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Abstract

In this paper, we prove the existence of nontrivial solutions to the following Schrödinger equation with
critical Sobolev exponent: {

−∆u + V(x)u = K(x)|u|2
∗−2u + f (x, u), x ∈ RN ,

u ∈ H1(RN )

under assumptions that (i) V(x0) < 0 for some x0 ∈ R
N and (ii) there exists b > 0 such that the set

Vb := {x ∈ RN : V(x) < b} has finite measure, in addition to some common assumptions on K and f ,
where N ≥ 3, 2∗ = 2N/(N − 2).
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1. Introduction

Consider the subcritical semilinear Schrödinger equation

−∆u + V(x)u = a(x)|u|p−2u, u ∈ H1(RN), (1.1)

where N ≥ 3, 2 < p < 2∗ = 2N/(N − 2) (the critical Sobolev exponent), V ∈ C(RN),
V(x) is bounded from below and a ∈ C(RN , R+) ∩ L∞(RN). To the authors’ best
knowledge, except for the three cases of (i) a(x) is periodic or (ii) a(x) is asymptotically
constant: a(x) ≥ lim|x|→∞ a(x) > 0 or (iii) a(x) is vanishing: lim|x|→∞ a(x) = 0, results
on existence of solutions to (1.1) in other cases all require the following coercivity
condition on V (see, for example, [1–3, 12, 13, 15, 17–20, 22]):

(V1) there exists d0 > 0 such that

lim
|y|→+∞

meas{x ∈ RN : |x − y| ≤ d0, V(x) < M} = 0, ∀M > 0
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or the stronger condition

(V1′) for any M > 0, meas{x ∈ RN : V(x) ≤ M} <∞.

This is mainly due to the lack of compactness of the Sobolev embedding.
When it comes to the critical case, things become even more involving [5–9, 11]

and complicated. For example, it is easy to see that if V ≥ 0 and V , 0, the mountain
pass value corresponding to the semilinear Schrödinger equation

−∆u + V(x)u = K(x)|u|2
∗−2u, u ∈ H1(RN) (1.2)

is not a critical value, where:

(K) K ∈ C(RN), 0 < K(x) ≤ K(x0) := K0 and K(x) − K(x0) = o(|x − x0|
2) for some

x0 ∈ R
N .

Furthermore, it follows from the Pohozaev identity that (1.2) with K(x) ≡ 1 has no
nontrivial solution if V(x) + ∇V(x) · x > 0 for all x ∈ RN . This shows that (V1) or
(V1′), or even the stronger condition lim|x|→∞ V(x) =∞, is not sufficient to guarantee
that (1.2) has a nontrivial solution.

Benci and Cerami [4] first studied (1.2) and proved the existence of one nontrivial
solution if V ≥ 0 and ‖V‖N/2 is sufficiently small. Here and in the sequel, by ‖ · ‖s
we denote the usual norm in the space Ls(RN). As far as the authors know, this
is the only existence result available for general V in the critical exponent case.
In the case that ‖V‖N/2 is not sufficiently small, it seems natural to assume that
{x ∈ RN : V(x) < 0} , ∅. When (K) holds and V(x) = q(x) − λ with lim|x|→∞ q(x) =∞,
Chabrowski and Yang [8] proved that (1.2) has a nontrivial solution provided that
N ≥ 5, q(x0) = 0 and λk < λ < λk+1 for k = 1, 2, . . . , where 0 < λ1 < λ2 < λ3 < · · · is
the sequence of all eigenvalues of −∆ + q(x). Obviously, these conditions imply that
V(x0) < 0 and lim|x|→∞ V(x) =∞.

We point out that the coercivity condition lim|x|→∞ q(x) =∞ is very crucial to show
that the energy functional associated with (1.2) satisfies the local (PS) condition in
Chabrowski and Yang [8]. In addition, under the above coercivity condition, the
spectrum of the operator −∆ + q is discrete, which is the sequence of eigenvalues
0 < λ1 < λ2 < λ3 < · · · . A sequence of eigenfunctions corresponding to the eigenvalues
{λn} is complete in L2(RN). This fact is also very important in the arguments in [8].

In this paper, we shall show that (1.2) has a nontrivial solution if V satisfies the
following weaker assumptions:

(V0) V ∈ C(RN), V(x0) < 0 and V(x) is bounded from below;

(V2) there exists b > 0 such that the setVb := {x ∈ RN : V(x) < b} has finite measure.

In addition, if V satisfies (V1), regardless of whether V(x0) < 0 or not, we shall
demonstrate that the following semilinear Schrödinger equation with critical Sobolev
exponent {

−∆u + V(x)u = K(x)|u|2
∗−2u + f (x, u), x ∈ RN ,

u ∈ H1(RN) (1.3)

also has a nontrivial solution.
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To state our results precisely, we first make the following assumptions:

(V0′) V ∈ C(RN) and V(x) is bounded from below;
(V3) −∆u + V(x)u = 0 has only one solution u = 0 in H1(RN);
(F1) f ∈ C(RN × R, R), F(x, t) :=

∫ t
0 f (x, s) ds ≥ 0 and there exist constants p ∈

(2, 2∗) and c0 > 0 such that

| f (x, t)| ≤ c0K(x)(1 + |t|p−1), ∀(x, t) ∈ RN × R;

(F2) f (x, t) = o(|t|), as |t| → 0, uniformly in x ∈ RN ;
(F3) F (x, t) := 1

2 t f (x, t) − F(x, t) ≥ 0, for all (x, t) ∈ RN × R;
(F4) there exists a ∈ C(RN ,R+) with lim|x|→∞ a(x) = 0 such that

0 ≤ t f (x, t) ≤ a(x)(|t|2 + |t|p), ∀(x, t) ∈ RN × R;

(F5) there exist a0, r0 > 0 and κ ∈ (2, 2∗) such that F(x, t) ≥ a0|t|κ, for all (x, t) ∈
Br0 (x0) × R.

