Marker automorphisms of the one-sided d-shift

JONATHAN ASHLEY
Department of Mathematical Sciences, IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA

(Received 18 April 1988)

Abstract. We identify a set of generators for the automorphism group of the one-sided d-shift. For the 3 -shift, this set of generators has an application to the dynamics of cubic polynomials.

1. Introduction

The one-sided d-shift, X_{d}, is defined to be the set

$$
X_{d}=\prod_{i=0}^{\infty}\{0,1, \ldots, d-1\}
$$

with the topology given by the product of the discrete topologies on the coordinate spaces. The shift map $\sigma: X_{d} \rightarrow X_{d}$ defined by

$$
(\sigma(x))_{i}=x_{i+1}
$$

is a continuous d-to- 1 map. In this paper we study the group of homeomorphisms $\psi: X_{d} \rightarrow X_{d}$ that commute with the shift σ. We denote this group by aut (X_{3}, σ); it is the group of automorphisms of the dynamical system $\left(X_{d}, \sigma\right)$.

The system $\left(X_{d}, \sigma\right)$ is isomorphic to the system $\left(J_{p}, p\right)$, where p is a degree d complex polynomial all of whose critical points escape to infinity and J_{p} is the Julia set of $p[\mathbf{B}]$. For $\left(X_{d}, \sigma\right)$ and ($\left.J_{p}, p\right)$ to be isomorphic or conjugate as dynamical systems means that there is a homeomorphism $\psi: J_{p} \rightarrow X_{d}$ with $\psi \circ p=\sigma \circ \psi$.

Blanchard et al. [BDK] have constructed automorphisms of ($\left.J_{p}, p\right)$ where p is a cubic polynomial all of whose critical points escape to infinity. These automorphisms are given by traversing loops in a parameter space for cubic polynomials. In conversation with me, Linda Keen and Robert Devaney posed the question: Does this construction give all of the automorphisms of $\left(J_{p}, p\right)$? The answer is yes. We prove this by identifying the automorphisms of $\left(J_{p}, p\right) \cong\left(X_{3}, \sigma\right)$ arising from their construction as those given by a simple combinatorial algorithm; and, using the algorithm, prove that these automorphisms generate the automorphism group of $\left(X_{3}, \sigma\right)$, aut $\left(X_{3}, \sigma\right)$.

In § 2, we state a result of Boyle et al. [BFK] giving a certain set of generators for aut (X_{d}, σ), called marker automorphisms.

In §§ 3 and 4 we show a way to factor a marker automorphism into a composition of minimal marker automorphisms; these are the automorphisms arising from the construction of Blanchard, Devaney and Keen (as shown in §6).

In §5 we present a simplified algorithm for constructing minimal marker automorphisms.

In § 6 we show that the minimal marker automorphisms of $\left(X_{3}, \sigma\right)$ are exactly the automorphisms constructed by Blanchard, Devaney and Keen.

2. Marker automorphisms and state splitting

Let $G_{s t} \subseteq$ aut $\left(X_{d}, \sigma\right)$ be that subgroup of automorphisms g such that

$$
g(x)_{i}=x_{i} \quad \text { if } \quad x_{i} \neq s \quad \text { and } \quad x_{i} \neq t, x \in X_{d} .
$$

Thus $g \in G_{s t}$ fixes all symbols except perhaps s and t. In [BFK], Boyle, Franks and Kitchens show that $\left\{G_{s t}: 0 \leq s, t \leq d-1\right\}$ generate aut $\left(X_{d}, \sigma\right)$ and that $G_{s t}$ is generated by marker automorphisms. To describe the construction of marker automorphisms we must first explain the state splitting algorithm.

State splitting

Let G_{0} be the directed graph with one state, ε, and d directed edges e_{0}, \ldots, e_{d-1} from state ε to itself. Edge e_{i} is labeled with symbol i; we denote the labeling function as $L_{G_{0}}$, or L if no confusion is possible. Thus $L\left(e_{i}\right)=i$. The system ($\left.X_{d}, \sigma\right)$ is obviously conjugate to the symbolic system $\left(\Sigma_{G_{0}}, \sigma\right)$, where for a directed graph G, we define

$$
\Sigma_{G}=\left\{e_{i_{0}} e_{i_{1}} e_{i_{2}} \ldots \text { : edge } e_{i_{j+1}} \text { follows } e_{i_{j}} \text { in } G\right\}
$$

The conjugacy is given by extending the map L to $\Sigma_{G_{0}}$ by setting

$$
L\left(e_{i_{0}} e_{i_{1}} \cdots\right)=L\left(e_{i_{0}}\right) L\left(e_{i_{1}}\right) \cdots=i_{0} i_{1} \cdots
$$

We say that a labeled graph G presents X_{d} if $L_{G}: \Sigma_{G} \rightarrow X_{d}$ is a conjugacy from $\left(\Sigma_{G}, \sigma\right)$ to $\left(X_{d}, \sigma\right)$.

Given any labeled directed graph G presenting X_{d} we may define a new graph G^{\prime} as follows. Denote by $\mathscr{F}(S)$ the set of edges in G whose initial state is state S. For each state S_{i} in G, choose a partition $\left\{S_{i}^{(1)}, \ldots, S_{i}^{\left(r_{i}\right)}\right\}$ of the set of edges $\mathscr{F}\left(S_{i}\right)$. The states of G^{\prime} are defined to be $\left\{S_{i}^{(j)}: S_{i}\right.$ is a state of G and $\left.1 \leq j \leq r_{i}\right\}$. For each edge $e \in S_{i}^{(j)}$ whose terminal state is S_{k}, G^{\prime} has r_{k} edges:

$$
S_{i}^{(j)} \xrightarrow{a} S_{k}^{(l)}, \quad 1 \leq l \leq r_{k}
$$

each labeled with $a=L_{G}(e)$. The graph G^{\prime} is said to be obtained from G by one round of (forward) state splitting. We show in Corollary (2.2) that G^{\prime} presents X_{d}.

Denote the set $\left\{x \in X_{d}: x_{0}=b_{0}, \ldots, x_{k-1}=b_{k-1}\right\}$ by the string $b=b_{0} b_{1} \ldots b_{k-1}$. The set b is called a k-block.

Lemma 2.1. Let G be a graph obtained from G_{0} by a finite number $k \geq 0$ of rounds of state splitting. The states \mathscr{S} of G partition X_{d} where we identify state $S \in \mathscr{S}$ with the set

$$
S=\left\{x \in X_{d}: L(p)=x \quad \text { where } p \text { is a path in } G \text { starting at state } S\right\} .
$$

The edges \mathscr{E} of G also partition X_{d}, where we identify $e=\mathscr{E}$ with the set

$$
e=\left\{x \in X_{d}: L(p)=x \quad \text { where } p \text { is a path in } G \text { with } p_{0}=e\right\}
$$

Moreover, the states of G are unions of k-blocks and the edges of G are unions of
($k+1$)-blocks. Each state of G has exactly d incoming edges, labeled distinctly from the set $\{0,1, \ldots, d-1\}$.
Proof. The proof is an induction on k. When $k=0, G=G_{0}$. The edge e_{i} of G_{0} is identified with the 1-block i of X_{d}. Thus the edges

$$
\mathscr{E}_{0}=\left\{e_{0}, \ldots, e_{d-1}\right\}=\{0, \ldots, d-1\}
$$

partition the space X_{d} into 1-blocks. The single state of G_{0} is identified with the set X_{d}; in block notation, the single state of G_{0} is the 0 -block denoted by the empty word ε : no coordinates are specified.

