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Abstract

We show that if the pair ( f , g) of functions mapping a linear space X over the field K = R or C into K
satisfies the composite equation

f (x + g(x)y) = f (x) f (y) for x, y ∈ X

and f is nonconstant, then the continuity on rays of f implies the same property for g. Applying this
result, we determine the solutions of the equation.
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1. Introduction

The functional equation
f (x + g(x)y) = f (x) f (y) (1.1)

is a generalisation of the Goła̧b–Schinzel equation

f (x + f (x)y) = f (x) f (y).

Equations of this type belong to the most intensively studied composite functional
equations. They have their roots in the problems related to determination of
substructures of various algebraic structures. Such equations are also closely
connected with some problems in mathematical meteorology and fluid mechanics, for
example evaporation of cloud droplets and water discharging from a reservoir (see
[9]). More details concerning these Goła̧b–Schinzel type functional equations and
their applications can be found in [1] and in a survey paper [3].

In the recent papers [7] and [8], Jabłońska considered the solutions of (1.1) in
the real case under the assumption that f is continuous and continuous on rays,

This work was partially supported by the Centre for Innovation and Transfer of Natural Sciences and
Engineering Knowledge.
c© 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 $16.00

273

https://doi.org/10.1017/S0004972714001075 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972714001075


274 J. Chudziak [2]

respectively. The main idea of the considerations presented in [7] and [8] is to
prove that if the pair ( f , g) satisfies (1.1) and f is nonconstant then the continuity
or continuity on rays of f implies the same property for g. Then, in order to determine
the solutions of (1.1), it is enough to apply the results of [4] and [6], respectively.

The aim of this paper is to present a significantly shorter and simpler proof of the
main results in [7] and [8] which works also in the complex case.

2. Results

The crucial new idea in our considerations is the nontrivial fact that, in some classes
of functions, the condition

g(x + g(x)y) = 0 if and only if g(x)g(y) = 0 (2.1)

is equivalent to the Goła̧b–Schinzel equation. It seems that the approach suggested
in this section could be applied in several problems arising from Goła̧b–Schinzel type
equations.

In order to formulate the result precisely, we need to recall some notions. Let X be a
linear space over the fieldK = R or C. A function f : X→ K is said to be continuous on
rays provided that, for every x ∈ X\{0}, the function fx : K→ K given by fx(t) = f (tx),
for t ∈ K, is continuous. Furthermore, given a nonempty subset A of X, a point a ∈ A
is said to be an algebraically interior point of A provided that, for every x ∈ X\{0},
there is an rx > 0 such that {a + tx : t ∈ K, |t| < rx} ⊂ A. By intaA, we will denote the
set (possibly empty) of all algebraically interior points of A.

Theorem 2.1. Assume that X is a linear space over the field K = R or C, g : X → K,
0 ∈ g(X) and inta{x ∈ X | g(x) , 0} , ∅. Then the following three conditions are
equivalent:

(i) (2.1) holds for every x, y ∈ X;
(ii) g(x + g(x)y) = g(x)g(y) for x, y ∈ X;
(iii) there exists a nontrivial K-linear functional L : X→ K such that g(x) = L(x) + 1

for x ∈ X, or there exists a nontrivial R-linear functional L : X → R such that
g(x) = max{L(x) + 1, 0} for x ∈ X.

The equivalence of (i) and (ii) has been proved in [5, Theorem 1] and the
equivalence of (ii) and (iii) has been established in [2, Theorem 3].

The next theorem is the main result of the paper.