We are now in a position to state the main results of this paper.

Theorem 1.1. Assume that N ≥ 5 and that V, K and f satisfy (V0), (V2), (K) and
(F1)–(F4). Then problem (1.3) has a nontrivial solution.

Theorem 1.2. Assume that N = 4 and that V,K and f satisfy (V0), (V2), (V3), (K) and
(F1)–(F4). Then problem (1.3) has a nontrivial solution.

Theorem 1.3. Assume that N ≥ 5 and that V, K and f satisfy (V0), (V1), (K) and
(F1)–(F3). Then problem (1.3) has a nontrivial solution.

Theorem 1.4. Assume that N ≥ 4 and that V, K and f satisfy (V0′), (V1), (K) and
(F1)–(F3) and (F5). Then problem (1.3) has a nontrivial solution.

The remainder of this paper is organized as follows. In Section 2, we establish some
useful lemmas. In Section 3, we give an estimate for critical levels. In the last section,
we give the proofs of Theorems 1.1–1.4.

2. Preliminaries

In this section, we present some useful lemmas.
By (V0′), V(x) is bounded from below and so there is an α0 > 0 such that

V(x) + α0 ≥ 1, ∀x ∈ RN . (2.1)

Set

E∗ =

{
u ∈ H1(RN) :

∫
RN

[|∇u|2 + (V(x) + α0)u2] dx < +∞

}
,

(u, v)∗ =

∫
RN

[∇u∇v + (V(x) + α0)uv] dx, ∀u, v ∈ E∗
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and

‖u‖∗ =

{∫
RN

[|∇u|2 + (V(x) + α0)u2] dx
}1/2

, ∀u ∈ E∗.

Obviously, E∗ is a Hilbert space with the inner product (·, ·)∗ given above; moreover,
‖u‖H1(RN ) ≤ ‖u‖∗ for all u ∈ E∗.

Lemma 2.1 [2, Lemma 3.1]. Suppose that (V0′) and (V1) is satisfied. Then the
embedding from E∗ into Ls(RN) is compact for 2 ≤ s < 2∗.

Let A := −∆ + V . Then A is self-adjoint in L2(RN) with domain D(A) ⊆ H2(RN).
Let {E(µ) : −∞ < µ < +∞} be the spectral family of A and |A|1/2 be the square
root of |A|. Set U = id − E(0) − E(0−). Then U commutes with A, |A| and |A|1/2,
and A = U|A| is the polar decomposition of A (see [10, Theorem 4.3.3]). Let
E = D(|A|1/2) and

E− = E(0−)E, E0 = [E(0) − E(0−)]E, E+ = [E(+∞) − E(0)]E.

Then E = E− ⊕ E0 ⊕ E+. For any u ∈ E, let

u− = E(0−)u, u0 = [E(0) − E(0−)]u, u+ = [E(+∞) − E(0)]u.

Then
u = u− + u0 + u+ ∈ E− ⊕ E0 ⊕ E+ = E.

Note that E0 = Ker(A); on E, we can define another inner product

(u, v) = (|A|1/2u, |A|1/2v)L2 + (u0, v0)L2 , ∀u, v ∈ E

and the norm
‖u‖ =

√
(u, u), ∀u ∈ E,

where, as usual, (·, ·)L2 denotes the inner product of L2(RN). Then E is a Hilbert space
with the inner product (·, ·) given above. Clearly, C∞0 (RN) is dense in E.

Lemma 2.2. Suppose that V satisfies (V0′). Then

Au− = −|A|u−, Au+ = |A|u+, ∀u ∈ E ∩D(A)

and, for the inner products (·, ·)L2 and (·, ·),

E−⊥ E0, E−⊥ E+, E0⊥ E+.

The proof of Lemma 2.2 is standard, so we omit it.

Lemma 2.3. Suppose that V satisfies (V0′) and (V2). Then

dim[E(b/2)E] < +∞.

This lemma should be a well-known result, but we could not find its proof. For the
reader’s convenience we give a proof in detail.
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Proof. In fact, if dim[E(b/2)E] = +∞, then there exists a λ0 ∈ σe(A) ∩ (−∞, b/2],
where σe(A) is the essential spectrum ofA. By [10, Theorem IX 1.3] or [16, Theorem
4.5.2], there exists a sequence {un} ⊂ D(A) such that

un ⇀ 0 in L2(RN), ‖un‖2 = 1, ‖(A− λ0)un‖2 → 0. (2.2)

For u ∈ D(A) \ {0},

(Au, u)L2 =

∫
RN

(|∇u|2 + V(x)u2) dx > −α0‖u‖22.