Let \mathscr{S} and \mathscr{E} be the set of states and of edges of G. The state splitting rule says exactly that if G^{\prime} is obtained from G by a round of splitting then

$$
\mathscr{S} \leq \mathscr{S}^{\prime} \leq \mathscr{E}
$$

and

$$
\mathscr{E}^{\prime}=\mathscr{E}_{0} \vee \sigma^{-1} \mathscr{G}^{\prime}
$$

where \mathscr{S}^{\prime} and \mathscr{E}^{\prime} are the states and edges of G^{\prime} and

$$
\sigma^{-1} \mathscr{S}^{\prime}=\left\{\sigma^{-1} S_{1}^{\prime}, \ldots, \sigma^{-1} S_{n}^{\prime}\right\}
$$

where

$$
\mathscr{S}^{\prime}=\left\{S_{1}^{\prime}, \ldots, S_{n}^{\prime}\right\} .
$$

Thus if each $S \in \mathscr{S}$ is a union of k-blocks and each $e \in \mathscr{E}$ is a union of $(k+1)$-blocks, then each $S^{\prime} \in \mathscr{S}^{\prime}$, being a union of elements of \mathscr{E}, is a union of $(k+1)$-blocks and each $e^{\prime} \in \mathscr{E}^{\prime}$ is a union of $(k+2)$-blocks. Now for each edge $e^{\prime} \in \mathscr{E}^{\prime}$, we have $\sigma\left(e^{\prime}\right)=S^{\prime}$, where S^{\prime} is the terminal state of e^{\prime} in graph G^{\prime}. Thus, the incoming edges of state S^{\prime} in \mathscr{S}^{\prime} are $0 S^{\prime}, 1 S^{\prime}, \ldots,(d-1) S^{\prime}$.

Corollary 2.2. If graph G is as in Lemma (2.1), the map $L: \Sigma_{G} \rightarrow X_{d}$ is a conjugacy. Thus G presents X_{d}.
Proof. If $x \in X_{d}$, then the unique path p in G labeled by x is given by $p_{0} p_{1} \ldots$, where $p_{0} \supseteq x_{0} x_{1} \ldots x_{k}, p_{1} \supseteq x_{1} x_{2} \ldots x_{k+1}$, etc. Thus $L^{-1}: X_{d} \rightarrow \Sigma_{G}$ is given by the $(k+1)$-block map $L^{-1}\left(x_{i} x_{i+1} \ldots x_{i+k}\right)=e$ where e is that edge in graph G with $e \supseteq x_{i} \ldots x_{i+k}$.

Marker automorphisms

Define, after Nasu [N], a simple automorphism of X_{d} to be an automorphism φ of the form

$$
\varphi=L \circ \psi \circ L^{-1},
$$

where $L: \Sigma_{G} \rightarrow X_{d}$ is the label conjugacy for some graph G obtained from G_{0} by state splitting and ψ is an automorphism of Σ_{G} given by switching two fixed edges $e_{i_{0}}$ and $e_{i_{1}}$ in graph G, where $e_{i_{0}}$ and $e_{i_{1}}$ are parallel edges: they have a common initial state P and a common final state M.

In terms of X_{d}, φ is a marker automorphism: it acts on $x \in X_{d}$ only where a marker occurs in x as follows. If $L\left(e_{i_{0}}\right)=a$ and $L\left(e_{i_{1}}\right)=b$, then φ switches symbol
a with symbol b wherever a or b is followed by a k-block $c \subseteq M$ (recall that states of G are unions of k-blocks in X_{d}). To emphasize the marker M we denote φ by φ_{M}.

It follows from a more general result in [BFK] that
Theorem 2.3. The simple automorphisms generate aut (X_{d}).
We concentrate on describing markers for automorphisms of X_{d} switching symbols 1 and 2 for definiteness. Marker automorphisms switching other symbols are conjugate to these.
Definition 2.4. A k-block marker M is a union of k-blocks that occurs as a union of states, each with parallel incoming edges labeled 1 and 2 , occurring in a graph G obtained from G_{0} by state splitting. We say that graph G presents marker M.
Observation 2.5. If a graph G simultaneously presents markers M_{1}, \ldots, M_{r}, then the automorphisms $\varphi_{M_{1}}, \ldots, \varphi_{M_{r}}$ pair-wise commute. If in addition the M_{i} are disjoint sets, then the product of $\varphi_{M_{1}}, \ldots, \varphi_{M_{r}}$ is given by the marker automorphism with marker $\bigcup_{i} M_{i}$.
Proof. The automorphism $\varphi_{M_{i}}$ is given by $L \circ \psi_{i} \circ L^{-1}$, where ψ_{i} is the automorphism of Σ_{G} given by switching certain pairs of edges of graph G. The ψ_{i} pair-wise commute because each leaves any pair of edges switched by another set-wise fixed. If the $\boldsymbol{M}_{\boldsymbol{i}}$ are disjoint, no two of the ψ_{i} switch the same pair of edges. Therefore, the set of pairs of edges switched by the product of all $\psi_{i}, 1 \leq i \leq r$, is the union over $1 \leq i \leq r$ of the set of pairs switched by ψ_{i}.

In fact, a converse to (2.5) is true, but we do not use it.
We now show that any k-block marker M is presented by a graph G that is obtained from G_{0} by k rounds of state splitting. First we must characterize those partitions \mathscr{S} of X_{d} obtained by state splitting the graph G_{0}.

If $a \subseteq X_{d}$ and \mathscr{S} is a partition of X_{d}, we denote by $\mathscr{S} \mid a$ the induced partition of the set a.
Lemma 2.6. Let \mathscr{S} be a partition of X_{d} coarser than the partition of X_{d} into all k-blocks. Then \mathscr{S} is given by state splitting G_{0} iff

$$
\mathscr{S} \geq \sigma(\mathscr{P} \mid a) \text { for all 1-blocks } a \subseteq X_{d}
$$

Moreover, if the condition is satisfied, \mathscr{S} is obtained from G_{0} by k rounds of splitting.
Proof. We prove (\Leftarrow). The other direction is an easy consequence of Lemma 2.1. If a is a k-block, denote $|a|=k$. Now

$$
\mathscr{S} \geq \bigvee_{|a|=1} \sigma(\mathscr{T} \mid a)
$$

so

$$
\begin{aligned}
\bigvee_{|b|=l} \sigma^{\prime}(\mathscr{S} \mid b) & \geq \bigvee_{|b|=l} \sigma^{\prime}\left(\left[\bigvee_{|a|=1}^{\bigvee} \sigma(\mathscr{S} \mid a)\right] \mid b\right) \\
& =\bigvee_{|b|=l|a|=1}^{\bigvee} \sigma^{l}([\sigma(\mathscr{S} \mid a)] \mid b) \\
& =\bigvee_{|b|=l|a|=1}^{\bigvee} \sigma^{l+1}(\mathscr{S} \mid a b) \\
& =\bigvee_{|c|=l+1} \sigma^{l+1}(\mathscr{S} \mid c), \quad l \geq 1 .
\end{aligned}
$$

If we denote

$$
\mathscr{S}_{1}=\bigvee_{|a|=k-i} \sigma^{k-l}(\mathscr{S} \mid a) \quad \text { and } \quad \mathscr{S}_{k}=\mathscr{S}
$$

we have

$$
\mathscr{S}=\mathscr{S}_{k} \geq \mathscr{S}_{k-1} \geq \cdots \geq \mathscr{S}_{1} \geq \mathscr{F}_{0}=\left\{X_{d}\right\} .
$$

