h_p$  is harmonic outside of  $J_p$ .

A polynomial  $p \in \mathcal{P}_3$  is chosen by Blanchard et al. [BDK] so that the two critical points  $c^{(1)}$  and  $c^{(2)}$  of p are such that

$$h_p(p(c^{(1)})) < \rho < h_p(p(c^{(2)}))$$

and  $\{z: h_p(z) = \rho\}$  is a Jordan curve enclosing  $J_p$ . In figure 1, we have labeled the curve  $\{z: h_p(z) = \rho\}$  as  $\Gamma_{\varepsilon}$ . Let

$$D_{\varepsilon} = \{z \colon h_{\rho}(z) \le \rho\}.$$

The set  $p^{-1}(D_{\varepsilon}) = \{z: h_p(z) \le \frac{1}{3}\rho\}$  has two connected components: A disk  $D_0$  which maps by p in a degree 1 manner onto  $D_{\varepsilon}$ , and a disk  $D_{\bar{0}}$  containing  $c^{(1)}$  which maps in a degree 2 manner onto  $D_{\varepsilon}$ .

If  $p(c^{(1)})$  is connected to  $\Gamma_{\varepsilon}$  by an arc  $\gamma$  along which  $h_p(z)$  is increasing to  $h_p(z) = \rho$ , then the preimage of this arc divides the interior of  $D_0$  into two regions:  $U_1$  and  $U_2$ . If we denote the interior of  $D_0$  by  $U_0$ , we can coordinatize the Julia



FIGURE 1

set  $J_p$  by  $\psi: J_p \to X_3$  defined by

 $\psi(z)=a_0a_1a_2\ldots,$ 

where  $p^n(z) \in U_{a_n}$ . The map  $\psi$  is a conjugacy from  $(J_p, p)$  to  $(X_3, \sigma)$ .

For each  $k \ge 0$ , we denote each connected component of the set  $\{z: h_p(z) = \rho/3^k\}$ by  $D_u$ , where u is the set  $\psi(J_p \cap D_u)$  in  $X_3$ . The set  $u \le X_3$  is actually a union of k-blocks since  $p^k D_u = D_{\varepsilon}$ . For example, in figure 2,  $D_{0\bar{0}}$  is the connected component of  $\{z: h_p(z) \le (1/3^2)\rho\}$  that contains  $\psi^{-1}(0\bar{0})$ .

According to Blanchard et al. [BDK], the polynomial  $p \in \mathcal{P}_3$  may be chosen so that the critical value  $p(c^{(1)})$  is in the same connected component of  $\{z: h_p(z) \le (1/3^{k-1})\rho\}$  as  $\psi^{-1}(a) \subseteq J_p$  where a is any (k-1)-block in  $X_3$ , for any k > 0. We address the essentially combinatorial question: What is the configuration of the level curves  $h_p(z) = (1/3^k)\rho$  as a function of the location of the critical value  $p(c^{(1)})$ ? This question was pointed out to me by Linda Keen and is of interest because Blanchard, Devaney and Keen have constructed a loop in the space of polynomials  $\mathcal{P}_3$ , parameterized by  $0 \le t \le 1$ , such that:

(i) 
$$p_0 = p_1 = p$$

- (ii)  $h_{p_t}(p_t(c_t^{(1)})) = \rho/3^k$ , where  $c_t^{(1)}$  is a critical point of  $p_t$
- (iii)  $h_{p_t}(p_t(c_t^{(2)})) > \rho$
- (iv)  $p_t(c_t^{(1)})$  winds once around exactly one of the connected components, say  $D_u$ , of  $\{z: h_{p_t}(z) < \rho/3^k\}$  and winds zero times around all other such components.

In fact,  $p_t$  is given by  $p_t = \psi_t \circ \varphi_t \circ p \circ \psi_t^{-1}$  where  $\psi_t$  and  $\varphi_t$  are quasi-conformal homeomorphisms of  $\mathbb{C}$  and  $\varphi_t$  is the identity on  $J_p$ , for  $0 \le t \le 1$ . Hence  $p_t \psi_t = \psi_t p$ 



on  $J_p$ . Thus  $\psi_t: J_p \to J_{p_t}$  is an isomorphism for  $0 \le t \le 1$ . In particular,  $\psi_1: J_p \to J_p$  is an automorphism which, it turns out [**BDK**], in terms of the coordinates given by  $\psi: J_p \to X_3$  is the marker automorphism switching symbols 1 and 2 when followed by the marker  $\psi(J_p \cap D_u) = u$ .