It follows that the numerical range Θ(A) ofA is

Θ(A) = {(Au, u)L2 : u ∈ D(A), ‖u‖2 = 1} ⊆ (−α0,+∞) (2.3)

and so the spectral setσ(A) ⊂ (−α0,+∞); see [10, Theorem III 4.4]. Choose α1 < −α0;
then α1 ∈ ρ(A) (the resolvent set of A). Let vn = (A − λ0)un and wn = (A − α1)−1un.
Then, by (2.2) and (2.3),

1 = ‖un‖2 ≥
(un,wn)L2

‖wn‖2
=

((A− α1)wn,wn)L2

‖wn‖2
≥ −(α0 + α1)‖wn‖2,

which, together with (2.1), implies that

‖wn‖
2
H1(RN ) =

∫
RN

(|∇wn|
2 + w2

n) dx

≤

∫
RN

[|∇wn|
2 + (V(x) + α0)w2

n] dx

= ((A + α0)wn,wn)L2 = (un + (α0 + α1)wn,wn)L2

≤ ‖un‖2‖wn‖2 + |α0 + α1| ‖wn‖
2
2

≤
2

−(α0 + α1)
. (2.4)

Equation (2.4) shows that {‖wn‖H1(RN )} is bounded. Passing to a subsequence if
necessary, it can be assumed that wn ⇀ w0 in H1(RN). Since un ⇀ 0 in L2(RN) and
(A − α1)−1 is a bounded linear operator in L2(RN), wn ⇀ 0 in L2(RN); consequently,
w0 = 0. It follows that wn → 0 in L2

loc(RN). Hence,

(Awn,wn)L2 =

∫
RN

(|∇wn|
2 + V(x)w2

n) dx

≥ b
∫
RN

w2
n dx +

∫
Vb

(V(x) − b)w2
n dx

= b‖wn‖
2
2 + o(1). (2.5)

There are two possible cases: (1) lim infn→∞ ‖wn‖2 > 0; (2) lim infn→∞ ‖wn‖2 = 0.

Case 1. From (2.5),

1 = ‖un‖2 ≥
(un,wn)L2

‖wn‖2
=

((A− α1)wn,wn)L2

‖wn‖2
≥ (b − α1)‖wn‖2 + o(1). (2.6)
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Since vn = (A− λ0)un,

(A− α1)−1vn = (A− α1)−1(A− λ0)un = un + (α1 − λ0)(A− α1)−1un

= un + (α1 − λ0)wn. (2.7)

Hence, from (2.2), (2.6) and (2.7),

1 = ‖un‖2 ≤ ‖(A− α1)−1vn‖2 + |α1 − λ0| ‖wn‖2 ≤
λ0 − α1

b − α1
+ o(1)

≤

b
2 − α1

b − α1
+ o(1),

since (A− α1)−1 is a bounded operator in L2(RN); we deduce a contradiction.

Case 2. Passing to a subsequence if necessary, it can be assumed that ‖wn‖2 → 0.
Hence, from (2.2) and (2.7), one can get a contradictory inequality

1 = ‖un‖2 ≤ ‖(A− α1)−1vn‖2 + |α1 − λ0| ‖wn‖2 = o(1).

Cases 1 and 2 show that dim[E(b/2)E] < +∞. �

Lemma 2.4. Suppose that V satisfies (V0′) and (V1). Then, for any M > 0,

dim[E(M)E] < +∞.

This lemma is a well-known result; here we give a simple proof.
Proof. If dim[E(M)E] = +∞, then there exists a λ0 ∈ σe(A) ∩ (−∞, M]. By [10,
Theorem IX 1.3] or [16, Theorem 4.5.2], there exists a sequence {un} ⊂ D(A) such
that (2.2) holds. Let vn = (A− λ0)un. Then, by (2.1) and (2.2),

‖un‖
2
∗ =

∫
RN

[|∇un|
2 + (V(x) + α0)u2

n] dx

= ((A + α0)un, un)L2 = (vn + (α0 + λ0)un, un)L2

≤ ‖un‖2‖vn‖2 + (α0 + λ0)‖un‖
2
2 = α0 + λ0 + o(1). (2.8)

Equation (2.8) shows that {‖un‖∗} is bounded. Passing to a subsequence if necessary,
it can be assumed that un ⇀ u0 in H1(RN). Since un ⇀ 0 in L2(RN), u0 = 0. It follows
from Lemma 2.1 that un → 0 in L2(RN), which is a contradiction. �

Lemma 2.5. Suppose that V satisfies (V0′) and (V1) or (V2). Then there exists a
constant β > 0 such that

‖u‖2 ≤ β‖u‖, ∀u ∈ E. (2.9)

Proof. Since dim[E(b/2)E] < +∞, there exists a constant β1 > 0 such that

‖u‖2 ≤ β1‖u‖, ∀u ∈ E(b/2)E. (2.10)

On the other hand,

‖u‖2 = (|A|1/2u, |A|1/2u)L2 + ‖u0‖22 = (|A|u, u)L2

=

∫ +∞

b/2
|λ| d(E(λ)u, u)L2 ≥

b
2
‖u‖22, ∀u ∈ [E(+∞) − E(b/2)]E. (2.11)

