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1. Introduction and summary. Let Xh X2, . . . , Xn be mutually 
independent random variables with a common continuous distribution func­
tion F(t). Let Fn(t) be the corresponding empirical distribution function, that 
is Fn(t) = (number of J ^ < ,̂ 1 < i < n)/n. In his paper (12) A. Rényi 
proves, among many others, the following two theorems: 

THEOREM 1. 

lim P{n* sup [Fn(f) - F(t)]/F(t) < y} 
n->œ a<F(t) 

= ( — ) I exp(— %t2)dt, if y > 0, 0 < a < 1 and zero otherwise. 

= *(y(a/ [ l - a])*). 

THEOREM 2. 

limP{«*sup \Fn(t) - F(t)\/F(t) < y) 
w-*oo a<F(t) 

= ± E { ( - 1 ) 7 ( 2 * + 1)} exp{-(2£ + l ) 2 x2(l - a)/Say2}, 

if y > 0, 0 < a < 1 and zero otherwise. 
= L(y(a/[l - a])*). 

Obviously (see also (2)), the following two corollaries are also true: 

COROLLARY 1. 

limP{W* sup \Fn(t) - F(t)\/[1 - F(t)] < y] = *(y([l - &]/&)*), 
n->oo F(t)<b 

where <£(.) w as defined in Theorem 1, and 0 < 6 < 1. 

COROLLARY 2. 

limP{n*sup \Fn(f) - F (0 | /{1 - F(0} <y} = L(y([l - &]/&)*), 
n->oo F(t)<b 

where L{.) is as defined in Theorem 2, awa7 0 < b < 1. 

Received February 1, 1966. This research was supported in part by the Office of Naval 
Research, Project ONR 042-023, Contract Nonr-1858(05) to Princeton University. 

550 

https://doi.org/10.4153/CJM-1967-048-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-048-7


SOME RESULTS OF RENYI 551 

If in these two corollaries we put b = 1 — a, 0 < a < 1, and replace 
1 — F(t) by F(t) and 1 — Fn(i) by Fn(t), then they coincide with Theorems 
1 and 2 respectively. 

One of the purposes of this paper is to give a simple proof for Corollaries 1 
and 2 and thereby for Theorems 1 and 2. In § 3 two more theorems of Rényi 
are also proved. 

We define 

Dn+(b) = supF(<)<6 \Fn(t) - F(t)}/{1 - F(t)}, 

D„-(b) = -infF(0<6 {FJt) - F(t)}/{1 - F(t)}, 

where 0 < b < 1 in both cases. Let us put 

(1.2) RJb) = Dn+(b)+Dn-(b); 

Rn(b) is called the range of the two random variables of (1.1). 
The distribution of the range of the original Kolmogorov-Smirnov statistic 

was derived by Kuiper in (10). He also points out that in the case when the 
probability is distributed on the circumference of a circle and there is there­
fore no natural starting point for the distribution function, and different 
starting points will give the Kolmogorov-Smirnov test statistics different 
values, the range 

SUPO<KI Wt) - F(t)} - infcKKi {Fn(t) - F(t)\ 

is independent of the starting point. This property is not shared by the 
weighted range in (1.2). In this paper we are going to prove the following two 
theorems regarding the random variables of (1.1) and (1.2). 

THEOREM 3. 

(2k + 1) Vfr 1 • (2k + l)wy 
2(x + y)2(l -b)JSm x + y ' 

THEOREM 4. 

\im P{n*Rn(b) < r] = I 5(6/(1 - b);u)du, r > 0, 

where 

5(b/(l - b);r) = 8 S ( - 1 ) * - V < K M V ( 1 - &)P) 
Jc=l 

is the asymptotic density function of the range Rn(b), and where <f>(.) stands for 
the normal density function with zero mean and unit variance. 

