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Abstract

We study a multiclass Markovian queueing network with switchover across a set of
many-server stations. New arrivals to each station follow a nonstationary Poisson
process. Each job waiting in queue may, after some exponentially distributed patience
time, switch over to another station or leave the network following a probabilistic and
state-dependent mechanism. We analyze the performance of such networks under the
many-server heavy-traffic limiting regimes, including the critically loaded quality-and-
efficiency-driven (QED) regime, and the overloaded efficiency-driven (ED) regime. We
also study the limits corresponding to mixing the underloaded quality-driven (QD) regime
with the QED and ED regimes. We establish fluid and diffusion limits of the queue-
length processes in all regimes. The fluid limits are characterized by ordinary differential
equations. The diffusion limits are characterized by stochastic differential equations,
with a piecewise-linear drift term and a constant (QED) or time-varying (ED) covariance
matrix. We investigate the load balancing effect of switchover in the mixed regimes,
demonstrating the migration of workload from overloaded stations to underloaded stations
and quantifying the load balancing impact of switchover probabilities.

Keywords: Many-server queue; multiclass; Markovian; time-varying arrival; state-
dependent switchover; customer abandonment; heavy traffic; QED regime; ED regime;
mixed regime; fluid limit; diffusion limit; multidimensional (piecewise-linear) Ornstein–
Uhlenbeck process
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1. Introduction

We study a multiclass Markovian queueing network with a set of nodes, each representing a
service facility with multiple parallel servers. Each node serves a class of jobs, which follows
a nonstationary Poisson arrival process, and requires independent and identically distributed
exponential service times. The service discipline is first-come–first-served (FCFS), and each
node keeps its own queue. A job waiting in queue may, after some exponentially distributed
‘impatience’ time, switch over to another node or leave the system (‘abandonment’) following a
probabilistic and state-dependent mechanism. Figure 1 depicts such a network with two nodes.

Waiting customers switching queues is a commonplace phenomenon in many service
systems. This, however, is not always due to customer impatience: in some application contexts,
switching queues could be a necessity or even part of the design. For instance, in many hospitals,

Received 1 March 2011; revision received 23 November 2012.
∗ Postal address: The Harold and Inge Marcus Department of Industrial and Manufacturing Engineering, Pennsylvania
State University, University Park, PA 16802, USA. Email address: gup3@psu.edu
∗∗ Postal address: Department of Industrial Engineering and Operations Research, Columbia University, New York,
NY 10027-6699, USA. Email address: yao@columbia.edu

645

https://doi.org/10.1239/aap/1377868533 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1377868533


646 G. PANG AND D. D. YAO

N1 N2µ1

θ1

p10

p12

p11 p22

p21

p20

λ1 λ2

θ2

µ2

Figure 1: Multiclass many-server queueing network with switchovers.

there is a standard practice to switch an emergency patient, who has been waiting for an available
bed from a designated ward, to an alternative ward if the delay has reached a certain threshold.
In this case, switchover is necessary. Switchover is also a means to deal with nonstationary
demand patterns, since in most hospitals it is impossible to dynamically re-allocate beds across
departments/wards. (This is in stark contrast against the dynamic staffing mechanism at call
centers.) In wireless communications, the dynamic spectrum access (DSA) technology allows
a client, who initially picks a server (frequency band) upon arrival, to sample the system state
at random time points and migrate to another server—join the shortest queue, for instance. In
this case, the switchover is essentially a load balancing protocol, designed to offset the uneven
load (again, due to nonstationary arrivals), so as to achieve better resource utilization as well
as improved service quality.

We study this class of networks in the many-server heavy-traffic limiting regimes, the
critically loaded quality-and-efficiency-driven (QED) regime (i.e. the traffic intensity equals
the service capacity), the overloaded efficiency-driven (ED) regime, and the mixing of the
underloaded quality-driven (QD) regime with the QED and ED regimes. In all limiting regimes,
the arrival rate and the number of servers are scaled up to ∞ in a suitable manner. Thus,
our model is relevant to applications where there are a large number of servers and a high
rate of demand arrivals (when measured against service requirements). The healthcare and
telecommunications examples above certainly fall within this range of applications.

For both QED and ED regimes, we establish the fluid and diffusion limits of the queue-
length processes. The fluid limits (Theorems 1 and 4) are characterized by ordinary differential
equations (ODEs). The diffusion limits are characterized by stochastic differential equations
(SDEs), with a piecewise-linear drift term and a constant diagonal covariance matrix in the
QED regime (Theorem 2). Under the ED regime, the SDE has a linear drift term, which has
to be coupled with the fluid limit when the switchover is state dependent, and a time-varying
covariance matrix (Theorem 5). For both regimes, we provide a characterization, via ODEs, for
the mean and the covariance of the diffusion limits (Corollaries 2 and 5). Moreover, in the QED
regime, we also establish the diffusion limit for the virtual waiting time process (Theorem 3).

As mentioned earlier, in many applications, there will be an unavoidable mismatch between
supply and demand—service capacity and traffic intensity. Hence, it will be more useful
and relevant to study mixed regimes. Here, we investigate all possible mixtures of the three
regimes, QD, QED, and ED, focusing on the case when the arrival rates and the switchover
probabilities are constant, and establish both fluid and diffusion limits (Theorems 6 and 7) for the
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queue-length processes at all stations. Interestingly, the various mixtures exhibit qualitatively
different behavior. In the mixed QD/QED regime, the steady state of the fluid limit is not affected
by the switchover. However, the switchover from the QED stations to ED stations does affect
the diffusion limit process, in particular, adding an extra drift term. In the mixed QED/ED
regime, the switchover affects both the fluid and diffusion limits; in fact, it makes all stations
overloaded, and, thus, the limits are the same as those in the ED regime. In the mixed QD/ED
regime, there can be several possibilities: the QD stations can become overloaded or critically
loaded, or remain underloaded, depending on the switchover probabilities. We characterize the
fluid limit and its steady state and the diffusion limit that include all possibilities. Finally, in the
mixed QD/QED/ED regime, the limits have the same characteristics as in the mixed QD/ED
regime, i.e. adding QED to the latter does not qualitatively affect the regime.

A brief review of related papers in the literature is in order. Mandelbaum et al. (1998) studied
many-server Markovian networks under the QED regime, with a general network configuration,
time-varying arrival and service rates, and time-varying routeing probabilities. Our model,
when specialized to the QED regime with constant switchover probabilities, can be regarded
as an instance of theirs; in particular, the Jackson network model with abandonment in their
Section 6. But we do allow the switchover probabilities to be state dependent, and also consider
the ED regime, which they did not. More importantly, we consider the mixed QD, QED, and
ED regimes, showing the impact of switchover. In addition, the methodologies are different:
theirs is based on strong approximations, whereas we apply the martingale approach along with
the continuous mapping theorem (CMT), a la Pang et al. (2007).

In an earlier work, Fleming et al. (1995) formulated a stochastic model of a mobile phone
system, with one server pool supporting two types of calls with different impatience rates:
beyond the patience limits, type-1 calls will quit the service and type-2 calls will choose to
switch to type-1 or quit. The authors conjectured a heavy-traffic limit for the total number
of calls in the system and the breakdown of waiting calls of either type. Our model is a
generalization of theirs and our limiting results confirm their conjecture.

In some applications of the queueing model with switchovers, notably, wireless networks,
two key issues are stability and load balancing. Examples include studies of how various
switchover policies, both load oblivious (e.g. random local search) and load aware (e.g. join
the shortest queue and its variants), lead to stability and how effective they can achieve load
balancing We refer the reader to Ganesh et al. (2010), Bonald et al. (2009), Bramson et al.
(2010), Simatos and Tibi (2010), and the references therein. In this regard, our study is quite
different. First, by allowing switchover to include abandonment, stability is guaranteed in our
model. On the other hand, we have a very general switchover model—the state-dependent
switchover probabilities can handle both load-aware and load-oblivious policies as special
cases. Second, our focus is on performance analysis in general, as opposed to load balancing in
particular—to derive the fluid and diffusion limits so as to capture the impact of time-varying
arrivals and state-dependent switchovers on system performance, such as congestion and delay.

In the queueing literature, the QED regime can be traced back to Erlang, who first described
it back in 1924. Its formal analysis was done by Halfin and Whitt (1981) for a stand-alone
many-server queue with general arrivals and exponential service times. Garnett et al. (2002)
extended the analysis to include abandonment. This regime has been widely used to analyze
the performance of call centers, e.g. Borst et al. (2004), and to support routeing and scheduling
decisions in networks of many-server queues, e.g. Gurvich andWhitt (2009). The ED regime for
the many-server queueing model but with the additional feature of abandonment was studied in
Whitt (2004), and applied to call centers with unexpected overloads by Perry and Whitt (2013).
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In the case of a single node, our network specializes to the queueing model with abandonment by
reducing the switchover probabilities to abandonment probabilities. Studies of multiple service
stations often assume that they all operate in the QED or ED regime. Here, we investigate the
system behavior and the impact of switchover in the network when the stations are assumed to
be in the mixed regimes.

The Markovian setting is crucial to our study, in exploiting the martingale approach to
establish our limiting results. Specifically, our approach relies heavily on the CMT—that
the multidimensional integral representations of the queueing processes are continuous in the
Skorokhod J1 topology (see Lemma 2, and the proofs of Theorems 2, 5, and 7). A non-
Markovian setting for many-server heavy-traffic regimes will require a very different approach
based on measure-valued processes; see, e.g. Kang and Ramanan (2010) and Kang and Pang
(2013). This, however, does not diminish the value of our results. Indeed, with features such as
nonstationary arrivals and state-dependent switchovers, we have greatly enriched the Markovian
setup, bringing it closer to the reality of many applications highlighted earlier. Furthermore,
because of these general features, the fluid and diffusion limits are far from trivial (such as
convergence to 0 in some steady state or some invariant distribution as in more conventional
heavy-traffic regimes)—they are derived below with considerable effort and expressed in the
form of ODEs and SDEs.

The rest of the paper is organized as follows. We start with the model description in Section 2.
The QED and the ED regimes are studied in Sections 3 and 4, respectively, and the mixed
regimes in Section 5. Each section starts with a specification of the heavy-traffic condition that
defines the regime, followed by the presentation of both fluid and diffusion limits, and related
discussions and remarks on the results. Brief concluding remarks are summarized in Section 6,
and all proofs are collected in Appendix A.