The conclusion of Lemma 2.5 follows by the combination of (2.10) with (2.11). �
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Lemma 2.6. Suppose that V satisfies (V0′) and (V1) or (V2). Then

1
√

2 + α0
‖u‖ ≤ ‖u‖∗ ≤

√
1 + α0β2‖u‖, ∀u ∈ E = E∗. (2.12)

Proof. For u ∈ C∞0 (RN), it follows from (2.1) and (2.9) that

‖u‖2∗ =

∫
RN

[|∇u|2 + (V(x) + α0)u2] dx

= (|A|Uu, u)L2 + α0‖u‖22 = (U|A|1/2u, |A|1/2u)L2 + α0‖u‖22
≤ ‖U|A|1/2u‖2‖|A|1/2u‖2 + α0‖u‖22
= ‖|A|1/2u‖22 + α0‖u‖22 ≤ (1 + α0β

2)‖u‖2 (2.13)

and

‖u‖2 = (|A|1/2u, |A|1/2u)L2 + ‖u0‖22 ≤ (|A|u, u)L2 + ‖u‖22
= ((A + α0)Uu, u)L2 − α0(Uu, u)L2 + ‖u‖22
= (U(A + α0)1/2u, (A + α0)1/2u)L2 − α0(Uu, u)L2 + ‖u‖22
≤ ‖U(A + α0)1/2u‖2‖(A + α0)1/2u‖2 + (1 + α0)‖u‖22
= ‖(A + α0)1/2u‖22 + (1 + α0)‖u‖22
= ((A + α0)u, u)L2 + (1 + α0)‖u‖22
= ‖u‖2∗ + (1 + α0)‖u‖22 ≤ (2 + α0)‖u‖2∗. (2.14)

Combining (2.13) with (2.14),

1
√

2 + α0
‖u‖ ≤ ‖u‖∗ ≤

√
1 + α0β2‖u‖, ∀u ∈ C∞0 (RN). (2.15)

Since C∞0 (RN) is dense in E and E∗, it follows from (2.15) that (2.12) holds. �

Remark 2.7. In view of Lemma 2.6, for any s ∈ [2, 2∗], there exists a constant γs > 0
such that

‖u‖s ≤ γs‖u‖, ∀u ∈ E, 2 ≤ s ≤ 2∗. (2.16)

Let m = dim(E− ⊕ E0). In view of [16, Theorem 4.5.4], there exist m eigenfunctions
e1, e2, . . . , em ∈ E− ⊕ E0 ofA such that

E− ⊕ E0 =

m⊕
i=1

Rei, Aei = λiei, i = 1, 2, . . . ,m,

where −α0 < λm ≤ λm−1 ≤ · · · ≤ λ1 ≤ 0. Hence, in view of [14, Theorem C.3.4], we
can check easily the following lemma.

Lemma 2.8. Suppose that V satisfies (V0′) and (V2). Then there exists a constant C0 > 0
such that

‖Au‖∞ + ‖u‖∞ ≤ C0‖u‖2, ∀u ∈ E(0)E = E− ⊕ E0.
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Set

b(u, v) =

∫
RN

(∇u · ∇v + V(x)uv) dx, ∀u, v ∈ E. (2.17)

Then it is easy to check the following lemma.

Lemma 2.9. Suppose that V satisfies (V0′). Then b(u, v) is a bilinear functional on E
and

b(u+, u+) = ‖u+‖2, b(u−, u−) = −‖u−‖2, b(u+, u− + u0) = 0, ∀u ∈ E,

b(u, u) = ‖u+‖2 − ‖u−‖2, ∀u ∈ E (2.18)

and
b(u+, v) = (u+, v), b(u−, v) = −(u−, v), ∀u, v ∈ E. (2.19)

Define a functional Φ on E as follows:

Φ(u) =
1
2

∫
RN

(|∇u|2 + V(x)u2) dx −
1
2∗

∫
RN

K(x)|u|2
∗

dx −
∫
RN

F(x, u) dx.

Under assumptions (V0′), (V1) (or (V2)), (F1) and (F2), Φ is of class C1(E,R) and

Φ(u) =
1
2

b(u, u) −
1
2∗

∫
RN

K(x)|u|2
∗

dx −
∫
RN

F(x, u) dx, ∀u ∈ E (2.20)

and

〈Φ′(u), v〉 = b(u, v) −
∫
RN

K(x)|u|2
∗−2uv dx −

∫
RN

f (x, u)v dx, ∀u, v ∈ E. (2.21)

3. Estimates for critical levels

In this section, we estimate the critical levels of Φ.
Without loss of generality, we may assume that x0 = 0. By virtue of (V0), we can

choose constants r1 ∈ (0, r0/2) and b1 > 0 such that

V(x) ≤ −b1, |x| ≤ 2r1. (3.1)

SetD1,2(RN) = {u ∈ L2∗(RN) : ∇u ∈ L2(RN)}. Let

S := inf
u∈D1,2(RN )\{0}

‖∇u‖22
‖u‖22∗

(3.2)

and

ϑε(x) :=
C(N)η(x)ε(N−2)/2

(ε2 + |x|2)(N−2)/2 , (3.3)

where C(N) = [N(N − 2)](N−2)/4, ε > 0 and η ∈ C∞0 (RN , [0, 1]) with η(x) = 1 if |x| ≤ r1

and η(x) = 0 if |x| ≥ 2r1.
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Lemma 3.1 ([7], [21, Lemma 1.46]). The following estimates are true:

‖ϑε‖
2∗
2∗ = S N/2 + O(εN), ‖∇ϑε‖

2
2 = S N/2 + O(εN−2),

‖ϑε‖1 = O(ε(N−2)/2), ‖ϑε‖
2∗−1
2∗−1 = O(ε(N−2)/2),

‖∇ϑε‖1 = O(ε(N−2)/2),

‖ϑε‖
2
2 =

{
ρ1ε

2 + O(εN−2) if N > 4,
ρ2ε

2| ln ε| + O(ε2) if N = 4

and

‖ϑε‖
s
s =


ρ3ε

N−(N−2)s/2 + O(ε(N−2)s/2) if (N − 2)s > N,
O(εN/2|ln ε|) if (N − 2)s = N,
O(ε(N−2)s/2) if N − 2 ≤ (N − 2)s < N,

where ρ1, ρ2 and ρ3 are positive constants.

Lemma 3.2. Suppose that N ≥ 5 and that V, K and F satisfy (V0), (V2), (K), (F1) and
(F2), respectively. Then there exist ε0 > 0 and θ0 > 0 such that

‖ϑ+
ε0
‖2 − ‖ϑ−ε0

‖2 >
S N/2

2
(3.4)

and
sup{Φ(w + sϑε0 ) : w ∈ E− ⊕ E0, s ≥ 0} ≤

S N/2

NK(N−2)/2
0

− θ0. (3.5)

Proof. By virtue of (2.17), (2.18), (3.1), (3.3) and Lemma 3.1,

‖ϑ+
ε ‖

2 − ‖ϑ−ε ‖
2 =

∫
RN

(|∇ϑε|2 + V(x)ϑ2
ε) dx ≥ S N/2 − O(εN−2) − α0‖ϑε‖

2
2 (3.6)

and

‖ϑ+
ε ‖

2 − ‖ϑ−ε ‖
2 =

∫
RN

(|∇ϑε|2 + V(x)ϑ2
ε) dx ≤ S N/2 + O(εN−2) − b1‖ϑε‖

2
2. (3.7)

Applying Lemma 2.8 and taking note of Remark 2.7,

‖Aw‖∞ + ‖w‖∞ ≤ C1‖w‖, ∀w ∈ E− ⊕ E0,

which, together with (2.17), (2.19), (K) and Lemma 3.1, yields

|(ϑ−ε ,w
−)| = |(ϑε,w−)| =

∣∣∣∣∣∫
RN

[∇ϑε∇w− + V(x)ϑεw−] dx
∣∣∣∣∣

=

∣∣∣∣∣∫
RN
ϑε(Aw−) dx

∣∣∣∣∣ ≤ C2‖w−‖ ‖ϑε‖1

= O(ε(N−2)/2)‖w−‖, ∀w ∈ E− ⊕ E0, (3.8)∫
RN

K(x)|ϑε|2
∗−1|w| dx ≤ K0‖w‖∞‖ϑε‖2

∗−1
2∗−1

= O(ε(N−2)/2)‖w‖, ∀w ∈ E− ⊕ E0 (3.9)
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and ∫
RN

K(x)|ϑε||w|2
∗−1 dx ≤ K0‖w‖2

∗−1
∞ ‖ϑε‖1

= O(ε(N−2)/2)‖w‖2
∗−1, ∀w ∈ E− ⊕ E0. (3.10)

Since dim(E− ⊕ E0) <∞, there exists a constant c1 > 0 such that∫
RN

K(x)|w|2
∗

dx ≥ c1‖w‖2
∗

, ∀w ∈ E− ⊕ E0. (3.11)

Making use of the inequality

|s + t|% ≥ |s|% − %|s|%−1|t| − %|s||t|%−1 + |t|%, ∀s, t ∈ R, % > 2

and using (K) with x0 = 0, (3.3), (3.9), (3.10) and (3.11),∫
RN

K(x)|w + sϑε|2
∗

dx

≥ s2∗
∫
RN

K(x)|ϑε|2
∗

dx − 2∗s2∗−1
∫
RN

K(x)|ϑε|2
∗−1|w| dx

− 2∗s
∫
RN

K(x)|ϑε||w|2
∗−1 dx +

∫
RN

K(x)|w|2
∗

dx

≥ s2∗[K0S N/2 − o(ε2)] − s2∗−1O(ε(N−2)/2)‖w‖
− sO(ε(N−2)/2)‖w‖2

∗−1 + c1‖w‖2
∗

, ∀s ≥ 0, w ∈ E− ⊕ E0. (3.12)

Hence, from (2.18), (2.20), (3.7), (3.8), (3.12) and the the fact that F(x, t) ≥ 0,

Φ(w + sϑε)

=
1
2

(s2‖ϑ+
ε ‖

2 − ‖w− + sϑ−ε ‖
2) −

1
2∗

∫
RN

K(x)|w + sϑε|2
∗

dx

−

∫
RN

F(x,w + sϑε) dx

≤
1
2

[s2(‖ϑ+
ε ‖

2 − ‖ϑ−ε ‖
2) − ‖w−‖2] − s(w−, ϑ−ε )