In Theorem 6.1, we will show that the markers constructed by Blanchard, Devaney and Keen, those of the form  $\psi(J_p \cap D_u)$ , where  $D_u$  is a single connected component of  $\{z: h_p(z) \le \rho/3^k\}$  nested within the component of  $\{z: h_p(z) \le \rho/3^{k-1}\}$  containing  $p(c^{(1)})$ , are exactly the minimal markers.

Now  $\mathcal{P}_3$  is connected and by a separate argument there is a loop in  $\mathcal{P}_3$  that cyclically permutes the symbols 0, 1, and 2 in  $J_p$ . Therefore by Theorems 2.3 and 4.1, any automorphism of the 3-shift  $X_3$  may be realized by traversing a loop in  $\mathcal{P}_3$ .

THEOREM 6.1. If  $p \in \mathcal{P}_3$  is a polynomial with critical points  $c^{(1)}$  and  $c^{(2)}$ , and p > 0, k > 0 are such that

(i) 
$$\rho < h_p(p(c^{(2)})),$$

(ii)  $\Gamma_{\varepsilon} = \{z: h_{\rho}(z) = \rho\}$  is a Jordan curve,

(iii)  $p(c^{(1)})$  is in the same connected component of  $\{z: h_p(z) \le \rho/3^{k-1}\}$  as  $\psi^{-1}(a) \le J_p$ where a is a (k-1)-block in  $X_3$  and  $\psi: J_p \to X_3$  is the conjugacy defined above, then for  $0 \le j \le k$ , the connected components of the set

$$\{z: h_p(z) \le \rho/3^j\}$$

are exactly

 $\{D_s: S \text{ is a state in the graph } G_j \text{ obtained from the graph } G_0 \text{ by } j \text{ rounds of } a\text{-complete splitting} \}.$ 

In particular, the connected component of  $\{z: h_p(z) \le \rho/3^{k-1}\}$  containing the point  $p(c^{(1)})$  is  $D_{m_a}$ , and the connected components of  $D_{m_a} \cap \{z: h_p(z) \le \rho/3^k\}$  are  $D_{m_1}, \ldots, D_{m_r}$  where  $m_1, \ldots, m_r$  are the minimal markers of length k that partition the marker  $m_a$ .

*Remark.* The proof of the theorem does not really depend on the degree  $d \ge 3$  of p. We state it for d = 3 only for definiteness and simplicity.

**Proof.** We induct on k. The case k = 1 is true by the definition of  $D_{\varepsilon}$ ,  $D_0$ , and  $D_{\bar{0}}$  given above. Supposing the theorem is true for k, we prove it for k+1. Let a be a k-block such that  $p(c^{(1)})$  is in the same connected component of  $\{z: h_p(z) \le \rho/3^k\}$  as  $\psi^{-1}(a)$ . Let S be any state in  $G_k$ . Now

$$p(D_S) \cap J_p = \psi^{-1}(\sigma(S)).$$

But

 $\sigma(S) = \bigcup \{S': \text{ state } S' \text{ follows state } S \text{ in } G_k\},\$ 

so the inductive hypothesis gives that the connected components of

 $p(D_s) \cap \{z: h(z) \le \rho/3^k\}$ 

are

 $\{D_{S'}: \text{ state } S' \text{ follows state } S \text{ in } G_k\}.$ 

The remainder of the proof divides into two cases.

Case 1.  $c^{(1)} \notin D_S$ . We have  $D_S \subseteq D_0 \cup D_{\bar{0}}$  and  $c^{(2)} \notin D_0 \cup D_{\bar{0}}$ , so  $p \mid D_S$  is 1-to-1. So the connected components of  $D_S \cap \{z: h_p(z) \le \rho/3^{k+1}\}$  are

 $\{p^{-1}(D_{S'}) \cap D_S: \text{ state } S' \text{ follows state } S \text{ in } G_k\}.$ 

But  $\psi(J_p \cap p^{-1}(D_{S'}) \cap D_S) = S \cap \sigma^{-1}S'$ , so this set is

 $\{D_{S \cap \sigma^{-1}S'}: \text{ state } S' \text{ follows state } S \text{ in } G_k\}.$ 

Since  $p|D_S$  is 1-to-1,  $\sigma|S$  is 1-to-1 also, so no parallel edges begin at state S in  $G_k$ . Thus state S in  $G_k$  is completely split into its following edges:

 $\{S \cap \sigma^{-1}S': S' \text{ follows } S \text{ in } G_k\}.$ 

This completes Case 1.