MmP{nhD~(b) < x, n*Dn
+(b) < y} 

W->CO 

4 ^ i r 

where x > 0, y > 0. 
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2. Proof of Corollaries 1 and 2 of § 1. Without loss of generality we 
may assume that F(t) = t with t uniformly distributed on [0, 1], and that 
Fn(t) is the empirical distribution function constructed by selecting a random 
sample of size n from this uniform distribution. Let 

Ut) = n*(F»(0 - 0 , 0 < t < 1. 

It is known that %n(i) is a Markov process. According to a theorem of Donsker 
and Doob (6, 7) we have 

hmP{ sup Ut) <y\ = P{ sup m < y], 

where £(/) is a Gaussian process with parameter t, 0 < t < 1, and covariance 
function r(s} t) = 5(1 — t), 0 < s < t < 1. In our case we get 

(2.1) limP{ sup £n(*)/(l ~ 0 < y\ = P{ sup £(0/(1 - t) < y], 

and the covariance function of the process £(/)/(l — /) is given as 

r(s,t) = 5/(1 - 5), 0 < 5 < t < b. 

It is convenient here to make a transformation due to Doob (7) as follows: 

X(t) = (/+ l)f(*/(*+ 1)), 0 < / < ». 

The resulting process X(£) is called the Wiener-Einstein process, or the 
Brownian movement process, with E(X(t)) = 0, r(s, t) = min (5, ^), 0 < 5, 
/ < 00. In our case this transformation and (2.1) give 

(2.2) P{sup0<«<6 s ( 0 / d - * ) < ? } = P{supo<«<ft/(i-w ^ ( 0 < :v} 
= Si(y,b/(1 - 6 ) ) , 

and when X ( 0 is the above Brownian process, ôi(y; 6/(1 ~ &)) is known to 
be equal to $(y([l — b]/b)*) of Corollary 1; see, e.g., (1, (4.7)). 

An immediate verification of (2.2) also follows from the following property 
of the Brownian process due to Bachelier; see also (7, (4.1)). For fixed 5 

(2.3) Pjmax0<KT [X(s + t) - X(s)] > y] = 2P{X(s + T) - X(s) > y). 

Letting 5 = 0, and using the notation of (2.2), we get (on recalling that the 
sample functions of X(t) are continuous with probability 1): 

ô1(yJ T) = P\supo<t<TX(t) < y} = 1 - 2P{X(T) > y} = *(yT-*), 

where <£(. ) is as defined in Theorem 1. When T = 6/(1 — 6), we get Corollary 1. 
In the case of Corollary 2 we are led to consider 

(2.4) ô2(y, 6/(1 - 6)) = P{supo<«<6/(i-w \X(t)\ < y}, 
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and this is the absorption probability problem for the Brownian process X(t) 
with barriers dty. In particular it is known that 

(2.5) P{ -x < X(f) <y;0<t<T} 

~ 7 r è - o 2 £ + l e X P L 2(x + y)2 Vm x + y ' 

x > 0, y > 0. 

When x = y, (2.5) reduces to ô2(y, T) of (2.4) and ii T = b/(l - b), we 
get Corollary 2. 

3. Some consequences of (2.3) and (2.5). In his paper (12), Rényi 
also derives 

THEOREM 5. 

limP{«* sup [Fn(t) - F(t)]/[1 - F(t)] < y} = N(y,a,b)y 
n-»œ a<F(t)<b 

where — °o < y < +oo aw^ 0 < a < b < 1. 

THEOREM 6. 

limPj»* sup \Fn{t) - F{t)\/{1 - F(t)} <y} = P(y;a ,6) f 

if y > 0, 0 < a < Z ? < l an̂ Z s^ro otherwise. 