Let

$$
\mathscr{C}_{l}=\mathscr{E}_{0} \vee \sigma^{-1} \mathscr{S}_{l}, \quad 0 \leq l \leq k,
$$

where $\mathscr{E}_{0}=\{0,1, \ldots, d-1\}$. We claim that \mathscr{S}_{1+1} and \mathscr{E}_{1+1} are the states and edges of a graph G_{l+1} obtained by one round of state splitting from a graph $G_{l}, 0 \leq l \leq k-1$. It only remains to show

$$
\mathscr{S}_{l} \leq \mathscr{C}_{1-1}=\mathscr{C}_{0} \vee \sigma^{-1} \mathscr{S}_{1-1}=\mathscr{C}_{0} \vee \sigma^{-1} \underset{|b|=k-l+1}{\vee} \sigma^{k-l+1}(\mathscr{S} \mid b)
$$

If e and e^{\prime} are in the same atom of the right-hand-side, then $e=a d$ and $e^{\prime}=a d^{\prime}$, where $|a|=1$, and where for all $(k-l+1)$-blocks $b, b d$ and $b d^{\prime}$ are in the same atom of \mathscr{S}. In particular, for all $(k-l)$-blocks $c, c a d$ and $c a d^{\prime}$ are in the same atom of \mathscr{S}. Hence $e=a d$ and $e^{\prime}=a d^{\prime}$ are in the same atom of S_{l}.

We denote the complement of a subset M of X_{d} by M^{c}.
Lemma 2.7. Let M be a finite union of k-blocks. The partition

$$
\mathscr{P}=\underset{\substack{\{b, b \text { is } \\ \text { block, and } \\ 0 \leq|b| \leq k\}}}{\vee}\left\{\sigma^{|b|}(M \cap b), \sigma^{|b|}\left(M^{c} \cap b\right)\right\}
$$

is the unique coarsest partition having M as a union of atoms among all partitions of X_{d} obtained by rounds of state splitting from graph G_{0}. Moreover, the partition \mathscr{S} can be obtained by k rounds of splitting from graph G_{0}.
Proof. We first show that \mathscr{S} is a partition obtained by state splitting G_{0}. If a is a 1-block then

$$
\begin{aligned}
\sigma(\mathscr{S} \mid a) & =\underset{\{b: 0 \leq|b| \leq k\}}{\vee}\left\{\sigma^{|b a|}(M \cap b a), \sigma^{|b a|}\left(M^{c} \cap b a\right)\right\} \\
& =\left\{\phi, X_{d}\right\} \vee \underset{\{b: 0 \leq|b| \leq k-1\}}{\vee}\left\{\sigma^{|b a|}(M \cap b a), \sigma^{|b a|}\left(M^{c} \cap b a\right)\right\} \\
& \leq \mathscr{S} .
\end{aligned}
$$

Now the elements of \mathscr{S} are unions of k-blocks, so \mathscr{S} is obtained by k rounds of state splitting from G_{0} by Lemma 2.6. We now show $\mathscr{P} \geq \mathscr{P}$ for any partition \mathscr{P} of X_{d} obtained by splitting G_{0} having M as a union of atoms. For each $P \in \mathscr{P}$, either $P \subseteq M$ or $P \subseteq M^{c}$. Hence for each block b, either $\sigma^{|b|}(P \cap b) \subseteq \sigma^{|b|}(M \cap b)$ or $\sigma^{|b|}(P \cap b) \subseteq \sigma^{|b|}\left(M^{c} \cap b\right)$. Hence

$$
\sigma^{|b|}(\mathscr{P} \mid b) \geq\left\{\sigma^{|b|}(M \cap b), \sigma^{|b|}\left(M^{c} \cap b\right)\right\} .
$$

Because \mathscr{P} is obtained by splitting, we have by Lemma 2.6 and an induction on the length of b that

$$
\mathscr{P} \geq \boldsymbol{\sigma}^{|\boldsymbol{b}|}(\mathscr{P} \mid \boldsymbol{b})
$$

Thus

$$
\mathscr{P} \geq \bigvee_{|b| \geq 0}\left\{\sigma^{|b|}(M \cap b), \sigma^{|b|}\left(M^{c} \cap b\right)\right\}=\mathscr{F} .
$$

We can now show

Theorem 2.8. Any k-block marker M is presented by a graph G obtained from G_{0} by k rounds of splitting.
Proof. Let G, by Lemma 2.7, be the graph obtained from G_{0} by k rounds of splitting whose states \mathscr{S} give the unique coarsest partition of X_{d} among all graphs obtained by splitting G_{0} and having M as a union of states. We must show G presents M as a marker. Let G^{\prime} be any graph with states \mathscr{S}^{\prime} that presents M as a marker. The states of G^{\prime} are invariant under the automorphism φ_{M}, and since $\mathscr{S} \leq \mathscr{S}^{\prime}$, the states \mathscr{S} of G are invariant as well, In particular, if $S \in \mathscr{S}$ is such that $S \subseteq M$, then $1 S$ and $2 S$ are contained in the same state $P \in \mathscr{F}$. Thus there are parallel edges labeled 1 and 2 from state P to state S in G. Thus graph G presents the marker M.

3. Minimal markers

In this section we show that any k-block marker M can be partitioned into a union of k-block markers that are minimal with respect to inclusion among all k-block markers. These markers are defined by a particular kind of state splitting.
Notation. Denote the union of 1 -blocks $1 \cup 2$ by $\overline{0}$.
Definition 3.1. Let M be a marker presented by a graph G and let $U \subseteq M$ be any subset of M. The U-complete round of state splitting of G is defined as follows: each state P of G is partitioned into states

$$
\left\{a_{1} Q_{1}, \ldots, a_{k} Q_{k}, \overline{0} M_{1}, \ldots, \overline{0} M_{l}\right\}
$$

where
(i) M_{i} is a marker state with $\overline{0} M_{i} \subseteq P$ and $M_{i} \cap U \neq \varnothing$,
(ii) Q_{j} is a state with 1-block $a_{j} \notin\{1,2\}$ or $\overline{0} Q_{j} \notin P$ or $Q_{j} \cap U=\varnothing$.

The U-complete round of splitting gives the finest possible partition of the states of G subject to the constraint that the set U remain contained in a marker in G^{\prime}.
Definition 3.2. Let M be a marker presented by a graph G and let $U \subseteq M$ be any subset of M. A round of splitting on G is U-preserving if for each state P of G, the partition of P given by the splitting is coarser than the partition of P given by the U-complete splitting.

A U-preserving splitting preserves U as a subset of a marker in G^{\prime}.
Definition 3.3. Let a be a k-block in X_{d}. Define the marker m_{a} to be the state containing a in the graph G_{k} obtained from graph G_{0} from k rounds of a-complete splitting.

Lemma 3.4. The set of k-blocks in X_{d} is partitioned by

$$
\left\{m_{a}: a \text { is a } k \text {-block in } X_{d}\right\} .
$$

Proof. Suppose b is a k-block with $b \subseteq m_{a}$. We show $m_{b}=m_{a}$ giving that if $m_{a} \cap m_{b} \neq$ \varnothing, then $m_{a}=m_{b}$. Let G_{j} be the graph resulting from j rounds of a-complete splitting applied to G_{0}. The k-blocks a and b are contained in the same single state of G_{j}, $0 \leq j \leq k$, since this is true of G_{k}. Thus the k rounds of splitting leading to G_{k} are also b-complete. Thus $m_{a}=m_{b}$.