2. Model description

Here is a summary of the notation and regulations used in this paper. For x, y ∈ R,
x+ := max{x, 0}, x− := −min{x, 0}, x ∧ y := min{x, y}, and x ∨ y := max{x, y}. Let ‘

d−→’
denote convergence in distribution. For a positive integer k,Dk := D([0,∞),Rk) is the space
of functions mapping [0,∞) into R

k that are right continuous in [0,∞) and have left limits in
(0,∞). Write D := D1. Let Ck be the subspace of continuous functions in Dk . The space
Dk is endowed with the Skorokhod J1 topology; see Billingsley (1999) and Whitt (2002) for
background. Note that, when xn → x in (Dk, J1) as n → ∞ and x ∈ Ck , the convergence
is equivalent to the convergence in the topology of uniform convergence on bounded intervals.
Define the vector norm ‖z‖ := ∑k

i=1 |zi | for any vector z = (z1, . . . , zk)
� ∈ R

k and the matrix
norm ‖Z‖ := ∑k

i,j=1 |Zij | for any matrix Z ∈ R
k×k . Since all norms are equivalent in the

Euclidean vector space, we will use this particular norm in the proofs. We also define the norm
‖z‖T := sup0≤t≤T ‖z(t)‖ for z ∈ Dk and 0 < T < ∞. For z ∈ D, the same notation ‖z‖T
is used without causing confusion. For A,B ∈ R

k×k and c ∈ R
k , AB and Ac denote matrix

multiplication and matrix-vector multiplication.
We now describe our network model. There areK nodes (or service stations) in the network,

indexed by i = 1, . . . , K . Each node i represents a server pool, with Ni parallel servers,
providing service to its own class of jobs, on an FCFS basis, and maintaining its own queue.
The arrival process of class-i jobs is a nonstationary Poisson process with an intensity function
λi(t). Each job requires an independent, exponentially distributed service time of rateµi . Each
job waiting in queue, if it does, has an independent, exponentially distributed patience time of
rate θi , before switchover happens (to be specified immediately below).
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Let Xi := {Xi(t) : t ≥ 0} denote the queue-length process at node i, i = 1, . . . , K;
specifically, Xi(t) is the total number of class-i jobs, both in service and in queue, at time t .
Denote by X = (X1, . . . , XK)

� a vector ofK-dimensional processes with sample paths in the
spaceDK . Let P := [pij (·)]Ki,j=1 : R

K+ → [0, 1]K×K be a matrix-valued function, where each

component is a function of an R
K+ -valued vector and takes values in [0, 1]. Denote the space of

such matrix functions as MK . We assume that, for each i,
∑K
j=1 pij (·) ≤ 1, pii ∈ [0, 1), and

define pi,0(·) := 1 − ∑K
j=1 pij (·). If the patience time of a class-i job is reached at t , it will

switch over to queue j , or leave the system, with a state-dependent probability pij (X(t−)), or
pi0(X(t−)), respectively. Assume that X(0−) = X(0).

By counting the input and output quantities at each node, we have the following equivalent-
in-distribution representation of the process X in terms of unit-rate Poisson processes:

Xi(t) = Xi(0)+ Ai

(∫ t

0
λi(s) ds

)
− Si

(
µi

∫ t

0
(Xi(s) ∧Ni) ds

)

+
K∑

k=1, k �=i
Lk,i

(
θk

∫ t

0
pki(X(s−))(Xk(s)−Nk)

+ ds

)

−
K∑

j=1, j �=i
Li,j

(
θi

∫ t

0
pij (X(s−))(Xi(s)−Ni)

+ ds

)

− Li,0

(
θi

∫ t

0
pi0(X(s−))(Xi(s)−Ni)

+ ds

)
(1)

for each i = 1, . . . , K and t ≥ 0. Here Ai , Si , and Li,j (i = 1, . . . , K, j = 0, 1, . . . , K)
are mutually independent unit-rate Poisson processes, respectively representing the arrival,
service-completion, and switchover (counting) processes. Specifically, the Lk,i term counts
the number of jobs switching into node i from node k, the Li,j term counts the number of jobs
switching from node i to node j , and theLi,0 term counts the number of jobs leaving the system
from queue i after the impatience time.

We also let V (t) = (V1(t), . . . , VK(t))
� be the vector of virtual waiting time processes,

where Vi(t) is the potential waiting time of a hypothetical job arriving at the queue i at time t
to be served at server pool i without switching over to other queues.

In the next two sections we will analyze the performance of such networks with switchovers
in the two heavy-traffic limiting regimes, QED and ED regimes. In both regimes, we consider a
sequence of such networks indexed by a scaling parameter λ ∈ R+, and let λ → ∞. We write
Xλ for any process X ∈ {X,V }, P λ for the switchover transition probability matrix, and Nλ

i

for the number of servers at node i, while fixing the unit-rate Poisson processesAi ,Li,j , and Si ,
service ratesµi , and switchover rates θi . Note that the arrival rate functions λi(t), i = 1, . . . , k,
will also change along with λ, although we will omit the superscript λ in the notation.

3. The QED regime

In the QED regime, the system is critically loaded in heavy traffic; namely, the rate of work
(service requirements) injected into each node is matched, in terms of the expectation, by the
total service capacity at the node. The situation is more delicate with time-varying arrival rates.
Additional conditions are needed such that the arrival rates do not fluctuate too much.
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Heavy-Traffic QED Assumptions. (i) The scaled number of servers satisfies the following
condition: there exist positive constants νi and γi, i = 1, . . . , K , such that

Nλ
i

λ
→ νi as λ → ∞ (2)

and
Nλ
i − νiλ√
λ

→ γi ∈ R as λ → ∞. (3)

(ii) The scaled arrival rate functions satisfy the following condition: for all i = 1, . . . , K and
T > 0,

sup
0≤t≤T

∣∣∣∣1

λ

∫ t

0
λi(s) ds − ait

∣∣∣∣ → 0 as λ → ∞, (4)

where
ai = νiµi (5)

and

sup
0≤t≤T

∣∣∣∣
√
λ

(
1

λ

∫ t

0
λi(s) ds − ait

)
−

∫ t

0
ξi(s) ds

∣∣∣∣ → 0 as λ → ∞, (6)

where ξi : R+ → R is a deterministic function.

(iii) There exist λ+
i > 0 and λ−

i > 0, i = 1, . . . , K , possibly depending on λ, such that, when
λ is large enough,

|λ+
i − µiN

λ
i | ∨ |λ−

i − µiN
λ
i | ≤ ε (7)

holds for any small ε > 0. Moreover,

sup
0≤t≤T

|λi(t + h)− λi(t)| ≤ λ+
i h, inf

0≤t≤T |λi(t + h)− λi(t)| ≥ λ−
i h (8)

hold for any small h > 0.

Note that assumption (iii) implies that

sup
0≤t≤T

∣∣∣∣
∫ t

0
λi(s) ds − µiN

λ
i t

∣∣∣∣ → 0 as λ → ∞, i = 1, . . . , K,

that is, the arrival rate matches the service capacity, as the scaling parameter λ → ∞. In this
sense, the system is critically loaded, i.e. the QED regime.

We should also expect that λ−1|λ+
i − λ−

i | → 0 as λ → ∞. Thus, in (4), ai being constant
is necessary and the rates match in the limit, ai = νiµi for each i = 1, . . . , K .

As an example, consider a sinusoidal arrival rate function, λi(t) = λ̄i + δi sin(ωt), where λ̄i
is the average arrival rate, δi is the amplitude, and ω is the frequency. Our assumption requires
that λ̄i/λ → ai and δi/λ → 0 as λ → ∞. Since λi(t + h)− λi(t) = δiωh+ o(h2), a suitable
choice of ω will satisfy the above assumption.

In the special case of constant arrival rates, assumption (iii) is not needed; and assumption
(ii) reduces to

λi

λ
→ ai = νiµi,

λi − aiλ√
λ

→ ξi, i = 1, . . . , K, (9)
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with the ξi being constants. These are standard heavy-traffic conditions for studying many-
server queueing models in the QED regime; see, e.g. Gurvich and Whitt (2009). Specifically,
ai = νiµi ensures the critical load condition at every node i, since by (9), λi ≈ aiλ and
Nλ
i ≈ λνi so that λi ≈ Nλ

i µi for large λ. Consequently, under the fluid scaling, there is no
queue in steady state, each class of jobs will be served by its own server pool; and hence,
switchovers have no impact on the steady state of system performance. The other condition in
(9) is required to establish the diffusion limits, along with the condition in (3). Note the latter is
equivalent to

√
λ(1 − ρ̃λi ) → γ̃i as λ → ∞, where ρ̃λi := λi/N

λ
i µi and γ̃i = ν−1

i (γi − ξi/µi).
Hence, this is similar to the usual heavy-traffic QED assumption in the single class case.

Define the fluid-scaled processes X̄λ := Xλ/λ; and similarly define N̄λ := Nλ/λ. We first
establish the following functional weak law of large numbers (FWLLN) for X̄. The proof is
given in Appendix A.2.

Theorem 1. (FWLLN in the QED regime.) Suppose that the heavy-traffic QED assumptions
(i)–(iii) are in force; and suppose that there exists a vector x(0) such that X̄λ(0)

d−→ x(0), and

P̄ λ(·) := P λ(λ·) → P̄ (·) = [p̄ij (·)]Ki,j=1 (10)

as λ → ∞, where P̄ (·) ∈ MK is some deterministic matrix-valued function, is Lipschitz, and
has a spectral radius less than 1: supζ∈R

K+ r(P̄ (ζ )) < 1. Then, we have

X̄λ d−→ x in (DK, J1) as λ → ∞, (11)

where x = (x1, . . . , xK)
� is the unique solution to the ODE

ẋ(t) = a − (I − P̄ (x(t))�)�(x(t)− ν)+ − ϒ(x(t) ∧ ν) (12)

starting from x(0), where a = (a1, . . . , aK)
�, (x(t)−ν)+ = ((x1(t)−ν1)

+, (x2(t)−ν2)
+, . . . ,

(xK(t)− νK)
+)�, (x(t) ∧ ν) = (x1(t) ∧ ν1, x2(t) ∧ ν2, . . . , xK(t) ∧ νK)�, I = diag{1, . . . ,

1}K×K , � = diag{θ1, . . . , θK}, ϒ = diag{µ1, . . . , µK}, and P̄ (x(t))� is the transpose of
P̄ (x(t)). Moreover, x(t) → x(∞) := ν as t → ∞.

The assumption on the spectral radius of P̄ (·) guarantees that I − P̄ (·)� is invertible; and
when the switchover probabilities are constants (i.e. state independent), this assumption is
equivalent to P̄ being substochastic, and, hence, I − P̄ � is an M-matrix; see Berman and
Plemmons (1979). This is a standard assumption in the study of Jackson networks; see, e.g.
Chen and Yao (2001). It ensures stability and the existence and uniqueness of the limiting fluid
and diffusion processes. See also Corollary 3 below.

Direct verification confirms the steady-state solution to (12), xi(∞) = νi for each i. Thus, for
large λ, Xλi (∞) ≈ νiλ ≈ Nλ

i , which implies that the queue lengthQλ
i (∞) = Xλi (∞)−Nλ

i =
o(λ). Moreover, it is interesting to note that the switchover probabilities pij , state dependent
or not, do not play a role in the steady-state queue lengths.

Next, define the diffusion-scaled queue-length process X̂λ and virtual waiting-time process
V̂ λ by

X̂λ := √
λ(X̄λ − N̄λ) and V̂ λ := √

λV λ.