For the form of iV(.) and P ( . ) we refer the reader to (12, (3.6) and (3.7)) 
where our N(.) and R(.) are gained by putting b = 1 — a and a = 1 — b, 
and by replacing F(t) by 1 — F(t) and 7^(0 by 1 — Fn(t). That is, Theorems 
5 and 6 are Corollary 1 and 2 type versions of (12, (3.6) and (3.7)). Using 
(2.3) and (2.5) of § 2 we give a short proof of them here and note also that 
there is a misprint in the definition of pk of (12, (3.7)). Instead of having 
[a/( l — a)]5 in the denominator of this pkJ we should have [(1 — b)/b]* in its 
numerator. 

Using the argument and notation of § 2, in case of Theorem 5 we are led 
to consider 

(3.1) P{supa/(i_a)<«<6/(i-ft) X(t) < y}} 

and would like to show here that this probability statement is equal to 
N(y; a, b) of Theorem 5. Considering the Brownian process X(t), we have 

(3.2) P{supr i<«<T2X(0 < y) = P{sup0<K772-Ti X(t + l'i) < y) 

= P!suPo<(<r2-r1 [X(t + ro - x(T{)] + x(ro < y\ 

mp\sup0<t<T2-Tl [X(t + J\) - XCTt)] <y- x}dP{X(Ti) < x], £ 
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the convolution of the distribution functions of two independent random 
variables. It follows from (2.3) that 

P{suPo<,<2v-Ti [X(t + r x ) - X{T,)] <y~x} = Hb - x][T2 - 7 \ H ) , 

where <£(.) is as defined in Theorem 1 and X(Ti) is Gaussian with zero 
mean and variance 7\. Letting T2 = b/(l — b) and 7\ = a/(1 — a) we get, 
through (3.1), Theorem 5. 

In case of Theorem 6 we have to consider 

(3.3) P{supa/(i_a)<<<ft/(i_w \X(t)\ < y], 

and would like to show that this probability is equal to R(y; a, b) of Theorem 6. 
Following the lines of the above argument, we have 

(3.4) P{supTl<t<T2 \X(f)\ <y} 

= P{-y < [X(t + r i ) - X(TX)] + X(T{) <y;0<t<T2- l\] 

- J I 
+00 

P{-(y + x)< X(t + J\) - X(Ti) <y-x; 

4 fi. 1 / 2k + l ) V ( r 2 - Tjj\ . L , n 

= r S^TT e x pV- 8? ) smV2k + 1} 

0 < t < T2 - Ti\ dP{X{T\) < x\ 

It follows from (2.5) that 

P{ ~ (y + x) < X(t + TO - XÇT0 < y - x; 0 < t < T2 - TJ 

w(y — x)N 

2y 

if y > 0 and |x| < y, and it is equal to zero if y < 0 or y > 0 but |x| > y. 
This and (3.4) imply that 

P(s„n \X(t)\ < v\ - i t ^P\-(2k + l)\2(T2-T1)/8y2} 

v f+"exp(-xV2ri) . ((ob,^ y - A , 
xLv—7(2^rsm\i2k + 1)w^y~)dx-

It can be shown by simple calculations that this last expression is equal to 

(3.5) L(yT2-*)Ek, 

where 

exp(— ^xz)dx + • V(2V) Lr^-** )dX + V(2^y 

J»(2fc+1)7T 

exp(J\ .r2/2;y2)sin x dx, 
o 

and where L(.) is the distribution function of Theorem 2. Putting 

T2 = i / ( l - 6) and 7^ = a / ( l - a) 

in (3.5) we get R(y; a, b) of Theorem 6. 
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4. Proof of Theorems 3 and 4 of § 1. Using the ideas of Doob's paper 
(7) (cf. Donsker (6)), it is easily seen that the statement of Theorem 3 is 
equivalent to 

P{ —info<«<ô/(i_&) X(t) < x, sup0<«<6/(i-6) X(t) < y] 
= P{-x < X{t) < y, 0 < t < b/(l - b)} 

and this probability statement can be evaluated from (2.5) of § 2 on putting 
T = b/(l — b). This completes the proof of Theorem 3. 