Lemma 3.5. Let G be a graph presenting marker M and let $U \subseteq M$. If G_{1} is the graph obtained from G by n rounds of U-complete splitting and G_{2} is any graph obtained from G by n rounds of U-preserving state splitting, then the partition of X_{d} given by the states of G_{1} refines the partition of X_{d} given by the states of G_{2}.
Proof. An easy induction on the number of rounds of splitting.
We can now prove the main theorem of this section.
Theorem 3.6. Any k-block marker M is partitioned by

$$
\left\{m_{a}: a \text { is a } k \text {-block contained in } M\right\} .
$$

Proof. By Theorem 2.8, M is presented by a graph G obtained from G_{0} by k rounds of state splitting. For any k-block $a \subseteq M$, each of the k rounds of splitting is a-preserving (because it is M-preserving). By Lemma 3.5, the partition of X_{d} given by the graph G^{\prime} obtained from G_{0} by k rounds of a-complete splitting refines the partition of X_{d} given by the states of G. Thus the state m_{a} of G^{\prime} is contained in that state S of G with $a \subseteq S$. Now $a \subseteq M$, so $S \subseteq M$, so $m_{a} \subseteq M$. Now apply Lemma 3.4 to conclude that M is partitioned by $\left\{m_{a}: a\right.$ is a k-block contained in $\left.M\right\}$.

We may introduce a tree \mathscr{T} of markers defined as follows:
(i) the root of \mathscr{T} is the 0 -block marker ε.
(ii) the children of a marker m of length k are the markers
$\{m a: a$ is a $(k+1)$-block contained in $m\}$
in the partition of m into $(k+1)$-block markers.
Corollary 3.7. Given a k-block a, there is unique marker minimal with respect to inclusion among all k-block markers that contain a: namely, m_{a}.
Proof. By Theorem 3.6 any k-block marker M containing the k-block a also contains m_{a}.

4. Factoring a marker automorphism

We now show that aut $\left(X_{d}, \sigma\right)$ is generated by
$\left\{\varphi_{m}: m\right.$ is a minimal marker $\}$.
We do this by showing that any marker automorphism φ_{M} factors into minimal marker automorphisms and then apply Theorem 2.3.

Theorem 4.1. Let M be an n-block marker for the automorphism φ_{M} of X_{d} switching the symbols 1 and 2 in $x \in X_{d}$ when followed in x by any n-block in M.
(1) The automorphism φ_{M} can be factored into the automorphisms $\varphi_{m_{1}}, \ldots, \varphi_{m_{1}}$, where $\left\{\bar{m}_{1}, \ldots, \bar{m}_{t}\right\}$ is the partition of M into minimal markers of length n.
(2) The automorphism φ_{M} can be iteratively factored as follows:

$$
\varphi_{M \cap m}=\varphi_{M \cap m^{(1)} \circ} \varphi_{M \cap m^{(2)} \circ} \cdots \circ \varphi_{M \cap m^{(r)}}
$$

where m is a minimal marker of length $k \geq 0$ and $\left\{m^{(1)}, \ldots, m^{(r)}\right\}$ is the partition of m into minimal markers of length $k+1$. Moreover, the factors

$$
\varphi_{M \cap m^{(1)}}, \ldots, \varphi_{M \cap m^{(r)}}
$$

pair-wise commute.
Proof. Statement (1) follows from statement (2) and an induction on the length k of m : observe that $M=M \cap \varepsilon$ and that statement (2) enables us to work our way down the tree \mathscr{T} of minimal markers to factor $M \cap \varepsilon$ as claimed.

We prove statement (2). Let \bar{m}_{1} be one of the n-block minimal markers $\left\{\bar{m}_{1}, \ldots, \bar{m}_{t}\right\}$ that partition M. Let

$$
\varepsilon=m_{0}^{(1)} \supseteq m_{1}^{(1)} \supseteq \cdots \supseteq m_{n}^{(1)}=\bar{m}_{1}
$$

be the sequence of minimal markers leading from the root of the tree \mathscr{T} to the n-block marker \bar{m}_{1}. For $1 \leq k \leq n-1$, let

$$
\left\{m_{k}^{(1)}, m_{k}^{(2)}, \ldots, m_{k}^{\left(r_{k}\right)}\right\}
$$

be the partition of $\boldsymbol{m}_{k-1}^{(1)}$ into minimal markers of length k.
For $0 \leq k \leq n$, let G_{k} be the graph obtained from G_{0} by k rounds of $m_{n}^{(1)}$-complete splitting. Notice that $m_{k}^{(1)}, m_{k}^{(2)}, \ldots, m_{k}^{\left(r_{k}\right)}$ all occur as marker states in graph G_{k}. Thus G_{k+1} is obtained from G_{k} by one round of $m_{k}^{(1)}$-complete splitting.

Let G_{0}^{\prime} be any graph obtained from G_{0} by state splitting that presents marker M. For $0 \leq k \leq n-1$, inductively define G_{k+1}^{\prime} as the graph obtained from G_{k}^{\prime} by one round of $M \cap m_{k}^{(1)}$-complete splitting.

We have two sequences of graphs:

$$
\begin{gathered}
G_{0} \xrightarrow{\varepsilon} G_{1} \xrightarrow{m_{1}^{(1)}} G_{2} \xrightarrow{m_{2}^{(1)}} \cdots \xrightarrow{m_{n}^{(1)}} G_{n} \\
G_{0}^{\prime} \xrightarrow{M \cap \varepsilon} G_{1}^{\prime} \xrightarrow{M \cap m_{1}^{(1)}} G_{2}^{\prime} \xrightarrow{M \cap m_{2}^{(1)}} \cdots \xrightarrow{M \cap m_{n \rightarrow-1}^{(1)}} G_{n}^{\prime} .
\end{gathered}
$$

We will show by induction on k that the partition \mathscr{S}_{k}^{\prime} of X_{d} given by the states of G_{k}^{\prime} refines the partition \mathscr{S}_{k} of X_{d} given by the states of G_{k}. This is clear for $k=0$ because $\mathscr{S}_{0}=\{\varepsilon\}=\left\{X_{d}\right\}$.

Now suppose $\mathscr{S}_{k} \leq \mathscr{S}_{k}^{\prime}$. We have

$$
\mathscr{S}_{k+1} \leq \mathscr{C}_{0} \vee \sigma^{-1} \mathscr{S}_{k}
$$

and

$$
\mathscr{P}_{k+1}^{\prime} \leq \mathscr{E}_{0} \vee \sigma^{-1} \mathscr{S}_{k}^{\prime}
$$

by the proof of Lemma 2.1. Now $\mathscr{C}_{0} \vee \sigma^{-1} \mathscr{S}_{k} \leq \mathscr{C}_{0} \vee \sigma^{-1} \mathscr{S}_{k}^{\prime}$ by the inductive hypothesis. We need only show that if two atoms e and f of $\mathscr{E}_{0} \vee \sigma^{-1} \mathscr{P}_{k}^{\prime}$ are contained in the same atom of $\mathscr{S}_{k+1}^{\prime}$, then e and f are contained in the same atom of \mathscr{S}_{k+1}.