Note that here we center the processXλi by its approximate steady-state valueNλ
i instead of its

fluid limit xi(t). The functional central limit theorems (FCLTs) for X̂λ and V̂ λ are presented
in the following two theorems, each followed by some remarks, while their proofs are deferred
to Appendix A.3.
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Theorem 2. (FCLT in the QED regime.) Under the heavy-traffic QED assumptions (i)–(iii),
if there exist a random vector X̂(0) and a matrix-valued function P̄ (·) ∈ MK such that
X̂λ(0)

d−→X̂(0) in R
K as λ → ∞, and (10) holds with P̄ being assumed as in Theorem 1,

then
X̂λ d−→ X̂ in (DK, J1) as λ → ∞, (13)

where X̂ is the unique solution to the SDE

dX̂(t) = [ξ(t)− ϒγ − (I − P̄ (ν)�)�(X̂(t))+ + ϒ(X̂(t))−] dt +
 dB(t), (14)

starting from X̂(0), where ξ(t) = (ξ1(t), . . . , ξK(t))
�, γ = (γ1, . . . , γK)

�, 
 = diag{a1 +
µ1ν1, a2 +µ2ν2, . . . , aK +µKνK}1/2 = √

2 diag{a1, . . . , aK}1/2 is the covariance coefficient,
and B is a K-dimensional standard Brownian motion.

Although the time-varying arrival rates do not affect the fluid limit x in (12), the effect on
the diffusion limit X̂ is well represented by the term ξ(t) in (14). The switchover probabilities
in the diffusion limit depend only on the steady state ν of the fluid limit process x. This is
because, under the initial condition X̂λ(0)

d−→ X̂(0), the fluid-scaled process X̄λ(0)
d−→ ν, so

that the fluid limit x in (12) starts in the steady state and will remain there; hence, X̄λ d−→ ν

in DK .

Theorem 3. (FCLT for the virtual waiting time process in the QED regime.) Under the
assumptions of Theorem 2,

V̂ λ d−→ V̂ := (ν̃−1ϒ−1)X̂+ in (DK, J1) as λ → ∞, (15)

where X̂ is defined in (14), ν̃ = diag{ν1, . . . , νK}, and the convergence is jointly with the limits
in (13).

The interaction among the service stations due to switchover is captured by the term (I −
P̄ (x(t))�)�(x(t)−ν)+ in the fluid limitx in (12), and by the term (I − P̄ (ν)�)�(X̂(t))+ in the
diffusion limit X̂ in (14). Based on Theorems 2 and 3, we now obtain some comparison results
for the queue lengths and virtual waiting times with respect to the switchover probabilities.

Corollary 1. Consider two switchover probability matrices P (1) and P (2) such that

P (i),λ(λ·) → P̄ (i)(·) as λ → ∞, i = 1, 2,

with P̄ (1) and P̄ (2) satisfying the assumptions in Theorem 1, and P̄ (1) ≥ P̄ (2). Suppose that
the conditions in Theorem 2 hold, and let X̂(i) be the diffusion limit in (14) with P̄ (i). Then,
X̂(1)(t) ≥ X̂(2)(t) for all t ≥ 0. Moreover,

(X̂
(1)
i (t))+ ≥ (X̂

(2)
i (t))+ and (X̂

(1)
i (t))− ≤ (X̂

(2)
i (t))− for all t ≥ 0, (16)

for each i, . . . , K , and V̂ (1)(t) ≥ V̂ (2)(t) for all t ≥ 0.

Intuitively, the above comparison result says that increasing the switchover probabilities will
allow more customers to stay inside the network, as opposed to abandonment. This will lead
to longer queue lengths and waiting times, but will also result in improved server utilization
and increased throughput. (Recall that (X̂i(t))− measures the number of idle servers.) This is
consistent with the known fact that mobility enlarges the stability region in wireless networks;
see Borst et al. (2006) and Grossglauser and Tse (2002).

When the arrival rates are constant, the stationary distributionπ of the diffusion limit process
X̂(t) in (14) exists by a similar argument as in Dieker and Gao (2013) and can be characterized
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by the basic adjoint relationship (BAR)∫
RK

Lf (x)π(x) dx = 0 for all f ∈ C2
b (R

K),

where

Lf =
K∑
i=1

(
2ai

∂2f

∂x2
i

+ bi(x)
∂f

∂xi

)
,

ai is given in (5), bi(x) = ∑K
k=1,k �=iθkp̄ki(x)(xk−νk)+−θi(1−p̄ii (x))(xi−νi)+−µ(xi∧νi),

and C2
b (R

K) is the set of twice continuously differentiable functions f on R
K whose first- and

second-order derivatives are bounded. We also refer the reader to Saure et al. (2009) and He
and Dai (2013) for the computation of the stationary distribution.

For each t , we derive the mean and covariance functions of X̂(t) in (14) as follows (for the
covariance, apply Ito’s formula; see, e.g. Karatzas and Shreve (1991)):

d(X̂(t)X̂(t)�) = X̂(t)(dX̂(t)�)+ (dX̂(t))X̂(t)� + d[X̂(t), X̂�(t)]
= X̂(t)(dX̂(t)�)+ (dX̂(t))X̂(t)� +

� dt.

We remark that our results below coincide with Theorem 6.2 of Mandelbaum et al. (1998) in
the case of constant switchover probabilities.

Corollary 2. Let m(t) = E[X̂(t)] and �(t) = E[X̂(t)X̂(t)�] for X̂ in (14). Then, m(t) and
�(t) satisfy the differential equations

d

dt
m(t) = ξ(t)− ϒγ − (I − P̄ (ν)�)�E[(X̂(t))+] + ϒE[(X̂(t))−],

d

dt
�(t) = [ξ(t)− ϒγ ]m(t)� + m(t)[ξ(t)� − γ �ϒ�] − (I − P̄ (ν)�)�E[(X̂(t))+X̂(t)�]

− E[X̂(t)(X̂(t)�)+]�(I − P̄ (ν))+ ϒE[(X̂(t))−X̂(t)�]
+ E[X̂(t)(X̂(t)�)−]ϒ +

�,

with m(0) = E[X̂(0)] and �(0) = E[X̂(0)X̂(0)�].

4. The ED regime

The ED regime is particularly relevant to networks with nonstationary arrivals. It is
concerned with those transient time periods when the system is overloaded, and tries to capture
the impact of time-dependent arrivals on system performance, queue lengths in particular.

Formally, the ED regime is characterized as follows. Similar to the scaling in the QED
regime, we scale both the arrival rate and the number of servers by a (common) factor λ and
write

λi(t) = λai(t) and Nλ
i = λνi, i = 1, . . . , K, (17)

where the positive constants νi and the nonnegative deterministic functions ai satisfy, for any
T > 0,

inf
0<t≤T

(∫ t

0
ai(s) ds − νiµit

)
> 0, i = 1, . . . , K. (18)

In particular, the condition in (17) implies that the system is overloaded at all t > 0.
The following FWLLN holds for the fluid-scaled queue-length process X̄λ := Xλ/λ. The

proof is presented in Appendix A.4.
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Theorem 4. (FWLLN in the ED regime.) Suppose that the conditions in (17)–(18) hold; in
addition, suppose that there exists a vector x(0) and a deterministic matrix-valued function
P̄ (·) in MK such that X̄λ(0)

d−→ x(0), and (10) holds as λ → ∞, and P̄ satisfies the properties
specified in Theorem 1. Then

X̄λ d−→ x in (DK, J1) as λ → ∞,

where x is the unique solution to the nonlinear ODE

ẋ(t) = a(t)− (I − P̄ (x(t))�)�(x(t)− ν)+ − ϒ(x(t) ∧ ν), t ≥ 0, (19)

starting from x(0), where a(t) = (a1(t), . . . , aK(t))
�. Moreover, there exists t0 > 0 such that,

for all t > t0, x(t) > ν; hence, (19) reduces to

ẋ(t) = a(t)− (I − P̄ (x(t))�)�(x(t)− ν)− ϒν, t > t0, (20)

and if, in addition, the switchover probabilities P̄ (·) = P are constant,

x(t) = x(t0)+
∫ t

t0

exp(−(I−P �)�(t−s))[a(s)+ ((I−P �)�−ϒ)ν] ds, t ≥ t0. (21)

The effect of time-varying arrival rates is manifest in the term a(t) on the right-hand side
of (19). For instance, if ai(t) is a periodic function then so is x(t). However, if ai(t) does
converge to a constant as time evolves then the fluid limit x will have a constant steady state,
as stated in the following corollary. If this steady-state result appears to be incompatible with
the assumption in (17), which says that the input overpowers the service capacity at all time,
one should bear in mind that the abandonment ensures the queue lengths will not grow to ∞.

Corollary 3. (Steady state of the fluid limit in the ED regime.) Under the assumptions of
Theorem 4, if there exists some positive constant vector ā such that a(t) → ā > ϒν as t → ∞
then the solution x(t) to ODE (19) satisfies x(t) → x(∞) := x∗ = ν + q∗ as t → ∞, where
q∗ is the steady-state queue-length vector, solving the following nonlinear ODE:

ā − (I − P̄ (ν + q∗)�)�q∗ − ϒν = 0. (22)

If, in addition, the switchover probabilities P̄ are constant then q∗ has the explicit expression

q∗ = �−1(I − P̄ �)−1(ā − ϒν). (23)

Next, define the diffusion-scaled processes X̂λ by

X̂λ := √
λ(X̄λ − x), (24)

where x is defined in (19). Note that here the centering is carried out by the fluid limit x

established in Theorem 4. The proof of the following FCLT limit is deferred to Appendix A.5.

Theorem 5. (FCLT in the ED regime.) Suppose that the conditions in (17)–(18) hold; in
addition, suppose that there exist random vectors x(0) and X̂(0), and two deterministic matrix-
valued functions P̄ (·), P̂ (·) in MK such that X̂λ(0)

d−→ X̂(0), x(0) > ν, (10) holds, and

P̂ λ(·) := √
λ(P̄ λ(·)− P̄ (·)) → P̂ (·) = [p̂ij (·)]Ki,j=1 as λ → ∞;

P̄ and P̂ are Lipschitz, and the spectral radius of P̄ satisfies supζ∈RK r(P̄ (ζ )) < 1. Then

X̂λ d−→ X̂ in (DK, J1) as λ → ∞,

where X̂ is the unique solution to the SDE

dX̂(t) = [P̂ (x(s))�(x(t)− ν)− (I − P̄ (x(t))�)�X̂(t)] dt + dW (t), t ≥ 0, (25)
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starting from X̂(0), where x(t) is defined in (20) starting with x(0), and W is aK-dimensional
Brownian motion with mean 0 and covariance matrix 
(t)
(t)� defined by


(t)
(t)� := diag

{∫ t

0
a(s) ds + ϒνt +

∫ t

0
�̃(x(s))�(x(s)− ν) ds

}
+�(t), (26)

where

�̃(·) =

⎡
⎢⎢⎢⎣

1 − p̄11(·) p̄21(·) · · · p̄K1(·)
p̄12(·) 1 − p̄22(·) · · · p̄K2(·)
...

...
. . .

...

p̄1K(·) p̄2K(·) · · · 1 − p̄KK(·)

⎤
⎥⎥⎥⎦ , (27)

�(t) is a K ×K matrix with �ii(t) = 0 for all i = 1, . . . , K , and

�ij (t) = −2θiθj

(∫ t

0
p̄ij (x(s))(xi(s)− νi) ds

)(∫ t

0
p̄j i(x(s))(xj (s)− νj ) ds

)

for all i �= j, i, j = 1, . . . , K .