Let us now denote the probability in (2.5) by V(T; x, y). Then the prob­
ability density corresponding to (2.5) is given by the mixed derivative 

(4.1) v(T;x,y) = Vxy(T;x, y), 

and introducing 

(4.2) R(T) = sup0<KfX(0 - i n f 0 < K r X ( 0 , 

one gets 

(4.3) 8(T-,r) = I v(T\x, r - x) dx, 
Jo 

the density function of the range R(T) which, with T = b/(l — b), is the 
asymptotic density function of the range Rn(b) of (1.2). Thus Theorem 4 is 
proved by performing the calculations indicated in (4.1) and (4.3). 

Feller (8), in connection with the asymptotic distribution of the range of 
sums of independent random variables, has studied the distribution of the 
range R{T), using an equivalent form of the distribution function V(T; x, y) 
of (2.5) (we are referring here to (8, (3.4) and (3.5)). He has shown in parti­
cular that the density function of the range R(T) of (4.2) is (8, (3.6)). 

(4.4) 5 ( 7 » = 8 É ( - D * - 1 * 2 * ^ - * ) . 

We can thus skip here the calculations indicated in (4.1) and (4.3), and 
(4.4), with T = b/(l — b), terminates the proof of Theorem 4. 

Remark. In (8), Feller also shows that ô(T;r) of (4.4) is positive and that 
it is indeed a density function, by pointing out in (3.8) that it is related to 
the distribution function L(z) which occurs in the original Kolmogorov-
Smirnov theorem on empirical distribution functions; see, e.g., (8, (2.7)). It 
is only appropriate, therefore, that in Rn(b) of (1.2) we have found a Kolmo-
gorov-Smirnov type range statistic, whose limit distribution actually pro­
duces the density function 8(T;r) of (4.4). 

5. On another range statistic. In relation (1.1) Dn
+(.) and A r ( - ) 

could be defined for all / such that a < F(t) < 6, where 0 < a < f r < l i n 
both cases, and we could also consider their appropriate range statistics in 
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the sense of (1.2). Then, in terms of our Brownian process X(t) of § 2, we 
would have the problem of finding 

(5.1) P{ — inia/a-aXKtia-») x(t) < -x, supam-aXKtm-t) X(t) < y} 

= P{x < X(t) <y;a/(l - a) < t < 6/(1 - 6)!> 

where y > 0, x < 0. We have, in general, for y > 0 and y — x > 0, 

(5.2) P{x < X ( 0 < y ; T < i < r 2 j 

= -?{-§(?-*) <-X"(0 - i(y + *) < M y - x ) ; r 1 < / < r2} 

= P{-i(y - * )< I* (' + Pi) - W i ) ] + [X(l\) - \{y + *)] 

< h(y-x)-,o<t< r t - Pi) 

P{-lh(y - x) + u] <x(t + r1) -X(Pi) < | ( y - x ) - « ; 
-oo 

o < * < r 2 - Ti} <tfwz\) - è(y + *) < «}, 
where, for 3/ — x > Oand |w| < \{y — x), the first probability statement under 
the integral sign can be easily evaluated using (2.5) of § 2, and X(Ti) is 
Gaussian with zero mean and variance 7\. If in (5.2) x < Oand 7\ = a/(I — a), 
T2 = b/(l — b), we get the joint distribution function of (5.1). Performing 
the calculations indicated in (4.1) and (4.3) in this context now, the density 
function of the range 

supa/(i_a)<*<6/(i_&) X(t) — infa/(i_a)<z<6/(i_&) X(t) 

can be computed. However, because of the convolution integral of (5.2), this 
density function seems to have a complicated form, which I could not reduce 
to a presentable form. 