Assume e and f are such atoms of $\mathscr{E}_{0} \vee \sigma^{-1} \mathscr{S}_{k}^{\prime}$. By the definition of $m_{k}^{(1)} \cap M$-complete state splitting, we have that $e=1 m^{\prime}$ and $f=2 m^{\prime}$, where:
(i) m^{\prime} is an atom of \mathscr{L}_{k}^{\prime}
(ii) $\overline{0} m^{\prime}$ is contained in an atom p^{\prime} of \mathscr{S}_{k}^{\prime}
(iii) $m^{\prime} \cap m_{k}^{(1)} \cap M \neq \varnothing$.

Now since $\mathscr{G}_{k} \leq \mathscr{Y}_{k}^{\prime}$, there are atoms $m, p \in \mathscr{S}_{k}$ with $m^{\prime} \subseteq m$ and $p^{\prime} \subseteq p$. Now $1 m \cap p \supseteq$ $1 m^{\prime} \cap p^{\prime}=1 m^{\prime} \neq \varnothing$. But $\mathscr{S}_{k} \leq \mathscr{E}_{0} \vee \sigma^{-1} \mathscr{S}_{k}$, so $1 m \subseteq p$. Similarly, $2 m \subseteq p$. Also, $m \cap$ $\boldsymbol{m}_{k}^{(1)} \supseteq \boldsymbol{m}^{\prime} \cap \boldsymbol{m}_{k}^{(1)} \cap M \neq \varnothing$. Thus, by the definition of $\boldsymbol{m}_{k}^{(1)}$-complete splitting, $\overline{0} m$ is an atom of \mathscr{S}_{k+1}. But $e \cup f=\overline{0} m^{\prime} \subseteq \overline{0} m$; in particular e and f are in the same atom of \mathscr{S}_{k+1}. Thus $\mathscr{S}_{k+1} \leq \mathscr{S}_{k+1}^{\prime}$, completing the induction.

We now show by induction that the graph G_{k}^{\prime} presents each of

$$
M \cap m_{k}^{(1)}, M \cap m_{k}^{(2)}, \ldots, M \cap m_{k}^{\left(r_{k}\right)}
$$

as a marker, for $0 \leq k \leq n$. This is true for $k=0$, since $M=M \cap \varepsilon=M \cap m_{0}^{(1)}$. Now suppose that the hypothesis is true for k. As G_{k+1}^{\prime} is obtained from G_{k}^{\prime} by a round of $\boldsymbol{M} \cap \boldsymbol{m}_{k}^{(1)}$-complete splitting, the graph G_{k+1}^{\prime} also presents $\boldsymbol{M} \cap \boldsymbol{m}_{k}^{(1)}$ as a marker (perhaps spread over more states). As $\mathscr{S}_{k+1} \leq \mathscr{S}_{k+1}^{\prime}$ and as $m_{k+1}^{(i)}, 1 \leq i \leq r_{k+1}$, occur as states of the graph G_{k+1}, the sets $m_{k+1}^{(i)}, 1 \leq i \leq r_{k+1}$, occur as unions of states in the graph G_{k+1}^{\prime}. Hence the set $\left(M \cap m_{k}^{(1)}\right) \cap m_{k+1}^{(i)}=M \cap m_{k+1}^{(i)}$ occurs as a union of states in the graph G_{k+1}^{\prime}, for $1 \leq i \leq r_{k+1}$. But all states of G_{k+1}^{\prime} contained in $\boldsymbol{M} \cap \boldsymbol{m}_{k}^{(1)}$ are marker states. Thus $M \cap m_{k+1}^{(i)}$ is presented as a marker in graph G_{k+1}^{\prime}, for $1 \leq i \leq r_{k+1}$. This completes the induction.

That
and that the factors commute follows from Observation (2.5). This completes the proof of statement (2).
Example 4.2. Minimal marker automorphisms do not always commute even if they have the same length. For example,

$$
\varphi_{210} \varphi_{10 \overline{0}}=\varphi_{10 \overline{0}} \varphi_{110 \overline{0}} \varphi_{2100}
$$

and $\varphi_{210} \neq \varphi_{110 \overline{0}} \varphi_{2100}$. The automorphism $\varphi_{210} \varphi_{10 \overline{0}}$ has order 4. The automorphism $\varphi_{010} \varphi_{210}$ has infinite order, as can be seen by observing the orbit of the point $(2220)^{n} 1(2)^{\infty}$. In particular, the size of the orbit is at least $n / 2$. Thus a union of minimal markers need not be a marker.

5. A minimal marker algorithm

We have already stated an algorithm that computes the minimal marker m_{a} containing a given k-block a : namely, perform k rounds of a-complete splitting on the graph G_{0} and observe the contents of the state containing the k-block a in the resulting graph.

The algorithm we present below keeps track of only a few states of the graph after each round of a-complete splitting. In the algorithm, the elements of the set M_{i} are the states in the graph G_{i} that partition the marker state \boldsymbol{m}_{i-1} containing the k-block a in graph G_{i-1}, for $i \geq 1$. The elements of the set P_{i} are the states in the
graph G_{i} that partition the state p_{i-1} containing $\overline{0} m_{i-1}$ in graph $G_{i-1}, i \geq 1$. In understanding the algorithm it might be helpful to keep in mind that all of the states in graph G_{i} are of the form $b_{1} b_{2} \ldots b_{i}$ with $b_{j} \in\{\overline{0}, 0,1,2, \ldots, d-1\}$.

We present the algorithm for the case $d=3$. The only change needed when $d>3$ is in the initialization step 0 , where the set P_{1} should be set to $P_{1}:=$ $\{\overline{0}, 0,3,4, \ldots, d-1\}$.

Algorithm 5.1. Given a k-block a, construct the minimal marker m_{a} containing a.
0. Initialize:

$$
\begin{aligned}
& i:=1, \\
& M_{0}:=\{\varepsilon\}, \\
& m_{0}:=\varepsilon, \\
& P_{0}:=\{\varepsilon\}, \\
& P_{1}:=\{\overline{0}, 0\} .
\end{aligned}
$$

1. Loop:

If $\overline{0}$ occurs in m_{i-1} then:
$u:=$ prefix of m_{i-1} preceding the first occurrence of $\overline{0}$.
If $\overline{0}$ does not occur in m_{i-1} then:

$$
u:=m_{i-1}
$$

$j:=|u|$.
2. $M_{i}:=\left\{u x: x \in P_{i-j}\right\}$.
3. $m_{i}:=$ that marker in M_{i} such that $m_{i} \cap a \neq \varnothing$.
4. If $i=|a|$ then:

$$
m_{a}:=m_{i} \quad \text { and stop }
$$

otherwise

$$
P_{i+1}:=\left\{\overline{0} m_{i}\right\} \cup\left\{1 x: x \in M_{i} \text { and } x \neq m_{i}\right\} \cup\left\{2 x: x \in M_{i} \text { and } x \neq m_{i}\right\} .
$$

5. $i:=i+1$ and go to 1 .

Theorem 5.2. Algorithm 5.1 correctly computes the minimal marker m_{a} containing the n-block a.
Proof. Let G_{i} be the graph obtained from G_{i-1} by one round of a-complete state splitting, for $1 \leq i \leq n$. We make two inductive hypotheses:
(i) The sets in M_{i} are those states in G_{i} that partition the unique state m_{i-1} in G_{i-1} with $m_{i-1} \cap a \neq \varnothing$,
(ii) The sets in P_{i} are those states in G_{i} that partition the unique state p_{i-1} in G_{i-1} with $\overline{0} m_{i-1} \subseteq p_{i-1}$.
These statements are clear for the case $i=1$. We assume (i) and (ii) are true for $1 \leq i \leq k-1$, and show that they are true for $i=k$, where $k \geq 2$.