Note that in the above theorem we assume that x(0) > ν so that the system starts in an
overloaded state and the diffusion limit X̂ is valid starting from time 0. Otherwise, from
Theorem 4, we know that there exists a time point t0 > 0 such that x(t) > ν for all t > t0;
consequently, the diffusion limit applies starting from t0.

The time-varying arrival rates affect both the drift term and the covariance coefficient matrix
of the diffusion limit. In the drift term, the dependence on a(t) is indirect, through the fluid
limit x. In the covariance coefficient matrix, a(t) appears directly in the diagonal (the variance
terms) and indirectly, also via x, in the off-diagonal entries.

As in the fluid case, if a(t) is periodic then, clearly, X̂ will not reach a steady state. If
a(t) → ā as t → ∞, as in Corollary 3, and if (22) has a unique solution, then a unique steady
state exists for the diffusion process X̂.

Corollary 4. (FCLT in the ED regime with constant switchover probability and constant arrival
rates.) Under the heavy-traffic ED assumptions (17)–(18), if there exists a random vector X̂(0)
such that X̂λ(0)

d−→ X̂(0) as λ → ∞, and if the switchover probabilities and the arrival rates
are all constant, then

X̂λ d−→ X̂ in (DK, J1) as λ → ∞, (28)

where X̂ is the unique solution to the SDE

dX̂(t) = −(I − P �)�X̂(t) dt + dW (t), t ≥ 0, (29)

starting from X̂(0), where W is aK-dimensional Brownian motion with mean 0 and covariance
matrix 

� defined by



� := diag{a + ϒν + �̃�q∗} + �̃, (30)

where �̃ is defined in (27) with P̄ = P being constant, q∗ is given in (23), and �̃ is defined by

�̃ =

⎡
⎢⎢⎢⎣

0 −2θ1θ2p12p21q
∗
1q

∗
2 · · · −2θ1θKp1KpK1q

∗
1q

∗
K−2θ1θ2p12p21q

∗
1q

∗
2 0 · · · −2θ2θKp2KpK2q

∗
2q

∗
K

...
...

. . .
...

−2θ1θKp1KpK1q
∗
1q

∗
K −2θ2θKp2KpK2q

∗
2q

∗
K · · · 0

⎤
⎥⎥⎥⎦ .
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When the arrival rates and the switchover probabilities are constant, the diffusion limit
simplifies substantially, which requires solving only SDE (29); however, with time-varying
arrival rates and state-dependent switchover probabilities, the diffusion limit requires solving
the coupled SDE (25) together with the ODE (20). Moreover, the covariance coefficient
matrix becomes constant as well. With these constant parameters we can define the prelimit
diffusion-scaled processes X̂λ by centering around the steady state of the fluid limit instead of
centering around the fluid limit itself, which simplifies the analysis substantially; see the proof
of Corollary 4.

Corollary 5. Let m(t) = E[X̂(t)] and �(t) = E[X̂(t)X̂(t)�] for X̂ in (25). Then, m(t) and
�(t) satisfy the differential equations

d

dt
m(t) = P̂ (x(s))�(x(t)− ν)− (I − P̄ (x(t))�)�m(t),

d

dt
�(t) = P̂ (x(s))�(x(t)− ν)m(t)� − (I − P̄ (x(t))�)��(t)

+ m(t)(x(t)− ν)��P̂ (x(s))� − �(t)�(I − P̄ (x(t)))+
(t)
(t)�,

withm(0) = E[X̂(0)]and�(0) = E[X̂(0)X̂(0)�], wherex(t) is defined in (20) and
(t)
(t)�
is defined in (26). When the switchover probabilities are constant with P̄ = P and the arrival
rates are time varying,

d

dt
m(t) = −(I − P �)�m(t),

d

dt
�(t) = −(I − P �)��(t)− �(t)�(I − P )+
(t)
(t)�, (31)

where 
(t)
(t)� is defined in (26) with x(t) equal to the explicit solution (t0 = 0) in (21). If,
in addition, the arrival rates are also constant then (31) holds with 
(t)
(t)� being replaced
by 

� defined in (30).

5. Mixed regimes

In the last two sections, all stations in the network are operating either in the QED regime or
in the ED regime. In many applications, it is often possible that some stations are overloaded
while others are underloaded, and switchover will have the effect of redistributing the loads
among the stations. In this section we consider mixed regimes in our multiclass network model.
Suppose that theK stations are partitioned into three subgroups, K1, K2, and K3. For a station
i ∈ K1, the corresponding parameters satisfy the QD assumption, that is, ai < νiµi for νi in
(2) and ai in (4). Similarly, for a station i ∈ K2, they satisfy the QED assumptions (2)–(8);
and, for a station i ∈ K3, they satisfy the ED assumptions (17)–(18). We study the following
mixed regimes:

QD/QED regime: K1 �= ∅, K2 �= ∅, K3 = ∅;

QED/ED regime: K1 = ∅, K2 �= ∅, K3 �= ∅;

QD/ED regime: K1 �= ∅, K2 = ∅, K3 �= ∅; and

QD/QED/ED regime: K1 �= ∅, K2 �= ∅, K3 �= ∅.

We next discuss the fluid and diffusion limits of Xλ in these mixed regimes. For simplicity, we
assume that the arrival rates are constant.
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Theorem 6. (FWLLN in the mixed regimes.) For all four mixed regimes, under the assump-
tions on X̄(0), P̄ λ(·), and P̄ (·) in Theorem 1, the FWLLN in Theorem 1 holds for the fluid-scaled
processes X̄λ, that is, (11) holds with the limit x as the unique solution to the ODE in (12).

The steady states x∗ of the fluid limit x are as follows when the switchover probabilities P̄

are constant.

(i) The mixed QD/QED regime: x∗
i = ai/µi < νi for i ∈ K1 and x∗

i = ai/µi = νi for
i ∈ K2.

(ii) The mixed QED/ED regime: x∗
i = νi + q∗

i for i ∈ K2 ∪ K3, where qi ≥ 0 is the ith
component of q∗ = �−1(I − P̄ �)−1(a − ϒ · ν), and q∗

i = 0 if i ∈ K2 and p̄j i = 0 for
all j �= i.

(iii) The mixed QD/ED regime: x∗ is the unique solution to the set of equations

ai − µix
∗
i +

∑
j∈K̃3, j �=i

θj p̄ji(x
∗
j − νj ) = 0 for i ∈ K̃1, (32)

ai − µiνi − θi(1 − p̄ii )(x
∗
i − νi)+

∑
j∈K̃3, j �=i

θj p̄ji(x
∗
j − νj ) = 0 for i ∈ K̃3, (33)

x∗
i = νi for i ∈ K̃2, where K̃1 = {i : q̃∗

i < 0} − K3, K̃2 = {i : q̃∗
i = 0}, K̃3 = {i : q̃∗

i >

0} ∪ K3, and q̃∗ = �−1(I − P̄ �)−1(a − ϒν).

(iv) The mixed QD/QED/ED regime: x∗ is the unique solution to the set of equations in (32).

From the above theorem, we observe that in the mixed QD/QED regime, all queue lengths
in steady state are 0 in the fluid scale; hence, the steady-state switchover quantities are 0. In the
mixed QED/ED regime, as long as the switchover probability from the ED stations to a QED
station is positive, the QED station will become overloaded in the steady state.

In the mixed QD/ED regime, the situation becomes more complex because a QD station
can become overloaded if too much workload is switched over from the ED station. Consider
an example of two stations to get a feel for the possible outcomes. Suppose that station 1 is
ED and station 2 is QD; specifically, a1 > µ1ν1 and a2 < µ1ν2. We consider the following
three cases.

Case 1: q̃∗
1 > 0 and q̃∗

2 < 0. That is, (1− p̄22)(a1 −µ1ν1) > p̄21(µ2ν2 −a2) and p̄12(a1 −
µ1ν1) < (1 − p̄11)(µ2ν2 − a2). Then x∗ = (x∗

1 , x
∗
2 )

� solves the equations

a1 − µ1ν1 − θ1(1 − p̄11)(x
∗
1 − ν1) = 0, a2 + θ1p̄12(x

∗
1 − ν1)− µ2x

∗
2 = 0,

and

x∗
1 = ν1 + a1 − µ1ν1

θ1(1 − p̄11)
> ν1, x∗

2 = a2

µ2
+ p̄12(a1 − µ1ν1)

µ2(1 − p̄11)
< ν2.

Thus, in this case, station 1 remains overloaded and station 2 remains underloaded. The amount
of work switched from station 1 over to station 2 is equal to x∗

2 − a2/µ2.
Case 2: q̃∗

1 > 0 and q̃∗
2 > 0. That is, (1 − p̄22)(a1 − µ1ν1) > p̄21(µ2ν2 − a2) and

p̄12(a1 − µ1ν1) > (1 − p̄11)(µ2ν2 − a2). Then x∗ = (x∗
1 , x

∗
2 )

� solves the equations

a1 − µ1ν1 − θ1(1 − p̄11)(x
∗
1 − ν1)+ θ2p̄21(x

∗
2 − ν2) = 0,

a2 − µ2ν2 − θ2(1 − p̄22)(x
∗
2 − ν2)+ θ1p̄12(x

∗
1 − ν1) = 0,
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and

x∗
1 = ν1 + q̃∗

1 = ν1 + (1 − p̄22)(a1 − µ1ν1)+ p̄21(a2 − µ2ν2)

θ1((1 − p̄11)(1 − p̄22)− p̄12p̄21)
> ν1,

x∗
2 = ν2 + q̃∗

2 = ν2 + p̄12(a1 − µ1ν1)+ (1 − p̄11)(a2 − µ2ν2)

θ2((1 − p̄11)(1 − p̄22)− p̄12p̄21)
> ν2.

Thus, in this case, both stations are overloaded. The amount of work switched over from
station 1 to station 2 is equal to x∗

2 − a2/µ2.
Case 3: q̃∗

1 > 0 and q̃∗
2 = 0. That is, (1− p̄22)(a1 −µ1ν1) > p̄21(µ2ν2 −a2) and p̄12(a1 −

µ1ν1) = (1 − p̄11)(µ2ν2 − a2). Then x∗ = (x∗
1 , x

∗
2 )

� is a solution to the same equations as in
the case when q̃∗

1 > 0 and q̃∗
2 < 0:

x∗
1 = ν1 + a1 − µ1ν1

θ1(1 − p̄11)
> ν1, x∗

2 = a2

µ2
+ p̄12(a1 − µ1ν1)

µ2(1 − p̄11)
= ν2.

Thus, in this case, station 1 remains overloaded, while station 2 becomes critically loaded, and
the switchover amount is equal to x∗

2 − a2/µ2 = ν2 − a2/µ2. Moreover, it is easy to check
from the fluid equation of x(t) in (12) that it is impossible to have x∗

1 < ν1 and x∗
2 ≥ ν2. In the

mixed QD/QED/ED regime, we observe the same phenomena as in the QD/ED regime.
We now present the diffusion limits in the four mixed regimes.

Theorem 7. (FCLT in the mixed regimes.) Suppose that the assumptions on the transitions
probabilities in Theorem 6 hold.

