
/. Austral. Math. Soc. Ser. B 26 (1985), 415-421

A NOTE ON THE BOUNDARY INTEGRAL
EQUATION METHOD FOR THE SOLUTION OF

SECOND ORDER ELLIPTIC EQUATIONS

D. L. CLEMENTS1, M. HASELGROVE1 AND D. M. BARNETT2

(Received 19 September 1983; revised 16 April 1984)

Abstract

The boundary integral equation method is obtained by expressing a solution to a
particular partial differential equation in terms of an integral taken round the boundary
of the region under consideration. Various methods exist for the numerical solution of this
integral equation and the purpose of this note is to outline an improvement to one of
these procedures.

1. Introduction

The boundary integral equation method is now a well established technique for
the solution of boundary value problems governed by certain types of partial
differential equations. The method is essentially obtained by expressing the
solution to a particular boundary value problem in terms of an integral equation
with the integral taken round the boundary of the region under consideration.
This integral equation is then solved numerically by employing approximate
quadrature formulas and then solving the resulting system of linear algebraic
equations (see for example Jaswon and Symm [4] and Clements [1]). The aim of
the present work is to introduce an improvement to this procedure for the class of
problems which are governed by a system of second order, linear partial differen-
tial equations. This improvement is obtained by noting that in certain circum-
stances it is not necessary to employ approximate quadrature formulas since some
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of the relevant integrals may be integrated exactly. This leads to considerable
simplification in the implementation of the boundary integral procedure and, in
particular, makes it easier to write a computer program for the method.

2. The boundary value problem

Consider the system of elliptic partial differential equations

a a k i * a* = ° . i , k = l , 2 , . . . , N ; j , l = l , 2 , (2.1)

in which <f>k are functions of the dependent variables xx and x2. In (2.1) the
convention of summing over repeated Latin subscripts is employed. The constants
aiJkl must satisfy certain symmetry and ellipticity conditions which are detailed in
Clements and Rizzo [3]. The problem is to find a solution to (2.1) valid in a region
® in E 2 with boundary C. On C either the dependent variables <}>k are specified or
the Pi are specified where

where rij is the unit (outer) normal to Si. If the Pt are specified over all of C we
explictly require that

Jds = 0. (2.3)

3. The integral equation

It has been shown by Clements and Rizzo [3] that an integral equation which
solves the problem under consideration is

HMo) + / h(x)<&,,(x>xo) - r,,(x,xo)*,(x)] ds(x) = 0 (3.1)
Jc

where A = 1 if x0 e Si, [x0 = (a, b)] and 0 < A < 1 if x0 e C. If C has a
continuously turning tangent then A = \. Also $,y and F,y are given by

**» = 4= *z{l.AkaNajlog(za - ca)\dJm, (3.2)
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where za = xl + rax2 and ca = a + rab, where TO for a = 1,2, . . . ,N are the roots
with positive imaginary part of the polynomial in T.

K m + «,2*1T + a,l*2T + ai2k2T2\ = 0. (3.4)

The Aka occurring in (3.2) are the solutions of the system

iailk\ + ai\k2ra + ai2klTc + ai2k2rl)Aka = °- (3-5)

Also the Naj, Lija and drj are defined by

£-/AkaNaj = Okj,
a

Lija = (O/ytl + T«a,7*2)^A:a' (3-6)ija

and '

naKr - Li2aNar}drj.

In general equation (3.1) does not provide a simple analytical solution to a
boundary value problem of the type specified in Section 2. However it does form
the basis for an effective procedure for solving particular problems numerically.

The numerical procedure involves solving the integral equation (3.1) for the
unknown <J>, or Pt on the boundary C. Once this has been done equation (3.1) then
provides <f>, at all interior points.

Now it is clear that when (3.1) is used to obtain either <£, or Pt on C the point x0

will be a point on C so that the term F,y in the integrand gives rise to an improper
integral. The method which is commonly used to circumvent this difficulty may
be outlined as follows.

Substitution of the solution

<£, = kt (constant) for i = 1,2,...,N

into (3.1) yields the set of equations

JIJ
which has a solution for nonzero kt only if

= M,y (3.7)

where 6,y is the Kronecker delta. Hence (3.1) can be written in the form

%(x,x0) dx(x) = j c [*,(x) - *,(xo)]l^(x,xo) dx{x). (3.8)

Unlike (3.1), equation (3.8) does not involve improper integrals if x0 e C and
hence it is a convenient method to employ for obtaining numerical values of
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either <J>, or P, on the boundary C. Once this has been done equation (3.1) then
gives <£, at all interior points of the region 3#. Thus the solution of a boundary
problem for equation (2.1) by this boundary integral procedure involves use of
both (3.1) and (3.8) for numerical values. Furthermore the use of (3.8) to obtain
the relevant boundary values is a reasonably complicated exercise. (See for
example Clements and Jones [2].) The aim here is to show that there is no need to
employ (3.8) since (3.1) can be effectively used to obtain the required boundary
values and furthermore the procedure for obtaining these values is both simpler
and more precise than the corresponding procedures which have been used on
(3.8).