We show (ii). By the application of step 4 when $i=k-2$ (or by step 0 if $k=2$) we have $p_{k-1}=\overline{0} m_{k-2}$ in graph G_{k-1}. By hypothesis (i), state m_{k-2} in graph G_{k-2} is partitioned into the states in M_{k-1} in graph G_{k-1}. Thus, in graph G_{k-1}, state p_{k-1}
has outgoing edges

$$
\left\{1 x: x \in M_{k-1}\right\} \cup\left\{2 x: x \in M_{k-1}\right\} .
$$

Now $m_{k-1} \in M_{k-1}$ is that unique state in graph G_{k-1} with $m_{k-1} \cap a \neq \varnothing$ (by step 3 when $i=k-1$). Thus, a round of a-complete splitting applied to G_{k-1} partitions state p_{k-1} into the elements of

$$
P_{k}=\left\{\overline{0} m_{k-1}\right\} \cup\left\{1 x: x \in M_{k-1} \text { and } x \neq m_{k-1}\right\} \cup\left\{2 x: x \in M_{k-1} \text { and } x \neq m_{k-1}\right\}
$$

This proves (ii).
In showing (i), it is helpful to establish the following
Claim. If p is a state of G_{i} and $u_{j} u_{j-1} \ldots u_{1}$ is a string over $\{0,1, \ldots, d-1\}$ where $i+j \leq k$, then the following are equivalent:
(a) For $1 \leq l \leq j$, either $u_{l} \notin\{1,2\}$ or $u^{\prime} p \cap a=\varnothing$, where u^{\prime} is the suffix of u of length $l-1$,
(b) $u p$ occurs as a state of G_{i+j}.

Proof of claim. If (a), then $u_{l} u_{l-1} \ldots u_{1} p$ occurs in graph $G_{i+l}, 1 \leq l \leq j$, by the definition of a-complete splitting and an induction on l.

If not (a), let l be the least integer such that $u_{1} \in\{1,2\}$ and $u^{\prime} p \cap a \neq \varnothing$. Since $u^{\prime} p$ occurs as a state in graph G_{i+l-1} (by $\left.(\mathrm{a}) \Rightarrow(\mathrm{b})\right)$ and since G_{i+l-1} was obtained from G_{0} by rounds of a-complete splitting, $u^{\prime} p$ is a marker state. Thus $\overline{0} u^{\prime} p$ occurs as a state of G_{i+l}. Thus any state in G_{i+j} which contains $u p$ also contains $u_{j} \ldots u_{l+1} \overline{0} u^{\prime} p$. Therefore (b) is false. This proves the claim.

We show (i). If $u:=\varepsilon$ in step 1 when $i=k$, then $m_{k-1}=p_{k-1}$ and $M_{k}=P_{k}$ (by step 3). But we have already shown that P_{k-1} is partitioned by a round of a-complete splitting into the states in P_{k}.

If u is not set equal to ε in step 1 , then $u=u_{j} u_{j-1} \ldots u_{1}$ for some $j \geq 1$, and $m_{k-1}=u_{j} u_{j-1} \ldots u_{1} p$ where p is, by step 2 , some element of P_{k-1-j}. In fact $p=\varepsilon$ if $k-1-j=0$ (by step 0), or $p=\overline{0} m_{k-2-j}$ if $k-1-j>0$ (by step 4). In either case $p=p_{k-1-j}$, the unique state of G_{k-1-j} with $\overline{0} m_{k-1-j} \subseteq p_{k-1-j}$ (by inductive hypothesis (ii)).

By inductive hypothesis (ii), the state p_{k-1-j} in graph G_{k-1-j} is partitioned into states $P_{k-j}=\left\{q^{(1)}, \ldots, q^{(r)}\right\}$ in graph G_{k-j}. Since $m_{k-1}=u_{j} u_{j-1} \ldots u_{1} p_{k-1-j}$, we have by the claim $((\mathrm{b}) \Rightarrow(\mathrm{a}))$ that for $1 \geq l \leq j$,

$$
\text { either } u_{l} \notin\{1,2\} \quad \text { or } u^{\prime} p_{k-1-j} \cap a=\varnothing \text {, }
$$

where u^{\prime} is the suffix of u of length $l-1$. Hence we also have

$$
\text { either } \quad u_{1} \notin\{1,2\} \quad \text { or } u^{\prime} q^{(i)} \cap a=\varnothing \quad \text { where } q^{(i)} \in P_{k-j}
$$

Thus, by the claim $((\mathrm{a}) \Rightarrow(\mathrm{b})), u q^{(i)}$ occurs as a state of G_{k}. Since $\left\{u q^{(1)}, \ldots, u q^{(r)}\right\}$ is a partition of $u p_{k-1-j}=m_{k-1}$, we have that state m_{k-1} in graph G_{k-1} is partitioned into

$$
\left\{u x: x \in P_{k-j}\right\}
$$

in graph G_{k}. This proves hypothesis (i) and the theorem.

Example 5.3. We apply the algorithm to $a=020$.

\mathbf{i}	\boldsymbol{M}_{i}	\boldsymbol{m}_{i}	\boldsymbol{P}_{i}
0	$\{\varepsilon\}$	ε	$\{\varepsilon\}$
1	$\{\overline{0}, 0\}$	0	$\{\overline{0}, 0\}$
2	$\{0 \overline{0}, 00\}$	$0 \overline{0}$	$\{\overline{0} 0,1 \overline{0}, 2 \overline{0}\}$
3	$\{0 \overline{0} 0,01 \overline{0}, 02 \overline{0}\}$	$0 \overline{0} 0$	$\{\overline{0} 0 \overline{0}, 100,200\}$.

6. An application to the dynamics of cubic polynomials

In this section we describe a construction of Blanchard et al. [BDK] that motivated this paper. We apologize to those authors for the shortcomings of this description.

If $R: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}}$ is a rational map then the Fatou set F_{R} is defined by

$$
\begin{aligned}
& F_{R}=\{z \in \overline{\mathbb{C}}: \exists \text { a neighborhood } U \text { of } z \text { so that the iterates of } R, \\
&\text { when restricted to } U, \text { form a normal family }\} .
\end{aligned}
$$

The Julia set J_{R} is defined to be the complement of F_{R}.
If \boldsymbol{p} is a degree \boldsymbol{d} polynomial over \mathbb{C} all of whose critical points escape to infinity under iteration of p, then

$$
J_{p}=\left\{z \in \mathbb{C}:\left\{p^{n}(z)\right\} \text { is a bounded sequence }\right\}
$$

and J_{p} is a Cantor set. As a dynamical system, $\left(J_{p}, p\right)$ is conjugate to the one-sided d-shift [B].

Blanchard, Devaney and Keen have constructed automorphisms of (J_{p}, p) for cubic polynomials p [BKK]. In their construction, an automorphism of $\left(J_{p}, p\right)$ is obtained by traversing a loop starting and ending at the polynomial p in the space \mathscr{P}_{3} of cubic polynomials both of whose critical points escape to infinity. We are not qualified to delve into the parameterization or description of this space [BH].

For $p \in \mathscr{P}_{3}$ one can define (we do not) the rate-of-escape function $h_{p}: \mathbb{C} \rightarrow \mathbb{R}^{+}$ [BH]. The function h_{p} has the properties that
(i) $h_{p}(p(z))=3 h_{p}(z), \quad z \in \mathbb{C}$
(ii) $J_{p}=\left\{z \in \mathbb{C}: h_{p}(z)=0\right\}$
(iii) h_{p} is continuous and h_{p} is harmonic outside of J_{p}.