Case 2.  $c^{(1)} \in D_S$ . Again  $D_S \subseteq D_0 \cup D_{\bar{0}}$ , so  $c^{(2)} \notin D_S$ . Thus  $p \mid D_S$  is 2-to-1 except at  $c^{(1)}$ .

By the inductive hypothesis  $\psi^{-1}(a) \subseteq D_{m_a}$  because  $m_a$  is the state in graph  $G_k$  with  $a \subseteq m_a$ . By assumption  $p(c^{(1)}) \in D_{m_a}$ . Hence  $D_{m_a}$  is a connected component of  $p(D_s) \cap \{z: h(z) \le \rho/3^k\}$ .

As  $c^{(1)} \in D_S$ , we have  $D_S \subseteq D_{\bar{0}}$ , so  $S \subseteq \bar{0}$ . Thus  $S = p_k$ , the unique state in  $G_k$  with  $\bar{0}m_a \subseteq p_k$ . Now  $p^{-1}(D_{m_a}) \cap D_S$  has a single connected component D mapping 2-to-1 onto  $D_{m_a}$  (except at  $c^{(1)}$ ) because  $p(c^{(1)}) \in D_{m_a}$  and  $c^{(1)} \in D_S$ . Now

$$\psi(J_p \cap D) = \psi(J_p \cap p^{-1}(D_{m_a}) \cap D_S) = \sigma^{-1}m_a \cap S = \overline{0}m_a.$$

Thus  $D = D_{\bar{0}m_a}$ . Any other connected component  $D_{S'}$  of

$$p(D_S) \cap \{z: h_p(z) \le \rho/3^k\}$$

is such that  $p^{-1}(D_{S'}) \cap D_S$  has two connected components,  $D^{(1)}$  and  $D^{(2)}$ , each mapping 1-to-1 onto  $D_{S'}$ . As  $p | D^{(i)}$  is 1-to-1 onto  $D_{S'}$ ,  $\sigma | \psi(J_p \cap D^{(i)})$  is 1-to-1 onto S'. Now  $D^{(i)} \subseteq D_{\bar{0}}$ , so  $\psi(J_p \cap D^{(i)}) \subseteq \bar{0}$ . Thus

$$\{\psi(J_p \cap D^{(1)}), \psi(J_p \cap D^{(2)})\} = \{1S', 2S'\},\$$

so the connected components of

$$D_{\mathcal{S}} \cap \{z \colon h_p(z) \le \rho/3^{k+1}\}$$

are

 $\{D_u: \text{state } u \text{ in graph } G_{k+1} \text{ is partitioned from state } S \text{ in graph } G_k\}.$ 

This completes Case 2.

*Example* 6.2. Figure 2 gives the nesting of the components of  $\{z: h_p(z) \le \rho/3^k\}$  for k = 0, 1, 2, 3 when  $p(c^{(1)})$  is the same connected component of  $\{z: h_p(z) \le \rho/3^2\}$  as  $\psi^{-1}(02)$ . We list below the corresponding states of  $G_k$  for k = 0, 1, 2, 3.

- k States of  $G_k$
- $0 \{\varepsilon\}$
- 1 {0, 0}
- 2  $\{\overline{0}0, 1\overline{0}, 2\overline{0}, 0\overline{0}, 00\}$

Compare to example (5.3).

#### Acknowledgement

Many thanks are due to Linda Keen and Bruce Kitchens for some very helpful discussions. Each deserves especial thanks: to Linda for the complex dynamics and to Bruce for the symbolic dynamics. Thanks are also due to the referee for his helpful corrections and suggestions.

#### REFERENCES

- [BDK] P. Blanchard, R. Devaney & L. Keen. The dynamics of complex polynomials and automorphisms of the shift. Preprint, 1989.
- [BFK] M. Boyle, J. Franks & B. Kitchens. Automorphisms of one-sided subshifts of finite type. Preprint.
- [B] P. Blanchard. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85-141.
- [BH] B. Branner & J. Hubbard. The iteration of cubic polynomials. Preprint.
- [N] M. Nasu. Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov chains. Proceedings of the special year in Ergod. Th. & Dynam. Sys. at the University of Maryland. To appear. Springer-Verlag.