(i) The mixed QD/QED regime. Define the diffusion-scaled processes by X̂λi := √
λ(X̄λi −

λi/µi) for i ∈ K1 and X̂λi := √
λ(X̄λi − N̄λ

i ) for i ∈ K2. If there exist random variables

X̂i(0) such that X̂λi (0)
d−→ X̂i(0) as λ → ∞, then (13) holds with the limit X̂i being the

unique solution to the stochastic integral equation

X̂i(t) = X̂i(0)+
∫ t

0

( ∑
k∈K2

θkp̄ki(X̂k(s))
+
)

ds − µi

∫ t

0
X̂i(s) ds

+ √
2aiBi(t) for i ∈ K1, (34)

X̂i(t) = X̂i(0)+ (ξi − µiγi)t

+
∫ t

0

( ∑
k∈K2, k �=i

θkp̄ki(X̂k(s))
+ − θi(1 − p̄ii )(X̂i(s))

+
)

ds

+ µi

∫ t

0
(X̂i(s))

− ds + √
2aiBi(t) for i ∈ K2,

where B = (B1, . . . , BK) is a K-dimensional standard Brownian motion.

(ii) The mixed QED/ED regime. Here the diffusion-scaled process X̂λ is the same as in (24).
If there exist random variables X̂i(0) such that X̂λi (0)

d−→ X̂i(0) as λ → ∞, the FCLT
in Corollary 4 holds.

(iii) The mixed QD/ED regime. Define the diffusion-scaled process by X̂λi := √
λ(X̄λi − x∗

i ),

wherex∗
i is defined in (32). If there exist random variables X̂i(0) such that X̂λi (0)

d−→X̂i(0)
as λ → ∞ then (13) holds with the limit X̂i being the unique solution to the stochastic
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integral equation

X̂i(t) = X̂i(0)+
∫ t

0

( ∑
k∈K̃2

θkp̄ki(X̂k(s))
+ +

∑
k∈K̃3

θkp̄kiX̂k(s)

)
ds

− µi

∫ t

0
X̂i(s) ds +Wi(t) for i ∈ K̃1, (35)

X̂i(t) = X̂i(0)+
∫ t

0

( ∑
k∈K̃2, k �=i

θkp̄ki(X̂k(s))
+ +

∑
k∈K̃3

θkp̄kiX̂k(s)

)
ds

−
∫ t

0
(θi(1 − p̄ii )(X̂i(s))

+) ds + µi

∫ t

0
(X̂i(s))

− ds +Wi(t) for i ∈ K̃2,

(36)

X̂i(t) = X̂i(0)+
∫ t

0

( ∑
k∈K̃2

θkp̄ki(X̂k(s))
+ +

∑
k∈K̃3, k �=i

θkp̄kiX̂k(s)

)
ds

−
∫ t

0
(θi(1 − p̄ii )X̂i(s)) ds +Wi(t) for i ∈ K̃3, (37)

where W = (W1, . . . ,WK)
� is a K-dimensional Brownian motion with covariance

matrix [σij ]i,j=1,...,K given by

σii = ai + µix
∗
i +

∑
k∈K̃3

θkpki(x
∗
k − νk), i ∈ K̃1,

σii = 2ai +
∑
k∈K̃3

θkpki(x
∗
k − νk), i ∈ K̃2,

σii = ai + µiν
∗
i +

K∑
k=1, k �=i

θipik(x
∗
k − νk)+ θi(1 − pii)(x

∗
i − νi)

+
∑

k∈K̃3, k �=i
θkpki(x

∗
k − νk), i ∈ K̃3,

σij = σji = 0, i ∈ K̃1, j ∈ K̃2 ∪ K̃3 or i ∈ K̃1 ∪ K̃2, j ∈ K̃3,

σij = σji = −2θiθj p̄ij p̄j i(x
∗
i − νi)(x

∗
j − νj ), i ∈ K̃3, j ∈ K̃3.

(iv) The mixed QD/QED/ED regime. The FCLT for X̂λ holds with the same limiting diffusion
processes as in case (iii).

We remark that in the mixed QD/QED regime, switchover has an effect on the diffusion limit
even though it does not on the fluid limit. In particular, there is an extra term in the drift term
of the diffusion limit X̂i for QD stations, which captures the impact of the switchover from the
QED stations; see the second term in (34). The same happens in the mixed QD/ED regime and
in the mixed QD/QED/ED regime; see the second term of the diffusion limit X̂i in (35). In
addition, the QED stations also have switchover impact upon the ED regimes; see the second
term of the diffusion limit X̂i in (37).

6. Concluding remarks

As motivated in the introduction, the model we have studied in this paper, a network of many-
server stations allowing waiting jobs to switch across stations, along with other features such as
nonstationary arrivals and abandonment, has wide-ranging applications, including healthcare
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delivery and mobile communication. These applications typically support a high volume,
time-varying demand pattern and involve expensive resources that are, quite naturally, heavily
utilized. We have analyzed not only the QED and ED regimes among all stations, but also the
mixture of these regimes and the QD regime, in any combination. These mixed regimes capture
the behavior of the network in the presence of supply-demand imbalance, due to demand (traffic)
volatility or nonstationarity, whereas the switchover mechanism migrates the workload from
overloaded stations to less loaded stations, achieving a load-balancing effect. Key performance
measures under all regimes are derived in the form of fluid and diffusion limits, and characterized
by differential equations (ODE or SDE).The latter, in turn, provides numerical means to estimate
the performance measures. They also provide the dynamics of queue-length and workload
processes, should one pursue an optimization or optimal control on some operational aspects
of the network.

Appendix A. Proofs

A.1. A martingale representation of the queueing processes

In this subsection we present and prove a martingale representation of the queue-length
process X in (1). The fluid-scaled and diffusion-scaled queue-length processes X̄λ and X̂λ in the
QED and ED regimes also have the same type of martingale representations with corresponding
fluid-scaled and diffusion-scaled martingale terms, which will be stated in the proofs of the
FWLLN and FCLT theorems in the following sections. The proof follows a similar argument
as the proof of Theorem 7.2 of Pang et al. (2007) and is thus omitted.

Lemma 1. (Martingale representation of queue-length processes.) TheK-dimensional queue-
length process X in (1) has the martingale representation

X(t) = X(0)+�(t)−
∫ t

0
(I − P (X(s−))�)�(X(s)− N)+ ds −

∫ t

0
ϒ(X(s) ∧ N) ds

+ MA(t)− ML,0(t)− MS(t)+
K∑
i=1

[E(ii)(ẼML(t)− ML(t)Ẽ)E
(ii)]1 (38)

for each t ≥ 0, where �(t) := (
∫ t

0 λ1(s) ds, . . . ,
∫ t

0 λK(s) ds)�, N := (N1, . . . , NK)
�,

(X(s) − N)+ := ((X1(s) − N1)
+, . . . , (XK(s) − NK)

+)�, X(s) ∧ N := (X1(s) ∧ N1, . . . ,

XK(s) ∧NK)�, P (X(t))� is the transpose of P (X(t)), Ẽ = E − I with E a K×K matrix
whose components equal 1, E(ii) is aK×K matrix whose (i, i)th component is 1 and whose other
components are 0, 1 is a K-dimensional vector of 1s, MA(t) = (MA,1(t), . . . ,MA,K(t))

�,
MS(t) = (MS,1(t), . . . ,MS,K(t))

�, and ML,0(t) = (ML,1,0(t), . . . ,ML,K,0(t))
� are all

K-dimensional square-integrable F -martingales, ML(t) = [ML,i,j (t)]Ki,j=1 is a (K×K)-
dimensional square-integrable F -martingale matrix, the filtration F := {F (t) : t ≥ 0} is
defined by

F (t) = σ

{
Xi(0), Li,j

(
θi

∫ s

0
pij (X(s−))(Xi(u)−Ni)

+ ds

)
,

Si

(
µi

∫ s

0
(Xi(u) ∧Ni) du

)
: 0 ≤ s ≤ t, i = 1, . . . , K, j = 0, 1, . . . , K

}

∨ σ
{
Ai

(∫ t

0
λi(s) ds

)
: t ≥ 0, i = 1, . . . , K

}
∨ N
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with N being the collection of all null sets, and

MA,i(t) = Ai

(∫ t

0
λi(s) ds

)
−

∫ t

0
λi(s) ds,

MS,i(t) = Si

(
µi

∫ t

0
(Xi(s) ∧Ni) ds

)
− µi

∫ t

0
(Xi(s) ∧Ni) ds,

ML,i,j (t) = Li,j

(
θi

∫ t

0
pij (X(s−))(Xi(s)−Ni)

+ ds

)

− θi

∫ t

0
pij (X(s−))(Xi(s)−Ni)

+ ds,

and their predictable quadratic variations are given by

〈MA,i〉(t) =
∫ t

0
λi(s) ds, 〈MS,i〉(t) = µi

∫ t

0
(Xi(s) ∧Ni) ds,

〈ML,i,j 〉(t) = θi

∫ t

0
pij (X(s−))(Xi(s)−Ni)

+ ds.

A.2. Proof of the fluid limit in the QED regime

First, by (38), we have the following martingale representation of the fluid-scaled queue-
length process X̄λ:

X̄λ(t) = X̄λ(0)+ �̄λ(t)−
∫ t

0
[(I − P λ(λX̄λ(s−))�)�(X̄λ(s)− N̄λ)+

+ ϒ(X̄λ(s) ∧ N̄λ)] ds

+ M̄λ
A(t)− M̄λ

L,0(t)− M̄λ
S (t)+

K∑
i=1

[E(ii)(ẼM̄L(t)− M̄L(t)Ẽ)E
(ii)]1. (39)

Here

�̄λ(t) = 1

λ
�λ(t) = 1

λ

(∫ t

0
λ1(s) ds, . . . ,

∫ t

0
λK(s) ds

)�
,

M̄λ
A(t) = λ−1MA(t) and similarly for M̄λ

L(t), M̄λ
L,0(t), and M̄λ

S (t).
We will follow the procedure of the martingale proof approach reviewed in Pang et al. (2007).

The major difference is that we have to prove convergence of multidimensional processes,
instead of one-dimensional processes. We will again apply the CMT, but the mapping is
defined through a multidimensional integral representation, as in (39). The continuity of such a
mapping in the Skorokhod topology is not an easy generalization of that in the one-dimensional
case.

Lemma 2. (Continuity of a multidimensional integral representation in the Skorokhod J1
topology.) Consider the K-dimensional integral representation

x(t) = b + y(t)−
∫ t

0
[(I − P(x(s))�)�(x(s)− a)+ + ϒ(x(s) ∧ a)] ds, t ≥ 0, (40)

where a, b ∈ R
K , y ∈ DK , and MK � P(·) : R

K → [0, 1]K×K is Lipschitz, that is, ‖P(z1)−
P(z2)‖ ≤ cP ‖z1 − z2‖ for some positive constant cP and for any z1, z2 ∈ R

K , P� is the
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transpose of P . Then this integral representation has a unique solution, which defines a
mapping φ : DK × R

K × R
K × MK → DK that maps (y, a, b, P ) into x := φ(y, a, b, P ).

Moreover, the mapping φ is continuous in the spaceDK endowed with the topology of uniform
convergence over bounded intervals, or the Skorokhod J1 topology. If y ∈ CK then x ∈ CK .