A polynomial $p \in \mathscr{P}_{3}$ is chosen by Blanchard et al. [BDK] so that the two critical points $c^{(1)}$ and $c^{(2)}$ of p are such that

$$
h_{p}\left(p\left(c^{(1)}\right)\right)<\rho<h_{p}\left(p\left(c^{(2)}\right)\right)
$$

and $\left\{z: h_{p}(z)=\rho\right\}$ is a Jordan curve enclosing J_{p}. In figure 1 , we have labeled the curve $\left\{z: h_{p}(z)=\rho\right\}$ as Γ_{ε}. Let

$$
D_{z}=\left\{z: h_{p}(z) \leq \rho\right\}
$$

The set $p^{-1}\left(D_{\varepsilon}\right)=\left\{z: h_{p}(z) \leq \frac{1}{3} \rho\right\}$ has two connected components: A disk D_{0} which maps by p in a degree 1 manner onto D_{ε}, and a disk $D_{\overline{0}}$ containing $c^{(1)}$ which maps in a degree 2 manner onto D_{ε}.

If $p\left(c^{(1)}\right)$ is connected to Γ_{ε} by an arc γ along which $h_{p}(z)$ is increasing to $h_{p}(z)=\rho$, then the preimage of this arc divides the interior of $D_{\overline{0}}$ into two regions: U_{1} and U_{2}. If we denote the interior of D_{0} by U_{0}, we can coordinatize the Julia

Figure 1
set J_{p} by $\psi: J_{p} \rightarrow X_{3}$ defined by

$$
\psi(z)=a_{0} a_{1} a_{2} \ldots
$$

where $p^{n}(z) \in U_{a_{n}}$. The map ψ is a conjugacy from $\left(J_{p}, p\right)$ to $\left(X_{3}, \sigma\right)$.
For each $k \geq 0$, we denote each connected component of the set $\left\{z: h_{p}(z)=\rho / 3^{k}\right\}$ by D_{u}, where u is the set $\psi\left(J_{p} \cap D_{u}\right)$ in X_{3}. The set $u \subseteq X_{3}$ is actually a union of k-blocks since $p^{k} D_{u}=D_{\varepsilon}$. For example, in figure $2, D_{0 \overline{0}}$ is the connected component of $\left\{z: h_{p}(z) \leq\left(1 / 3^{2}\right) \rho\right\}$ that contains $\psi^{-1}(0 \overline{0})$.

According to Blanchard et al. [BDK], the polynomial $p \in \mathscr{P}_{3}$ may be chosen so that the critical value $p\left(c^{(1)}\right)$ is in the same connected component of $\left\{z: h_{p}(z) \leq\right.$ $\left.\left(1 / 3^{k-1}\right) \rho\right\}$ as $\psi^{-1}(a) \subseteq J_{p}$ where a is any $(k-1)$-block in X_{3}, for any $k>0$. We address the essentially combinatorial question: What is the configuration of the level curves $h_{p}(z)=\left(1 / 3^{k}\right) \rho$ as a function of the location of the critical value $p\left(c^{(1)}\right)$? This question was pointed out to me by Linda Keen and is of interest because Blanchard, Devaney and Keen have constructed a loop in the space of polynomials \mathscr{P}_{3}, parameterized by $0 \leq t \leq 1$, such that:
(i) $p_{0}=p_{1}=p$
(ii) $h_{p_{1}}\left(p_{t}\left(c_{t}^{(1)}\right)\right)=\rho / 3^{k}$, where $c_{t}^{(1)}$ is a critical point of p_{t}
(iii) $h_{p_{1}}\left(p_{t}\left(c_{t}^{(2)}\right)\right)>\rho$
(iv) $p_{t}\left(c_{t}^{(1)}\right)$ winds once around exactly one of the connected components, say D_{u}, of $\left\{z: h_{p_{1}}(z)<\rho / 3^{k}\right\}$ and winds zero times around all other such components.
In fact, p_{t} is given by $p_{t}=\psi_{t} \circ \varphi_{t} \circ p \circ \psi_{t}^{-1}$ where ψ_{t} and φ_{t} are quasi-conformal homeomorphisms of \mathbb{C} and φ_{t} is the identity on J_{p}, for $0 \leq t \leq 1$. Hence $p_{t} \psi_{t}=\psi_{t} p$

on J_{p}. Thus $\psi_{t}: J_{p} \rightarrow J_{p_{t}}$ is an isomorphism for $0 \leq t \leq 1$. In particular, $\psi_{1}: J_{p} \rightarrow J_{p}$ is an automorphism which, it turns out [BDK], in terms of the coordinates given by $\psi: J_{p} \rightarrow X_{3}$ is the marker automorphism switching symbols 1 and 2 when followed by the marker $\psi\left(J_{p} \cap D_{u}\right)=u$.

In Theorem 6.1, we will show that the markers constructed by Blanchard, Devaney and Keen, those of the form $\psi\left(J_{p} \cap D_{u}\right)$, where D_{u} is a single connected component of $\left\{z: h_{p}(z) \leq \rho / 3^{k}\right\}$ nested within the component of $\left\{z: h_{p}(z) \leq \rho / 3^{k-1}\right\}$ containing $p\left(c^{(1)}\right)$, are exactly the minimal markers.

Now \mathscr{P}_{3} is connected and by a separate argument there is a loop in \mathscr{P}_{3} that cyclically permutes the symbols 0,1 , and 2 in J_{p}. Therefore by Theorems 2.3 and 4.1 , any automorphism of the 3 -shift X_{3} may be realized by traversing a loop in \mathscr{P}_{3}.

Theorem 6.1. If $p \in \mathscr{P}_{3}$ is a polynomial with critical points $c^{(1)}$ and $c^{(2)}$, and $p>0$, $k>0$ are such that
(i) $\rho<h_{p}\left(p\left(c^{(2)}\right)\right)$,
(ii) $\Gamma_{\varepsilon}=\left\{z: h_{p}(z)=\rho\right\}$ is a Jordan curve,
(iii) $p\left(c^{(1)}\right)$ is in the same connected component of $\left\{z: h_{p}(z) \leq \rho / 3^{k-1}\right\}$ as $\psi^{-1}(a) \subseteq J_{p}$ where a is $a(k-1)$-block in X_{3} and $\psi: J_{p} \rightarrow X_{3}$ is the conjugacy defined above, then for $0 \leq j \leq k$, the connected components of the set

$$
\left\{z: h_{p}(z) \leq \rho / 3^{j}\right\}
$$

are exactly
$\left\{D_{s}: S\right.$ is a state in the graph G_{j} obtained from the graph G_{0} by j rounds of a-complete splitting\}.