−
1
2∗

∫
RN

K(x)|w + sϑε|2
∗

dx

≤
s2

2
[S N/2 + O(εN−2) − b1‖ϑε‖

2
2] −

1
2
‖w−‖2 + sO(ε(N−2)/2)‖w−‖

−
s2∗

2∗
[K0S N/2 − o(ε2)] + s2∗−1O(ε(N−2)/2)‖w‖

+ sO(ε(N−2)/2)‖w‖2
∗−1 −

c1

2∗
‖w‖2

∗

≤
S N/2

NK(N−2)/2
0

− b2‖ϑε‖
2
2 −

1
2
‖w−‖2 + O(ε(N−2)/2)‖w−‖ + O(εN−2)
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+ o(ε2) + O(ε(N−2)/2)‖w‖ + O(ε(N−2)/2)‖w‖2
∗−1 −

c1

2∗
‖w‖2

∗

≤
S N/2

NK(N−2)/2
0

− b2‖ϑε‖
2
2 + O(εN(N−2)/(N+2)) + o(ε2),

∀s ≥ 0, w ∈ E− ⊕ E0, (3.13)

where b2 > 0 is a constant. Employing Lemma 3.1, due to the fact that N ≥ 5, we can
choose ε0 > 0 such that

S N/2

2
− O(εN−2) − α0‖ϑε‖

2
2 > 0, 0 < ε ≤ ε0 (3.14)

and

−
b2

2
‖ϑε‖

2
2 + O(εN(N−2)/(N+2)) + o(ε2) < 0, 0 < ε ≤ ε0. (3.15)

Combining (3.13) with (3.15),

Φ(w + sϑε0 ) ≤
S N/2

NK(N−2)/2
0

−
b2

2
‖ϑε0‖

2
2

:=
S N/2

NK(N−2)/2
0

− θ0, ∀s ≥ 0, w ∈ E− ⊕ E0. (3.16)

Now the conclusion of Lemma 3.3 follows by (3.6), (3.14) and (3.16). �

Lemma 3.3. Suppose that N = 4 and that V, K and F satisfy (V0), (V2), (V3), (K), (F1)
and (F2), respectively. Then there exist ε0 > 0 and θ0 > 0 such that (3.4) and (3.5)
hold.

Proof. (V3) yields E0 = {0} and so w− = w for all w ∈ E− ⊕ E0. By virtue of (3.13),

Φ(w + sϑε) ≤
S N/2

NK(N−2)/2
0

− b2‖ϑε‖
2
2 −

1
2
‖w−‖2 + O(ε(N−2)/2)‖w−‖ + O(εN−2)

+ o(ε2) + O(ε(N−2)/2)‖w‖ + O(ε(N−2)/2)‖w‖2
∗−1 −

c1

2∗
‖w‖2

∗

=
S 2

4K0
− b2‖ϑε‖

2
2 −

1
2
‖w‖2 + O(ε)‖w‖ + O(ε2) + O(ε)‖w‖3 −

c1

4
‖w‖4

≤
S 2

4K0
− b2‖ϑε‖

2
2 + O(ε2), ∀s ≥ 0, w ∈ E− ⊕ E0.

The rest of the proof is the same as that of Lemma 3.2. �

Lemma 3.4. Suppose that N ≥ 4 and that V, K and F satisfy (V0′), (V1), (K), (F1), (F2)
and (F5), respectively. Then there exist ε0 > 0 and θ0 > 0 such that (3.4) and (3.5) hold.
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Proof. We only prove that (3.5) holds. From (2.17), (2.18) and Lemma 3.1,

‖ϑ+
ε ‖

2 − ‖ϑ−ε ‖
2 =

∫
RN

(|∇ϑε|2 + V(x)ϑ2
ε) dx

≤ S N/2 + O(εN−2) + b3‖ϑε‖
2
2, (3.17)

where b3 = 1 + max|x|≤2r1 |V(x)|. Since dim(E− ⊕ E0) < ∞, there exist two constants
c2 > 0 and c3 > 0 such that∫

Br0 (0)
K(x)|w|2

∗

dx ≥ c2‖w‖2
∗

∞,Br0
, ∀w ∈ E− ⊕ E0

and ∫
Br0 (0)

|w|κ dx ≥ c3‖w‖κ∞,Br0
, ∀w ∈ E− ⊕ E0,

where ‖w‖∞,Br0
= ess sup|x|≤r0

|w(x)|. Since κ ∈ (2, 2∗), analogous to the proof of (3.12),∫
Br0 (0)

K(x)|w + sϑε|2
∗

dx

≥ s2∗
∫

Br0 (0)
K(x)|ϑε|2

∗

dx − 2∗s2∗−1
∫

Br0 (0)
K(x)|ϑε|2

∗−1|w| dx

− 2∗s
∫

Br0 (0)
K(x)|ϑε||w|2

∗−1 dx +

∫
Br0 (0)