6. Some further remarks. 

Remark 1. Two sample versions of Rényi's Kolmogorov-Smirnov type 
statistics of (12) have been studied in (3). In particular the asymptotic 
distribution function of the random variable 

(6.1) N*supa<Fit) \Fln(t) - F2m(t)}/F(t), 0 < a < 1, 

has been derived, where F\n(t) and F2m(0 are two empirical distribution 
functions based on two mutually independent random samples of size n and 
m respectively of mutually independent random variables, N = nm/(n + w), 
and n —-> 00, m —* 00 so that m/n —» p, a constant. Using the same method of 
proof as in (3, § 4), one can also derive the limit distribution of 

(6.2) iV* supF(l)<6 \Fu{t) - F2m(t)}/{1 - Fit)}, 0 < b < 1. 

In fact all the theorems of (3) remain true with a — 1 — b in their forms. 
Combining the method of (3, § 4) and that of § 4 of this paper and intro-
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ducing definitions in connection with (6.2) on the line of (1.1) and (1.2), it 
can be easily seen that Theorems 3 and 4 remain true in this 2-sample situa­
tion also. 

Remark 2. ^-sample (k > 1) versions of Rényi's Kolmogorov-Smirnov type 
statistics have been studied in (4, 5). In particular the asymptotic distribu­
tion function of the random variable 

(6.3) Nl sup I I I Fnj(t) - F\t) \ / F*(f), 0 < a < 1, 
a<F(t) V j=l J I 

has been derived, where Fnj(t), j = 1, . . . , k, are empirical distribution 
functions, based on random samples of size njy j = 1, . . . , k, of mutually 
independent random variables, 

Nk = »i / ( § » i / » i ) , 

and Uj—* oo, k = 1, . . . , k, so that ni/tij —> pjy j = 2, . . . , k, where the p3 

are constant for each j . Using the same method of proof as in (5, § 2), one can 
also derive the limit distribution of 

(6.4) N\ sup { E[ (1 - FnAt)) - (1 - F(t)A/ (1 - F(t))\ 

where 0 < b < 1. In fact, (5, Theorems 1, 2, 3, and 4), remain true with 
a = 1 — b in their forms. Combining the method of (5, § 2) and that of § 4 
of this paper and introducing definitions in connection with (6.4) on the 
lines of (1.1) and (1.2), it can be easily seen that Theorems 3 and 4 of this 
paper hold in this ^-sample situation also. 

Remark 3. If in (1.1) we put b = 1 — a, and replace 1 — F(t) by F(t) 
and 1 — Fn(t) by Fn(t), then we get 

(Ç\ K\ Dn+{a) = SUP«<^> f 7 ^) " Fn(t)}/F(t), 
( D 'D j Dn~(a) = -infa<F(<) {F(t) - Fn(t)}/F(t), 0 < a < 1, 

and Rn{a) = Dn
+(a) + Dn~(a). In this context obvious corollaries to Theorems 

3 and 4 then hold, with the same distribution functions, with b replacing 
1 — a in their form. The content of Remarks 1 and 2 also remains true, mutatis 
mutandis, in the light of this remark when one defines Rn(a) in terms of (6.1) 
and (6.3) on the lines of (6.5). 

Remark 4. Using (2, Theorem 5), it can be seen that F(i) in the denomi­
nator of the random variables of (1.1), (6.1), (6.2), (6.3), (6.4), and (6.5) 
can be replaced by appropriate sample distribution functions, and Theorems 
3 and 4 and their versions in the sense of Remarks 1, 2, and 3 remain true. 

Remark 5. The referee of this paper has pointed out that the probability 
distribution function in (2.5) is symmetric in the variables x and y, which 
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fact cannot be seen from the formula given in this paper, and has given the 
following symmetric form of the function: 

(2k -\- l)ir x — y 
2 x + y J ' 

This form of the function in (2.5) with T = b/(l — b) gives us a sym­
metric expression in the variables x and y for the limit distribution function 
of Theorem 3. 

Acknowledgment. I would like to thank the referee for the content of 
Remark 5 and for his careful reading of my manuscript. 
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