Proof. The proof of existence and uniqueness is straightforward and thus omitted. In fact, the
uniqueness argument follows easily from the proof of the continuity in the topology of uniform
convergence over bounded intervals. Since the proof of the continuity in this topology is similar
and easier than that in the Skorokhod topology, we only state the proof of the latter. We want to
show that xn → x in (DK, J1)when (an, bn, Pn, yn) → (a, b, P, y) in R

K ×R
K ×MK ×DK

as n → ∞.
Fix T to be a continuity point of y. By the convergence of yn → y in (DK, J1), there

exist increasing homeomorphisms κn of the interval [0, T ] such that ‖yn − y ◦ κn‖T → 0
and ‖κn − e‖T → 0 as n → ∞, where e(t) = t for each t ≥ 0. Moreover, we can choose
homeomorphisms κn to be absolutely continuous with respect to the Lebesgue measure on
[0, T ] such that their derivatives κ̇n satisfy ‖κ̇n − 1‖T → 0 as n → ∞. We again use the fact
that functions in DK are bounded so that, given a, b, P , and y, x = φ(a, b, P, y) is in the
space DK , and we let Mx := sup0≤t≤T ‖x(t)‖ < ∞. Then, we have

‖xn(t)− x(κn(t))‖
≤ ‖bn − b‖ + ‖yn − y ◦ κn‖T

+
∥∥∥∥

∫ t

0
[(I − Pn(xn(u))

�)�(xn(u)− an)
+ + ϒ(xn(u) ∧ an)] du

−
∫ t

0
κ̇n(u)[(I − P(x(κn(u)))

�)�(x(κn(u))− a)+ + ϒ(x(κn(u)) ∧ a)] du

∥∥∥∥
≤ ‖bn − b‖ + ‖yn − y ◦ κn‖T + ‖ϒ‖‖an − a‖T

+ 2((K2‖�‖) ∨ ‖ϒ‖)
(

‖a‖T +
∫ T

0
‖x(s)‖ ds

)
‖κ̇n − 1‖T

+
∥∥∥∥

∫ t

0
[(I − Pn(xn(u))

�)�(xn(u)− an)
+ − ϒ(xn(u)− an)

−

− (I − Pn(xn(u))
�)�(x(κn(u))− a)+ + ϒ(x(κn(u))− a)−] du

∥∥∥∥
+

∥∥∥∥
∫ t

0
[(Pn(xn(u))� − P(xn(u))

�)�(x(κn(u))− a)+] du

∥∥∥∥
+

∥∥∥∥
∫ t

0
[(P (xn(u))� − P(x(κn(u)))

�)�(x(κn(u))− a)+] du

∥∥∥∥
≤ ‖bn − b‖ + ‖yn − y ◦ κn‖T + ‖ϒ‖‖an − a‖T

+ 2((K2‖�‖) ∨ ‖ϒ‖)
(

‖a‖T +
∫ T

0
‖x(s)‖ ds

)
‖κ̇n − 1‖T

+ (K2‖�‖ ∨ ‖ϒ‖)
∫ T

0
‖(xn(u)− an)− (x(κn(u))− a)‖ du

+ ‖�‖(Mx + ‖a‖)
∫ T

0
(‖Pn(xn(u))� − P(xn(u)))

�‖ + cP ‖xn(u)− x(κn(u))‖) du
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≤ ‖bn − b‖ + ‖yn − y ◦ κn‖T + ‖ϒ‖‖an − a‖T

+ 2((K2‖�‖) ∨ ‖ϒ‖)
(

‖a‖T +
∫ T

0
‖x(s)‖ ds

)
‖κ̇n − 1‖T

+ (K2‖�‖ ∨ ‖ϒ‖)
∫ T

0
‖xn(u)− x(κn(u))‖du+ (K2‖�‖ ∨ ‖ϒ‖)‖an − a‖T

+ ‖�‖(Mx + ‖a‖)
∫ T

0
(‖Pn(xn(u))� − P(xn(u))

�‖ + cP ‖xn(u)− x(κn(u))‖) du

≤ ‖bn − b‖ + ‖yn − y ◦ κn‖T + ‖an − a‖(‖ϒ‖ +K2‖�‖ ∨ ‖ϒ‖)T
+ 2((K2‖�‖) ∨ ‖ϒ‖)(‖a‖ +Mx)T ‖κ̇n − 1‖T
+ ‖�‖(Mx + ‖a‖)

∫ T

0
‖Pn(xn(u))� − P(xn(u))

�‖ du

+ [K2‖�‖ ∨ ‖ϒ‖ + cP ‖�‖(Mx + ‖a‖)]
∫ T

0
‖xn(u)− x(κn(u))‖ du.

Choose n0 large enough such that

‖bn − b‖ < δ

5
, ‖an − a‖ < δ

5(‖ϒ‖ +K2‖�‖ ∨ ‖ϒ‖)T ,

‖yn − y ◦ κn‖T < δ

5
, ‖κ̇n − 1‖T < δ

10((K2‖�‖) ∨ ‖ϒ‖)(‖a‖ +Mx)T
,

and

‖Pn − P ‖ ≤ δ

5‖�‖(Mx + ‖a‖)T .

Let c̃ := [K2‖�‖ ∨ ‖ϒ‖ + cP ‖�‖(Mx + ‖a‖)]. Then, by Gronwall’s inequality,

‖xn(t)− x(κn(t))‖ ≤ δec̃T , 0 ≤ t ≤ T .

Thus, ‖xn − x ◦ κn‖T ≤ δec̃T . Finally, for any given ε > 0, we can choose δ small such that
‖xn − x ◦ κn‖T ≤ ε for all n ≥ n0. This completes the proof.

We also prove the preservation of SB of a multidimensional integral representation, which
generalizes the one-dimensional case, Lemma 5.5 of Pang et al. (2007).

Lemma 3. (SB of a multidimensional integral representation.) Consider the K-dimensional
integral representation of stochastic processes

Xn(t) = Xn(0)+ Yn,1(t)+ · · · + Yn,K(t)

−
∫ t

0
[(I − Pn(Xn(s))

�)�(Xn(s)− Zn)
+ + ϒ(Xn(s) ∧ Zn)] ds

for each t ≥ 0, where Xn(0), Zn ∈ R
K are random vectors, Yn,i ∈ DK for each i = 1, . . . , K

are stochastic processes, and Pn ∈ MK . If the sequences {Xn(0) : n ≥ 1}, {Zn : n ≥ 1}, and
{Yn,i : n ≥ 1} are stochastically bounded in R

K and DK , respectively, for i = 1, . . . , K , then
the sequence {Xn : n ≥ 1} is stochastically bounded in DK .
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Proof. We first note that
∫ t

0
[(I − Pn(Xn(s))

�)�(Xn(s)− Zn)
+ + ϒ(Xn(s) ∧ Zn)] ds

=
∫ t

0
[(I − Pn(Xn(s))

�)�(Xn(s)− Zn)
+ − ϒ(Xn(s)− Zn)

−] ds + ϒZnt.

Then, it follows that

‖Xn(t)‖ ≤ ‖Xn(0)‖ + ‖Yn,1‖T + · · · + ‖Yn,K‖T + (‖ϒ‖ + (K2‖�‖) ∨ ‖ϒ‖)‖Zn‖T
+ ((K2‖�‖) ∨ ‖ϒ‖)

∫ t

0
‖Xn(s)‖ ds.

The claim follows by applying Gronwall’s inequality.

Lemma 4. (SB of {X̄λ} in the QED regime.) Under the assumptions of Theorem 1, the
sequences ofK-dimensional F -martingale vectors {M̂λ

A}, {M̂λ
L,0}, and {M̂λ

S }, and the sequence
of (K ×K)-dimensional martingale matrices {M̂λ

L}, are all stochastically bounded, and, thus,
the sequence of processes {X̄λ} is stochastically bounded.

Proof. By Lemma 5.3 of Pang et al. (2007), SB for a sequence of random vectors in DK

is equivalent to SB for each sequence of individual components in D, and this also easily
generalizes to SB of a sequence of random matrices in D([0,∞),RK×K). Thus, it suffices
to prove the SB of the sequences of martingales {M̂λ

A,i}, {M̂λ
L,i,j }, and {M̂λ

S,i} for each i, j .
Moreover, by the criteria of SB of square-integrable martingales given in Lemma 5.9 of Pang
et al. (2007), we only need to show that the corresponding sequences of random variables
{〈M̂λ

A,i〉(T )}, {〈M̂λ
L,i,j 〉(T )}, and {〈M̂λ

S,i〉(T )} are stochastic bounded in R for each i, j and
T > 0.

First, 〈M̂λ
A,i〉(T ) = λ−1

∫ T
0 λi(t) dt , so the SB of {〈M̂λ

A,i〉(T )} follows from (4). Second,

〈M̂λ
L,i,j 〉(T ) = θi

∫ T

0
pλij (rX̄

λ(s−))(X̄λi (s)− N̄λ
j )

+ ds

≤ θi(X̄
λ
i (0)+ N̄λ

i )T +
K∑
i=1

1

λ
Ai

(∫ T

0
λi(s) ds

)
.

Hence, by the assumptions in (2) and (4) and the initial conditions, pλij (·) ≤ 1, and by the

weak law of large numbers for Poisson processes we can conclude the SB of {〈M̂λ
L,i,j 〉(T )}.

Third, 〈M̂λ
S,i〉(T ) = µi

∫ T
0 (X̄

λ
i (t) ∧ N̄λ

i ) dt ≤ µiN̄
λ
i T , which implies the SB of {〈M̂λ

S,i〉(T )}.
Next, we will prove the SB of {X̄λ}. By the matrix-form representation of X̄λ in (39), and
applying Lemma 3, we only need to check that the sequence of martingales in DK , {M̄λ

A +∑K
i=1[E(ii)(ẼM̄L − M̄LẼ)E(ii)]1 − M̄λ

L,0 − M̄λ
S }, is stochastically bounded. Indeed, this

follows from the preservation of SB in vector and matrix forms and in sums of random elements
in DK , and M̄λ

A = λ−1/2M̂λ
A implies that the sequence {M̄λ

A} is stochastically bounded, and
similarly for the other sequences of fluid-scaled martingales.

Proof of Theorem 1. We will apply the CMT to the mapping defined in (40) together with
the convergence of the fluid-scaled martingales

(M̄λ
A, M̄

λ
L, M̄

λ
L,0, M̄

λ
S )

d−→ (0,O, 0, 0) in (DK ×DK×K ×DK ×DK, J1) as λ → ∞, (41)
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where 0 is theK-dimensional zero vector and O is the (K ×K)-dimensional zero matrix. The
convergence in (41) follows from the FWLLN from SB, Lemma 5.10 of Pang et al. (2007).
That result covers the case of vectors and can be easily generalized to the case of matrices.