K(x)|w|2
∗

dx

≥ s2∗[K0S N/2 − o(ε2)] − s2∗−1O(ε(N−2)/2)‖w‖∞,Br0

− sO(ε(N−2)/2)‖w‖2
∗−1
∞,Br0

+ c2‖w‖2
∗

∞,Br0
, ∀s ≥ 0, w ∈ E− ⊕ E0 (3.18)

and ∫
Br0 (0)

|w + sϑε|κ dx ≥ sκ
∫

Br0 (0)
|ϑε|

κ dx − κsκ−1
∫

Br0 (0)
|ϑε|

κ−1|w| dx

− κs
∫

Br0 (0)
|ϑε||w|κ−1 dx +

∫
Br0 (0)

|w|κ dx

≥ sκ‖ϑε‖κκ − O(ε(N−2)/2)[sκ−1‖w‖∞,Br0
+ s‖w‖κ−1

∞,Br0
]

+ c3‖w‖κ∞,Br0
, ∀s ≥ 0, w ∈ E− ⊕ E0. (3.19)

Hence, from (F5), (2.18), (2.20), (3.8), (3.17), (3.18) and (3.19),

Φ(w + sϑε)

≤
1
2

[s2(‖ϑ+
ε ‖

2 − ‖ϑ−ε ‖
2) − ‖w−‖2] − s(w−, ϑ−ε )

−
1
2∗

∫
Br0 (0)

K(x)|w + sϑε|2
∗

dx − a0

∫
Br0 (0)

|w + sϑε|κ dx
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≤
s2

2
[S N/2 + O(εN−2) + b3‖ϑε‖

2
2] −

1
2
‖w−‖2 + sO(ε(N−2)/2)‖w−‖

−
s2∗

2∗
[K0S N/2 − o(ε2)] + s2∗−1O(ε(N−2)/2)‖w‖∞,Br0

+ sO(ε(N−2)/2)‖w‖2
∗−1
∞,Br0

−
c2

2∗
‖w‖2

∗

∞,Br0
− a0sκ‖ϑε‖κκ

+ O(ε(N−2)/2)[sκ−1‖w‖∞,Br0
+ s‖w‖κ−1

∞,Br0
] − a0c3‖w‖κ∞,Br0

≤
S N/2

NK(N−2)/2
0

+ b4‖ϑε‖
2
2 −

1
2
‖w−‖2 + O(ε(N−2)/2)‖w−‖

+ O(ε(N−2)/2)(‖w‖2
∗−1
∞,Br0

+ ‖w‖κ−1
∞,Br0

+ ‖w‖∞,Br0
)

−
c2

2∗
‖w‖2

∗

∞,Br0
− a1‖ϑε‖

κ
κ − a0c3‖w‖κ∞,Br0

≤
S N/2

NK(N−2)/2
0

+ 2b4‖ϑε‖
2
2 + O(ε(N−2)/2)‖w‖∞,Br0

− a1‖ϑε‖
κ
κ −

a0c3

2
‖w‖κ∞,Br0

≤
S N/2

NK(N−2)/2
0

+ 2b4‖ϑε‖
2
2 + O(εκ(N−2)/2(κ−1)) − a1‖ϑε‖

κ
κ,

∀s ≥ 0, w ∈ E− ⊕ E0, (3.20)

where a1, b4 > 0 are constants. Employing Lemma 3.1, due to the fact that N ≥ 4 and
2 < κ < 2N/(N − 2), we can choose ε0 > 0 such that

2b4‖ϑε‖
2
2 + O(εκ(N−2)/2(κ−1)) −

a1

2
‖ϑε‖

κ
κ < 0, 0 < ε ≤ ε0. (3.21)

Combining (3.20) with (3.21),

Φ(w + sϑε0 ) ≤
S N/2

NK(N−2)/2
0

−
a1

2
‖ϑε0‖

κ
κ :=

S N/2

NK(N−2)/2
0

− θ0,

∀s ≥ 0, w ∈ E− ⊕ E0. (3.22)

Now the conclusion of Lemma 3.4 follows by (3.22). �

4. Existence of nontrivial solutions

In this section, we give the proofs of Theorems 1.1–1.4.
Applying the link theorem without the (PS) condition, by standard arguments, we

can prove the following lemma.

Lemma 4.1. Suppose that V, K and F satisfy (V0′), (V1) (or (V2)), (K), (F1)
and (F2), respectively. Then there exist a sequence {un} ⊂ E and a constant c∗ ∈
(0, sup{Φ(w + sϑε0 ) : w ∈ E− ⊕ E0, s ≥ 0}] satisfying

Φ(un)→ c∗, ‖Φ′(un)‖(1 + ‖un‖)→ 0.
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Lemma 4.2. Suppose that V, K and F satisfy (V0′), (V1) (or (V2)), (K), (F1), (F2)
and (F3), respectively. Then any sequence {un} ⊂ E satisfying

Φ(un)→ c ≥ 0, 〈Φ′(un), un〉 → 0, 〈Φ′(un), u+
n 〉 → 0 (4.1)

is bounded in E.
Proof. To prove the boundedness of {un}, arguing by contradiction, suppose that
‖un‖ → ∞. Let vn = un/‖un‖; then ‖vn‖ = 1. In view of (K) and (F2), we can choose
r2 ∈ (0, 1) such that

|K(x)|t|2
∗−2t + f (x, t)| ≤

1
4γ2

2

|t|, ∀|t| ≤ r2, (4.2)

where γ2 is given by (2.16). Hence, from (2.16), (4.2) and the Hölder inequality,
1
‖un‖