Theorem 2.2. Let X be a linear space over the field K = R or C and f , g : X → K.
Assume that f is nonconstant and that the pair ( f , g) satisfies the equation

f (x + g(x)y) = f (x) f (y) for x, y ∈ X. (2.2)

If f is continuous on rays, then so is g.
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Proof. Assume that f is continuous on rays and put F := {x ∈ X | f (x) = 0} and
G := {x ∈ X | g(x) = 0}. Then

F = G. (2.3)

In fact, if x ∈ G, then, in view of (2.2), f (x) = f (x) f (y) for y ∈ X. As f is nonconstant,
this means that x ∈ F. Conversely, if x ∈ F, then, making use of (2.2), we get
f (x + g(x)y) = 0 for y ∈ X. Hence, x ∈ G, because otherwise f would be constant.

First consider the case where G , ∅. Then, taking into account (2.2) and (2.3), for
every x, y ∈ X,

g(x + g(x)y) = 0⇔ f (x + g(x)y) = 0⇔ f (x) f (y) = 0⇔ g(x)g(y) = 0.

Therefore, for every x, y ∈ X, (2.1) holds. Furthermore, applying (2.2) with x = y = 0,
we get f (0) ∈ {0, 1}. If f (0) = 0, then, substituting y = 0 in (2.2), we obtain f = 0,
which yields a contradiction. Thus, f (0) = 1 and so fx(0) = 1 for x ∈ X. Since f
is continuous on rays, this means that 0 ∈ inta{x ∈ X | f (x) , 0}. Hence, in view of
(2.3), inta{x ∈ X | g(x) , 0} , ∅. Consequently, as G , ∅, by applying Theorem 2.1, we
conclude that (iii) holds. Thus, g is continuous on rays.

Now assume that G = ∅. Then, in view of (2.3), F = ∅. Let X1 := {x ∈ X | fx = 1}.
Since f is nonconstant and fx(0) = 1 for x ∈ X, we have X\X1 , ∅. We claim that

gx = 1 for x ∈ X\X1. (2.4)

To this end, fix an x ∈ X\X1. Since fx is continuous, there exists a nonempty open set
Ux ⊂ K such that f (tx) = fx(t) , 1 for t ∈ Ux. Suppose that g(t0x) , 1 for some t0 ∈ Ux.
Then, as F = ∅, applying (2.2) with x and y replaced by t0x and t0x/(1 − g(t0x)),
respectively, we get f (t0x) = 1, which yields a contradiction. Therefore, g(tx) = 1
for t ∈ Ux, which together with (2.2) gives

fx(t + s) = f (tx + sx) = f (tx + g(tx)sx) = f (tx) f (sx) = fx(t) fx(s) for s ∈ K, t ∈ Ux.

Hence, as fx maps K into K\{0}, according to [10, Lemma 18.5.1],

fx(t + s) = fx(t) fx(s) for s ∈ K, t ∈ [Ux],

where [Ux] denotes the subgroup of the additive group ofK generated by Ux. However,
as Ux is open, we have [Ux] = K. Thus, fx(t + s) = fx(t) fx(s) for s, t ∈ K and so fx is
the exponential function. Therefore, since F = ∅, taking into account (2.2), for every
s, t ∈ K,

fx((gx(t) − 1)s) =
fx(gx(t)s)

fx(s)
=

fx(t) fx(gx(t)s)
fx(t) fx(s)

=
fx(t + gx(t)s)

fx(t) fx(s)
=

f (tx + g(tx)sx)
f (tx) f (sx)

= 1.

Thus, gx(t) = 1 for t ∈ K, because x ∈ X\X1. In this way, we have proved (2.4).
Now note that f is exponential, that is, for every x, y ∈ X,

f (x + y) = f (x) f (y). (2.5)
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In fact, fix x, y ∈ X. If x ∈ X\X1, then (2.5) follows from (2.2) and (2.4). If x ∈ X1,
then, applying (2.2),

f (x + y) = f
(
y + g(y)

x
g(y)

)
= f (y) f

(
x

g(y)

)
= f (y) fx

(
1

g(y)

)
= f (y) = f (x) f (y).

Since f is exponential and F = ∅, taking into account (2.2), for every x, y ∈ X,

f ((g(x) − 1)y) =
f (g(x)y)

f (y)
=

f (x) f (g(x)y)
f (x) f (y)

=
f (x + g(x)y)

f (x) f (y)
= 1.