A.3. Proof of the diffusion limits in the QED regime

Proof of Theorem 2. First, we have the following martingale representation of the diffusion-
scaled queue-length processes X̂λ from (38):

X̂λ(t) = X̂λ(0)+ �̂λ(t)− ϒN̂λt −
∫ t

0
[(I − P λ(λX̄λ(s−))�)�(X̂λ(s))+ + ϒ(X̂λ)−] ds

+ M̂λ
A(t)− M̂λ

L,0(t)− M̂λ
S (t)+

K∑
i=1

[E(ii)(ẼM̂λ
L(t)− M̂λ

L(t)Ẽ)E
(ii)]1. (42)

Here �̂λ(t) = (
√
λ(λ−1

∫ t
0 λi(s) ds − ait))

�
i=1,...,K , N̂λ = (N̂λ

1 , . . . , N̂
λ
K)

�, the martingale
vector M̂λ

A(t) = (M̂λ
A,1(t), . . . , M̂

λ
A,K(t))

�, and similarly for the martingale vectors M̂λ
L,0(t),

M̂λ
S (t) and the martingale matrix M̂λ

L(t).
We again follow the martingale proof procedure to prove the diffusion limit by applying the

CMT. The mapping defined from the prelimit diffusion-scaled processes in (42) is different
from that in Lemma 2, and is given by the mapping ψ : DK ×DK × R

K × R
K × MK → DK

that maps (y, z, a, b, P ) into x := ψ(y, z, a, b, P ), i.e.

x(t) = b + y(t)−
∫ t

0
[(I − P(z(s))�)�(x(s)− a)+ + ϒ(x(s) ∧ a)] ds, t ≥ 0,

where MK � P(·) : R
K → [0, 1]K×K is Lipschitz. A similar argument as Lemma 2 shows

that this mapping is continuous in the space (DK, J1) and if y, z ∈ CK then x ∈ CK . Next,
we show the convergence of diffusion-scaled martingales

(M̂λ
A, M̂

λ
L, M̂

λ
L,0, M̂

λ
S )

d−→ (Ba,O, 0,Bs) in (DK ×DK×K ×DK ×DK, J1) (43)

as λ → ∞, where Ba and Bs are both K-dimensional Brownian motions with mean 0, and
covariance matrices �a = diag{a1, . . . , aK} and �s = diag{µ1ν1, . . . , µKνK}, respectively.
This follows from the fact that the square-integrable martingales M̂λ

A,i(t), M̂
λ
L,i,j (t), M̂

λ
L,i,0(t),

and M̂λ
S,i(t) have quadratic variations

〈M̂λ
A,i〉(t) = 1

λ

∫ t

0
λi(s) ds → ait, 〈M̂λ

S,i〉(t) = µi

∫ t

0
(X̄λi (s) ∧ N̄λ

i ) ds
d−→ µiνi t, (44)

〈M̂λ
L,i,j 〉(t) = θi

∫ t

0
pλij (λX̄

λ(s−))(X̄λi (s)− N̄λ
i )

+ ds
d−→ 0, (45)

as λ → ∞ for each t ≥ 0 and i = 1, . . . , K, j = 0, 1, . . . , K . Equations (44) and (45)
follow from the heavy-traffic QED assumption (ii) and the SB of {X̂λ} because, by the FWLLN
for a sequence of stochastic bounded processes, X̄λ = λ−1/2X̂λ + λ−1Nλ d−→ 0 + ν = ν as
λ → ∞. Finally, (43) follows from the FCLT for multidimensional square-integrable
martingales, Theorem 8.1 of Pang et al. (2007).

Proof of Corollary 1. To prove the claim that X̂(1)(t) ≥ X̂(2)(t) for all t ≥ 0, it suffices to
argue that, given X̂(1)(t) ≥ X̂(2)(t) for some t ≥ 0, the same inequality will hold at t + dt for
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some (small) dt > 0. Consider the ith component. From (14) we have

dX̂(1)i (t)− dX̂(2)i (t)

=
K∑
k=1

θk(p̄
(1)
ki (ν)(X̂

(1)
k (s))+ − p̄

(2)
ki (ν)(X̂

(2)
k (s))+) dt

− θi((X̂
(1)
i (t))+ − (X̂

(2)
i (t))+) dt + µi((X̂

(1)
i (t))− − (X̂2

i (t))
−) dt. (46)

There are two cases. First, if X̂(1)i (t) > X̂
(2)
i (t) then we are guaranteed to have X̂(1)i (t + dt) ≥

X̂
(2)
i (t + dt) for sufficiently small dt , since X̂(1)i (t) and X̂(2)i (t) are both continuous in t . Second,

if X̂(1)i (t) = X̂
(2)
i (t) then (46) reduces to

dX̂(1)i (t)− dX̂(2)i (t) =
K∑
k=1

θk(p̄
(1)
ki (ν)− p̄

(2)
ki (ν))(X̂

(1)
k (s))+dt ≥ 0; (47)

hence, X̂(1)i (t + dt) ≥ Ŷ
(2)
i (t + dt). In fact, applying the same argument, we can strengthen

it to (16). For instance, suppose that X̂(1)i (t) = X̂
(2)
i (t) < 0 at t , i.e. (X̂(1)i (t))− = (X̂

(2)
i (t))−.

Then (46) again reduces to (47). Hence,

(X̂
(1)
i (t))− − dX̂(1)i (t) ≤ (X̂

(2)
i (t))− − dX̂(2)i (t),

which simplifies to −X̂(1)i (t + dt) ≤ −X̂(2)i (t + dt) or (X̂(1)i (t + dt))− ≤ (X̂
(2)
i (t + dt))−,

taking into account the facts that X̂(1)i (t + dt) < 0 and X̂(2)i (t + dt) < 0, which follow from
path continuity, along with a sufficiently small dt .

The claim of V̂ (1)(t) ≥ V̂ (2)(t) follows from (16) and (15).

Proof of Theorem 3. First, we define the processes Aλi (t), L
λ
i,j (t), and Sλi,j (t) as

Aλi (t) := Ai

(∫ t

0
λi(s) ds

)
, Sλi,j (t) := Si

(
µi

∫ t

0
(Xi(s) ∧Ni) ds

)
,

Lλi,j (t) := Li,j

(
θi

∫ t

0
pij (X(s−))(Xi(s)−Ni)

+ ds

)
,

for each i = 1, . . . , K, j = 0, 1, . . . , K, and t ≥ 0. Then, we define the following first passage
time processes V λ

l := (V λl,1, . . . , V
λ
l,K) and V λ

u := (V λu,1, . . . , V
λ
u,K) as

V λl,i(t) := inf

{
s ≥ 0

∣∣∣∣
K∑

j=1, j �=i
Lλi,j (t + s)+ Lλi,0(t + s)+ Sλi,j (t + s)

≥ Xλi (0)+ Aλi (t)+
K∑

k=1, k �=i
Lλk,i(t)− (Nλ

i − 1)

}

= inf

{
s ≥ 0

∣∣∣∣
K∑

j=1, j �=i
Lλi,j (t + s)+ Lλi,0(t + s)+ Sλi,j (t + s)

≥ Xλi (t)+
K∑

j=1, j �=i
Lλi,j (t)+ Lλi,0(t)+ Sλi,j (t)− (Nλ

i − 1)

}
,

(48)
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V λu,i(t) := inf

{
s ≥ 0

∣∣∣∣
K∑

j=1, j �=i
Lλi,j (t)+ Lλi,0(t)+ Sλi,j (t + s)

≥ Xλi (0)+ Aλi (t)+
K∑

k=1, k �=i
Lλk,i(t)− (Nλ

i − 1)

}

= inf{s ≥ t | Sλi,j (t + s) ≥ Xλi (t)+ Sλi,j (t)− (Nλ
i − 1)}, (49)

where the second equalities in (48) and (49) follow from identity (1). The first passage time
process V λl,i(t) is the first time after time t when the server pool i frees up a server if the arrival
process of class-i jobs is stopped at time t and the switchovers from the other classes to class i
are also stopped at time t , while the switchover from class i to the other classes or leaving the
system without receiving service are allowed after time t . This clearly provides a lower bound
for V λi (t). Since the second line of (48), Xλi (0)+ Aλi (t)+ ∑K

k=1, k �=i Lλk,i(t)− (Nλ
i − 1), is

nondecreasing in t , the first passage time processV λl,i(t) has sample paths inD. The first passage
time process V λu,i(t) is the first time after time t when the server pool i frees up a server if the
arrival process of class i jobs, and switchovers either from class i to the other classes or from the
other classes to class i or leaving the system without receiving service, are all stopped after time t .
It is also clear as an upper bound for V λi (t). However, we note that the term on the right-hand
side of (49),Xλi (0)+ Aλi (t)+ ∑K

k=1, k �=i Lλk,i(t)− ∑K
j=1, j �=i Lλi,j (t)− Lλi,0(t)− (Nλ

i − 1), is
not necessarily nondecreasing in t and, thus, the first passage time process V λu,i(t) does not
necessarily have sample paths in D. We can use the trick of linear interpolation as in the
proof of Theorem 3.1 of Talreja and Whitt (2009) to construct another process Ṽ λu,i(t) such
that V λu,i(t) ≤ Ṽ λu,i(t) for each t ≥ 0, sup0≤t≤T

√
λ|V λu,i(t)− Ṽ λu,i(t)| → 0 with probability 1

as λ → ∞ for each T > 0, and Ṽ λu,i(t) has sample paths in D. The details are omitted.
In order to apply the corollary in Puhalskii (1994, p. 951) to prove (15), we define the

following first passage time processes Zλl = (Zλl,1, . . . , Z
λ
l,K)

� and Zλu = (Zλu,1, . . . , Z
λ
u,K)

�:

Zλl,i(t) := inf

{
s ≥ 0

∣∣∣∣
K∑

j=1, j �=i
Lλi,j (s)+ Lλi,0(s)+ Sλi,j (s)

≥ Xλi (t)+
K∑

j=1, j �=i
Lλi,j (t)+ Lλi,0(t)+ Sλi,j (t)− (Nλ

i − 1)

}
,

Zλu,i(t) = inf{s ≥ 0 | Sλi,j (s) ≥ Xλi (t)+ Sλi,j (t)− (Nλ
i − 1)}.

It is clear that V λl,i(t) = (Zλl,i(t)− t)+ and V λu,i(t) = (Zλu,i(t)− t)+ for each t ≥ 0.
By (43) and the CMT, we have

√
λ

( K∑
j=1, j �=i

1

λ
Lλi,j (s)+ 1

λ
Lλi,0(s)+ 1

λ
Sλi,j (s)− νiµis

)
d−→ √

µiνiBs,i(s),

√
λ

(
1

λ
Sλi,j (s)− νiµis

)
d−→ √

µiνiBs,i(s),

and, together with (13) in Theorem 2,

√
λ

(
1

λ
Xλi (t)+

K∑
j=1, j �=i

1

λ
Lλi,j (t)+ 1

λ
Lλi,0(t)+ 1

λ
Sλi,j (t)− 1

λ
(Nλ

i − 1)− νiµit

)

d−→ X̂i(t)+ √
µiνiBs,i(t)
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and
√
λ

(
1

λ
Xλi (t)+ 1

λ
Sλi,j (t)− 1

λ
(Nλ

i − 1)− νiµit

)
d−→ X̂i(t)+ √

µiνiBs,i(t),

where the convergence is the space (D, J1) as λ → ∞.
Then, by the corollary in Puhalskii (1994, p. 951), we obtain(√

λ

(
1

λ
Zλl,i(t)− t

)
,
√
λ

(
1

λ
Zλl,i(t)− t

))
d−→ (Ẑl,i (t), Ẑu,i(t)) in D2

as λ → ∞, where Ẑl,i (t) = Ẑu,i(t) = X̂i(t)/(µiνi), t ≥ 0. Finally, the theorem is proved by
applying the CMT to the mapping x → x+ : R → R+.