∫
|un |≤r2

|[K(x)|un|
2∗−2un + f (x, un)]v+

n | dx ≤
1

4γ2
2‖un‖

∫
|un |≤r2

|un||v+
n | dx

≤
1

4γ2
2‖un‖

‖un‖2‖v+
n ‖2 ≤

1
4
. (4.3)

From (2.20), (2.21), (4.1) and (F3),

c + o(1) =

∫
RN

[ 1
N

K(x)|un|
2∗ +

1
2

f (x, un)un − F(x, un)
]

dx

≥
1
N

∫
|un |≥r2

K(x)|un|
2∗ dx. (4.4)

By (F1), (4.4) and the Hölder inequality,
1
‖un‖

∫
|un |≥r2

|[K(x)|un|
2∗−2un + f (x, un)]v+

n | dx

≤
C1

‖un‖

∫
|un |≥r2

K(x)|un|
2∗−1|v+

n | dx

≤
C2

‖un‖
‖v+

n ‖2∗

(∫
|un |≥r2

K(x)|un|
2∗ dx

)(2∗−1)/2∗

= o(1). (4.5)

Combining (4.3) with (4.5) and using (2.20), (2.21) and (4.1),

1
2

+ o(1) =
‖u+

n ‖
2 − 1

2 (‖u+
n ‖

2 − ‖u−n ‖
2) + Φ(un) − 〈Φ′(un), u+

n 〉

‖un‖
2

≤
‖u+

n ‖
2 − 〈Φ′(un), u+

n 〉

‖un‖
2 =

1
‖un‖

∫
RN

[K(x)|un|
2∗−2un + f (x, un)]v+

n dx

≤
1
‖un‖

∫
|un |<r2

|[K(x)|un|
2∗−2un + f (x, un)]v+

n | dx

+
1
‖un‖

∫
|un |≥r2

|[K(x)|un|
2∗−2un + f (x, un)]v+

n | dx

≤
1
4

+ o(1),

which is a contradiction. Thus, the sequence {un} is bounded in E. �
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Proof of Theorem 1.1. Applying Lemmas 3.2, 4.1 and 4.2, we deduce that there
exists a bounded sequence {un} ⊂ E satisfying

Φ(un)→ c∗ ∈ (0, S N/2/NKN/(N−2)
0 ), ‖Φ′(un)‖(1 + ‖un‖)→ 0. (4.6)

Passing to a subsequence, we have un ⇀ ū in E and so un → ū in Ls
loc(RN), 2 ≤ s < 2∗,

and un → ū almost everywhere on RN . Next, we prove that ū , 0.
Arguing by contradiction, suppose that ū = 0, that is, un ⇀ 0 in E and so un → 0 in

Ls
loc(RN), 2 ≤ s < 2∗, and un → 0 almost everywhere on RN . Hence, by virtue of (V0),

(V2) and (F4),∫
RN

(|∇un|
2 + V(x)u2

n) dx =

∫
RN
|∇un|

2 dx +

∫
RN\Vb

V(x)u2
n dx + o(1) (4.7)

and ∫
RN

f (x, un)un dx = o(1),
∫
RN

F(x, un) dx = o(1). (4.8)

From (2.20), (2.21), (4.6) and (4.8),

1
N

∫
RN

K(x)|un|
2∗ dx = Φ(un) −

1
2
〈Φ′(un), un〉 −

∫
RN

[1
2

f (x, un)un − F(x, un)
]

dx

= c∗ + o(1), (4.9)

which, together with (2.21), (4.6) and (4.8), yields that∫
RN

(|∇un|
2 + V(x)u2

n) dx = 〈Φ′(un), un〉 +

∫
RN

K(x)|un|
2∗ dx

+

∫
RN

f (x, un)un dx = Nc∗ + o(1). (4.10)

By virtue of (K), (3.2), (4.7), (4.9) and (4.10),

Nc∗ =

∫
RN

K(x)|un|
2∗ dx + o(1) ≤ K0‖un‖

2∗
2∗ + o(1)

≤ K0S −N/(N−2)‖∇un‖
2∗
2 + o(1)

≤ K0S −N/(N−2)
(∫
RN
|∇un|

2 dx +

∫
RN\Vb

V(x)u2
n dx

)N/(N−2)
+ o(1)

= K0S −N/(N−2)
[∫
RN

(|∇un|
2 + V(x)u2

n) dx
]N/(N−2)

+ o(1)

= K0S −N/(N−2)(Nc∗)N/(N−2) + o(1).

Consequently, c∗ ≥ S N/2/NKN/(N−2)
0 and we deduce a contradiction. Thus, ū , 0. By a

standard argument, it is easy to see that ū is a nontrivial solution of (1.3). �

Theorem 1.2 can be proved in the same way as Theorem 1.1 by using Lemma 3.3
instead of Lemma 3.2.
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In the proof of Theorem 1.1, if (V2) is replaced by (V1), the measure of the setVb

may be infinite, but Lemma 2.1 implies that
∫
Vb

V(x)u2
n dx = o(1) is still true and thus

(4.7) still holds. In addition, (4.8) also holds because of (F1), (F2) and Lemma 2.1.
Hence, Theorems 1.3 and 1.4 can be proved in the same way as Theorem 1.1.
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