As f is nonconstant, this means that g = 1. Therefore, g is continuous on rays. �

We conclude the paper with the following result describing the solutions of (2.2).

Proposition 2.3. Assume that X is a linear space over the field K = R or C, f : X→ K
is nonconstant and continuous on rays and g : X → K. Then the pair ( f , g) satisfies
(2.2) if and only if one of the following possibilities holds:

(a) g = 1 and f is exponential;
(b) there exist a nontrivial K-linear functional L : X → K and a nonconstant

continuous multiplicative function m : K→ K such that

g(x) = L(x) + 1 for x ∈ X (2.6)

and
f (x) = m(L(x) + 1) for x ∈ X; (2.7)

(c) there exist a nontrivial R-linear functional L : X → R and a nonconstant
continuous multiplicative function m : [0,∞)→ K such that, for x ∈ X, g(x) =
max{L(x) + 1, 0} and

f (x) =
{

m(L(x) + 1) whenever L(x) + 1 ≥ 0,
0 otherwise. (2.8)

Proof. In view of Theorem 2.2 and [6, Proposition 3], in order to complete the proof,
it is enough to prove the continuity of m. To this end note that in the case of (2.7), we
have m(t) = f ((t − 1)x/L(x)) = fx((t − 1)/L(x)) for t ∈ K, where x ∈ X\ker L is fixed;
and, in the case of (2.8), we get m(t) = fx((t − 1)/L(x)) for t ∈ [0,∞), where x ∈ X\ker L
is fixed. Since f is continuous on rays, in both cases we obtain that m is continuous. �

Remark 2.4. According to [10, Theorem 13.1.6], a nonconstant continuous function
m : R→ R is multiplicative if and only if there is an α ∈ (0,∞) such that either
m(t) = |t|α for t ∈ R, or m(t) = |t|αsgn t for t ∈ R. A nonconstant continuous function
m : [0,∞)→ R is multiplicative if and only if there exists an α ∈ (0,∞) such that
m(t) = tα for t ∈ [0,∞).

Continuous multiplicative complex-valued functions are closely related to the
characters. From [11, Section 3.2], it can be shown that a nonconstant continuous
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function m : [0,∞)→ C is multiplicative if and only if there exist an α ∈ (0,∞) and a
β ∈ R such that

m(t) =
{

0 for t = 0,
tαeiβ ln t for t ∈ (0,∞).

Furthermore, a nonconstant continuous function m : C→ C is multiplicative if and
only if m(0) = 0 and

m(reiφ) = rαei(β ln r+nφ) for r ∈ (0,∞), φ ∈ R

with some α ∈ (0,∞), β ∈ R and n ∈ Z.
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[3] J. Brzdȩk, ‘The Goła̧b–Schinzel equation and its generalizations’, Aequationes Math. 70 (2005),

14–24.
[4] J. Chudziak, ‘Semigroup-valued solutions of the Goła̧b–Schinzel type functional equation’,

Abh. Math. Semin. Univ. Hambg. 76 (2006), 91–98.
[5] J. Chudziak, ‘Stability problem for the Goła̧b–Schinzel type functional equations’, J. Math. Anal.

Appl. 339 (2008), 454–460.
[6] J. Chudziak, ‘Semigroup-valued solutions of the Goła̧b–Schinzel type functional equation’,

Aequationes Math. 88 (2014), 183–198.
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[8] E. Jabłońska, ‘On continuous on rays solutions of a composite-type equation’, Aequationes Math.,

doi:10.1007/s00010-013-0243-5.
[9] P. Kahlig and J. Matkowski, ‘A modified Goła̧b–Schinzel equation on restricted domain (with

applications to meteorology and fluid mechanics)’, Österreich. Akad. Wiss. Math.-Natur. Kl.
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