A.4. Proof of the fluid limit in the ED regime

The prelimit fluid-scaled queue-length processes X̄λ have the same representation as (39)
in the QED regime. The proof is very similar to the proof of Theorem 1 by applying the CMT
to the mapping defined in Lemma 2 together with the convergence of fluid-scaled martingales.
We omit the details.

A.5. Proof of the diffusion limit in the ED regime

Proof of Theorem 5. First, by Lemma 4, there exists t0 > 0 such that x(t) > ν for each
t > t0, and, under the heavy-traffic ED assumption, there exists λ0 such that, for any λ > λ0,
inf0<s≤T Xλi (s) > Nλ

i , i = 1, . . . , K. From (19) and (39), we have the following martingale
representation for the diffusion-scaled queue-length processes X̂λ:

X̂λ(t) = X̂λ(0)+ M̂λ
A(t)+

K∑
i=1

[E(ii)(ẼM̂λ
L(t)− M̂λ

L(t)Ẽ)E
(ii)]1 − M̂λ

L,0(t)− M̂λ
S (t)

−
∫ t

0
[(I − P λ(λX̄λ(s−))�)�X̂λ(s)− P̂ λ(X̄λ(s−))�(x(s)− ν)] ds

−
∫ t

0

√
λ[(I − P̄ (X̄λ(s−))�)− (I − P̄ (x(s))�)]�(x(s)− ν) ds (50)

for t > t0 and λ > λ0. Here P̂ λ(·) = [p̂λij (·)]Ki,j=1 ∈ MK .
Second, we define another sequence of processes Ŷ λ with Ŷ λ(0) = X̂λ(0), and

Ŷ λ(t) = X̂λ(0)+ M̂λ
A(t)− M̂λ

L,0(t)− M̂λ
S (t)+

K∑
i=1

[E(ii)(ẼM̂λ
L(t)− M̂λ

L(t)Ẽ)E
(ii)]1

−
∫ t

0
[(I − P λ(λX̄λ(s−))�)�Ŷ λ(s)− P̂ λ(X̄λ(s−))�(x(s)− ν)] ds. (51)

We then show that the difference between X̂λ and Ŷ λ is asymptotically negligible as λ → ∞.
By (50) and (51), we have

X̂λ(t)− Ŷ λ(t) =
∫ t

0
(I − P λ(λX̄λ(s−))�)�(X̂λ(s)− Ŷ λ(s)) ds

+
∫ t

0

√
λ[(I − P̄ (X̄λ(s−))�)− (I − P̄ (x(s))�)]�(x(s)− ν) ds.

By the Lipschitz property of P̄ and the convergence X̄λ d−→ x as λ → ∞, we have ‖X̂λ(t) −
Ŷ λ(t)‖ d−→ 0 as λ → ∞.
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It therefore remains to show the convergence of the processes Ŷ λ. The corresponding
K-dimensional integral mapping ϕ : DK ×DK × CK × R

K × MK × MK → DK that maps
(y, z, w, b, P,Q) into x := ϕ(y, z,w, b, P,Q) is defined by

x(t) = b + y(t)−
∫ t

0
[(I − P(z(s))�)�x(s)−Q(z(s))�(w(s)− ν)] ds, t ≥ 0,

where MK � P(·),Q(·) : R
K → [0, 1]K×K are Lipschitz. A similar argument as used in the

proof of Lemma 2 shows that this mapping is continuous in the space (DK, J1) and if y, z ∈ CK
then x ∈ CK . The sequences of diffusion-scaled F -martingales converge,

(M̂λ
A, M̂

λ
L, M̂

λ
L,0, M̂

λ
S )

d−→ (B̂A, B̂L, B̂L,0, B̂S),

in (DK ×DK×K ×DK ×DK, J1) as λ → ∞, where

B̂A(t) :=
(
B̂A,i

(∫ t

0
ai(s) ds

))�

i=1,...,K
,

B̂S(t) := (B̂S,i(µiνi t))
�
i=1,...,K,

B̂L(t) :=
(
B̂L,i,j

(
θi

∫ t

0
p̄ij (x(s))(xi(s)− νi) ds

))
i,j=1,...,K

,

B̂L,0(t) :=
(
B̂L,i,0

(
θi

∫ t

0
p̄i0(x(s))(xi(s)− νi) ds

))�

i=1,...,K
,

B̂A,i , B̂L,i,j , and B̂S,i are mutually independent standard Brownian motions, and x(t) is defined
in (19). This follows by applying the FCLT for multidimensional square-integrable martingales
because M̂λ

A,i(t), M̂
λ
L,i,j (t), M̂

λ
L,i,0(t), and M̂λ

S,i(t) have quadratic variations:

〈M̂λ
A,i〉(t) = 1

λ

∫ t

0
λi(s) ds =

∫ t

0
ai(s) ds,

〈M̂λ
S,i〉(t) = µi

∫ t

0
(X̄λi (s) ∧ N̄λ

i ) ds
d−→ µiνi t,

(52)

〈M̂λ
L,i,j 〉(t) = θi

∫ t

0
pλij (λX̄

λ(s−))(X̄λi (s)− N̄λ
i )

+ ds

d−→ θi

∫ t

0
p̄ij (x(s))(xi(s)− νi) ds, (53)

as λ → ∞, for each t ≥ 0 and i = 1, . . . , K, j = 0, 1, . . . , K . Equations (52) and (53) follow
from the heavy-traffic ED assumption (17) and the SB of {X̂λ}.

Finally, by applying the CMT to the mapping ϕ and the convergence of diffusion-scaled
martingales, we obtain Ŷ λ

d−→ Ŷ in (DK, J1) as λ → ∞, where

dŶ (t) = P̂ (x(s))�(x(t)− ν) dt − (I − P̄ (x(t))�)�Ŷ (t) dt

+ d

(
B̂A(t)+

K∑
i=1

[E(ii)(ẼB̂L(t)− B̂L(t)Ẽ)E
(ii)]1 − B̂L,0(t)− B̂S(t)

)
,

and x(t) is defined in (19). It is easy to check that the Brownian terms here are equivalent in
distribution to the Brownian motion W in (25).
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Proof of Corollary 4. Here we give a proof by defining the diffusion-scaled process X̂λ in
terms of centering around the steady state of the fluid limit process.

Define the diffusion-scaled processes X̂λ by

X̂λi (t) := λ−1/2(Xλi (t)− (Nλ
i + λq∗

i )), i = 1, . . . , K,

with q∗
i given in (23). Under the heavy-traffic ED assumption, for any given ε ∈ (0,maxi q∗

i )

and T > 0, there exists λ0 such that, for any λ ≥ λ0 and each i,

inf
0≤s≤T X

λ
i (s) ≥ λ(vi + q∗

i − ε) > Nλ
i .

Thus, for any λ ≥ λ0 and each i, we can write X̂λ in the following matrix form for all λ > λ0:

X̂λ(t) = X̂λ(0)+ M̂λ
A(t)+

K∑
i=1

[E(ii)(ẼM̂λ
L(t)− M̂λ

L(t)Ẽ)E
(ii)]1

− M̂λ
L,0(t)− M̂λ

S (t)−
∫ t

0
(I − P �)�X̂λ(s) ds. (54)

The martingale terms in (54) converge as in the proof of Theorem 5, but

〈M̂λ
L,i,j 〉(t) = θipij

∫ t

0
(X̄λi (s)− N̄λ

i )
+ ds

d−→ θipij q
∗
i t, i = 1, . . . , K, j = 0, 1, . . . , K.

We can then apply the CMT to the simple mapping (y, b, P ) → x : DK×R
K×MK → DK ,

defined by the x(t) = b + y(t)− ∫ t
0 (I − P �)�x(s) ds.

A.6. Proofs of the fluid and diffusion limits in the mixed regimes

Proof of Theorem 6. First, we have the same martingale representation of X̄λ as in (39).
Second, we can show the SB of the multidimensional integral representation and the
convergence of fluid-scaled martingales. Third, we can apply CMT to the mapping in Lemma 2
to conclude the convergence of X̄λ. Last, the steady states are derived directly from the fluid
limit.

Proof of Theorem 7. Here we only focus on the mixed QD and ED regime. First, as in (42)
and (54), we have the following martingale representations of the processes X̂λi for large λ and
i ∈ K̃1, K̃2 and K̃3, separately:

X̂λi (t) = X̂λi (0)+ M̂λ
A,i(t)+

K∑
k∈K̃2∪K̃3

M̂λ
L,k,i(t)− M̂λ

L,i,0(t)− M̂λ
S,i(t)− µi

∫ t

0
X̂λi (s) ds

+
∫ t

0

( ∑
k∈K̃2

θkp
λ
ki(X̂

λ
k (s))

+ +
∑
k∈K̃3

θkp
λ
kiX̂

λ
k (s)

)
ds for i ∈ K̃1, (55)

X̂λi (t) = X̂λi (0)+ M̂λ
A,i(t)+

∑
k∈K̃2∪K̃3, k �=i

M̂λ
L,k,i(t)−

K∑
j=1, j �=i

M̂λ
L,i,j (t)− M̂λ

L,i,0(t)

− M̂λ
S,i(t)− µi

∫ t

0
(X̂λi (s) ∧ 0) ds −

∫ t

0

(
θi(1 − pλii)(X̂

λ
i (s))

+
)

ds

+
∫ t

0

( ∑
k∈K̃2, k �=i

θkp
λ
ki(X̂

λ
k (s))

+ +
∑
k∈K̃3

θkp
λ
ki(X̂

λ
k (s))

+
)

ds for i ∈ K̃2, (56)
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X̂λi (t) = X̂λi (0)+ M̂λ
A,i(t)+

∑
k∈K̃2∪K̃3, k �=i

M̂λ
L,k,i(t)−

K∑
j=1, j �=i

M̂λ
L,i,j (t)− M̂λ

L,i,0(t)

− M̂λ
S,i(t)+

∫ t

0

( ∑
k∈K̃2

θkpki(X̂
λ
k (s))

+ +
∑

k∈K̃3, k �=i
θkpkiX̂

λ
k (s)

)
ds

− θi(1 − pii)

∫ t

0
X̂λi (s) ds for i ∈ K̃3. (57)

It is easy to see that the multidimensional integral mapping defined by (55)–(57) that maps
the martingale terms and initial conditions to X̂λ is continuous in the Skorokhod J1 topology,
as in the proof of Lemma 2. It is also easy to check that X̂λ is SB. All the diffusion-scaled
martingales converge, and only differ in the limits of their quadratic variations. In particular, for

i ∈ K̃3, 〈M̂λ
L,i,j 〉(t) = θi

∫ t
0 p

λ
ij (X̄

λ
i (s)− N̄λ

i )
+ ds

d−→ θip̄ij (x
∗
i − νi)t, and 〈M̂λ

L,i,j 〉(t)
d−→ 0

for i ∈ K̃1 ∪ K̃2. The martingale limits contribute to the Brownian motion term in
(35)–(37). Thus, the convergence follows by applying the CMT together with the convergence
of the diffusion-scaled martingales. The convergence in the other mixed regimes follows
similarly and is thus omitted.
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