In particular, the connected component of $\left\{z: h_{p}(z) \leq \rho / 3^{k-1}\right\}$ containing the point $p\left(c^{(1)}\right)$ is $D_{m_{a}}$, and the connected components of $D_{m_{a}} \cap\left\{z: h_{p}(z) \leq \rho / 3^{k}\right\}$ are $D_{m_{1}}, \ldots, D_{m_{r}}$ where m_{1}, \ldots, m_{r} are the minimal markers of length k that partition the marker m_{a}.
Remark. The proof of the theorem does not really depend on the degree $d \geq 3$ of p. We state it for $d=3$ only for definiteness and simplicity.
Proof. We induct on k. The case $k=1$ is true by the definition of D_{ε}, D_{0}, and $D_{\bar{\delta}}$ given above. Supposing the theorem is true for k, we prove it for $k+1$. Let a be a k-block such that $p\left(c^{(1)}\right)$ is in the same connected component of $\left\{z: h_{p}(z) \leq \rho / 3^{k}\right\}$ as $\psi^{-1}(a)$. Let S be any state in G_{k}. Now

$$
p\left(D_{S}\right) \cap J_{p}=\psi^{-1}(\sigma(S)) .
$$

But

$$
\sigma(S)=\bigcup\left\{S^{\prime}: \text { state } S^{\prime} \text { follows state } S \text { in } G_{k}\right\}
$$

so the inductive hypothesis gives that the connected components of

$$
p\left(D_{s}\right) \cap\left\{z: h(z) \leq \rho / 3^{k}\right\}
$$

are

$$
\left\{D_{S^{\prime}}: \text { state } S^{\prime} \text { follows state } S \text { in } G_{k}\right\} .
$$

The remainder of the proof divides into two cases.
Case 1. $c^{(1)} \notin D_{S}$. We have $D_{S} \subseteq D_{0} \cup D_{\overline{0}}$ and $c^{(2)} \notin D_{0} \cup D_{\overline{0}}$, so $p \mid D_{S}$ is 1-to-1. So the connected components of $D_{S} \cap\left\{z: h_{p}(z) \leq \rho / 3^{k+1}\right\}$ are

$$
\left\{p^{-1}\left(D_{S^{\prime}}\right) \cap D_{S}: \text { state } S^{\prime} \text { follows state } S \text { in } G_{k}\right\}
$$

But $\psi\left(J_{p} \cap p^{-1}\left(D_{S^{\prime}}\right) \cap D_{S}\right)=S \cap \sigma^{-1} S^{\prime}$, so this set is

$$
\left\{D_{S \cap \sigma^{-1} S^{\prime}} \text { state } S^{\prime} \text { follows state } S \text { in } G_{k}\right\}
$$

Since $p \mid D_{\text {s }}$ is 1-to-1, $\sigma \mid S$ is 1-to-1 also, so no parallel edges begin at state S in G_{k}. Thus state S in G_{k} is completely split into its following edges:

$$
\left\{S \cap \sigma^{-1} S^{\prime}: S^{\prime} \text { follows } S \text { in } G_{k}\right\}
$$

This completes Case 1.
Case 2. $c^{(1)} \in D_{S}$. Again $D_{S} \subseteq D_{0} \cup D_{\overline{0}}$, so $c^{(2)} \notin D_{S}$. Thus $p \mid D_{S}$ is 2-to-1 except at $c^{(1)}$.
By the inductive hypothesis $\psi^{-1}(a) \subseteq D_{m_{a}}$ because m_{a} is the state in graph G_{k} with $a \subseteq m_{a}$. By assumption $p\left(c^{(1)}\right) \in D_{m_{a}}$. Hence $D_{m_{a}}$ is a connected component of

$$
p\left(D_{S}\right) \cap\left\{z: h(z) \leq \rho / 3^{k}\right\}
$$

As $c^{(1)} \in D_{S}$, we have $D_{S} \subseteq D_{\overline{0}}$, so $S \subseteq \overline{0}$. Thus $S=p_{k}$, the unique state in G_{k} with $\overline{0} m_{a} \subseteq p_{k}$. Now $p^{-1}\left(D_{m_{a}}\right) \cap D_{S}$ has a single connected component D mapping 2-to-1 onto $D_{m_{a}}$ (except at $c^{(1)}$) because $p\left(c^{(1)}\right) \in D_{m_{a}}$ and $c^{(1)} \in D_{S}$. Now

$$
\psi\left(J_{p} \cap D\right)=\psi\left(J_{p} \cap p^{-1}\left(D_{m_{a}}\right) \cap D_{S}\right)=\sigma^{-1} m_{a} \cap S=\overline{0} m_{a} .
$$

Thus $D=D_{\overline{0} m_{a}}$. Any other connected component $D_{S^{\prime}}$ of

$$
p\left(D_{S}\right) \cap\left\{z: h_{p}(z) \leq \rho / 3^{k}\right\}
$$

is such that $p^{-1}\left(D_{S^{\prime}}\right) \cap D_{S}$ has two connected components, $D^{(1)}$ and $D^{(2)}$, each mapping 1-to-1 onto $D_{S^{\prime}}$. As $p \mid D^{(i)}$ is 1-to-1 onto $D_{S^{\prime}}, \sigma \mid \psi\left(J_{p} \cap D^{(i)}\right)$ is 1-to-1 onto S^{\prime}. Now $D^{(i)} \subseteq D_{\overline{0}}$, so $\psi\left(J_{p} \cap D^{(i)}\right) \subseteq \overline{0}$. Thus

$$
\left\{\psi\left(J_{p} \cap D^{(1)}\right), \psi\left(J_{p} \cap D^{(2)}\right)\right\}=\left\{1 S^{\prime}, 2 S^{\prime}\right\}
$$

so the connected components of

$$
D_{S} \cap\left\{z: h_{p}(z) \leq \rho / 3^{k+1}\right\}
$$

are
$\left\{D_{u}\right.$: state u in graph G_{k+1} is partitioned from state S in graph $\left.G_{k}\right\}$.
This completes Case 2.
Example 6.2. Figure 2 gives the nesting of the components of $\left\{z: h_{p}(z) \leq \rho / 3^{k}\right\}$ for $k=0,1,2,3$ when $p\left(c^{(1)}\right)$ is the same connected component of $\left\{z: h_{p}(z) \leq \rho / 3^{2}\right\}$ as $\psi^{-1}(02)$. We list below the corresponding states of G_{k} for $k=0,1,2,3$.
$k \quad$ States of G_{k}
$0 \quad\{\varepsilon\}$
$1\{\overline{0}, 0\}$
$2\{\overline{0} 0,1 \overline{0}, 2 \overline{0}, 0 \overline{0}, 00\}$
$3\{\overline{0} 0 \overline{0}, 100,200,1 \overline{0} 0,11 \overline{0}, 12 \overline{0}, 2 \overline{0} 0,21 \overline{0}, 22 \overline{0}, 0 \overline{0} 0,01 \overline{0}, 02 \overline{0}, 000,00 \overline{0}\}$
Compare to example (5.3).

Acknowledgement

Many thanks are due to Linda Keen and Bruce Kitchens for some very helpful discussions. Each deserves especial thanks: to Linda for the complex dynamics and to Bruce for the symbolic dynamics. Thanks are also due to the referee for his helpful corrections and suggestions.

REFERENCES

[BDK] P. Blanchard, R. Devaney \& L. Keen. The dynamics of complex polynomials and automorphisms of the shift. Preprint, 1989.
[BFK] M. Boyle, J. Franks \& B. Kitchens. Automorphisms of one-sided subshifts of finite type. Preprint.
[B] P. Blanchard. Complex analytic dynamics on the Riemann sphere. Bull. Amer. Math. Soc. 11 (1984), 85-141.
[BH] B. Branner \& J. Hubbard. The iteration of cubic polynomials. Preprint.
[N] M. Nasu. Topological conjugacy for sofic systems and extensions of automorphisms of finite subsystems of topological Markov chains. Proceedings of the special year in Ergod. Th. \& Dynam. Sys. at the University of Maryland. To appear. Springer-Verlag.