To obtain a numerical solution to (3.1) the boundary is discretised into M
segments [q1,q2] , [ ^ Q s ] ' - • jQA/'flil where the points q, lie on C. It is assumed
that Pj and <#>, are constant on each segment, that is we set

P,(x) = PtJ, 4>,(x) = </>,,. on[q , . ,q y + 1 ] , (3.9)

where PtJ and <J>,y are constants. By taking x 0 to be the M midpoints qm of each
segment [q m ,q m +i] in turn we have a set of M X N equations in the M X N
unknowns Ptj or <j>tJ, which are the complimentary set to the values of P and </>
given on the boundary. The integral in (3.1) is now taken around the boundary C
and from (3.1) and (3.9) it follows that the coefficients in the M X N algebraic
equations involve integrals of the form

f+1 *u(x,qk) ds(x), fm+1 r,,(x,qj ds(x). (3.10)

The first of the two integrals (3.10) presents no substantial difficulties and it
may be readily integrated by employing the techniques outlined in Clements and
Jones [2]. The second integral has a singularity in the integrand when qk lies on
the segment [qm,qm+1] (that is, when m = k in (3.10)). However this integral may
be readily evaluted as a Cauchy principal value integral and in certain important
situations its value is zero. Likewise, if q^ does not lie on the segment [qm,qm+i]
the integral may again be evaluated exactly, without recourse to approximate
quadrature formulas, as we now show.

Let

Faj{z, c) = ^NaJog(z - c)dmj (3.11)

so that (3.2) and (3.3) may be written

} (3-12)

YtJ = > o ^ ( ^ , ca)np}, (3.13)
a

where the prime denotes differentiation with respect to za.
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F r o m (3.13)

r,7(x,x0) dx{s) = j m+i Re |E (Lilanl + Li2an 2) F^z a, c

Now from (3.6) and (3.5)

and since

(nx, n2) ds = (dx2,-dxl), dza = dxx + Tadx2

it follows that the right hand side of (3.14) may be written in the form

"+1Fa',.(za, cj(-ra«1 + n2) A(x)J

•12a fc F;j{za,Ca)dXay

419

(3-14)

(3-15)

where
za = x'm "*• To>'m with q m = (x'm, y'm).

When x0 does not lie on the segment joining qm to qm+1 it follows immediately
from (3.11), (3.14) and (3.15) that

- ca) - log(za
m - c j ] dmj) (3.16)

while if x0 is on the hne segment joining qm to qm+1 then the integral in (3.15) is
a Cauchy principal value integral and in this case it follows from (3.11), (3.14)
and (3.15) that

dza

ca)

Fr(za, ca) dza
J

m+1

lmj

= o (3.17)
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if x0 is equidistant from qm and qm+1 and [qm, qm+1] is a straight line segment.
It should be noted at this stage that this integral will be zero in many important

cases since boundaries often consist of straight line segments and it is frequently
practical to approximate curved boundaries by straight line segments.

For certain special cases of (2.1) the integration of F can be further simplified.
For example in the case of Laplace's equation

- _̂r = o
3^1 3*2

the only nonzero constants are

Nu = 1, M n = -i, dn = 1,

so that (3.16) and (3.17) provide

"r(x,x0) dx(x) = ^-[arg(zr + 1 - q) - *&? - cj]

~h -• (3.18)

and if c1
\-m m + l-i
L z l . z l J

/log
1

= 0 (3.19)

if qm is equidistant from qm and qm+1. In (3.18), 8 is the angle subtended at x0 by
the integration segment [qm,qm+i]- This result is simple and exact, whereas the
numerical integration methods usually employed can only give approximate
values for the integrals. Note that (3.18) implies that for Laplace's equation the
integral in question is zero if x0 is on any extension of the straight line through
q m andq m + 1 .

In order to test the effectiveness of employing equation (3.1) in conjunction
with (3.16) and (3.17) as against equation (3.8) some particular boundary value
problems were considered. The procedures outlined in Clements and Jones [3]
were used in obtaining a numerical solution from (3.8) while for (3.1) equations
(3.16) and (3.17) were employed for the integral involving IV and the procedures
in [2] used for the integral involving 0,y. The results obtained indicate that in
general the two methods give numerical values which are in very close agreement
and that there is little reason to prefer one method to the other on the basis of
accuracy. Also in general the difference in computing times is negligible and not
of any consequence. However in special cases when <f> is given and constant along
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long segments of the boundary the method involving direct use of (3.1) can
provide distinct advantages by offering the opportunity to employ long segments
without any loss of accuracy. Finally, and perhaps most significantly, the method
involving use of (3.1) facilitates considerable simplification in the construction of
the computer program for the numerical solution of the integral equation.
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