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UNEQUIVOCAL RINGS 

N. DIVINSKY 

1. Unequivocality. For any radical property Q, a nonzero simple ring 
(all rings in this paper are assumed to be associative) must make up its mind 
so to speak and must be either Q radical or Q semi-simple. Every Q thus 
divides the class of all nonzero simple rings into two disjoint classes. Conversely 
any partition of the nonzero simple rings into two disjoint classes leads to 
at least two radicals [1, p. 16]. 

To extend this type of connection we consider all nonzero rings R which 
have the property that for any radical Q, R is either Q radical or Q semi-
simple. Such rings are called unequivocal [4, p. 10]. The class of nonzero 
simple rings is properly contained in the class of all unequivocal rings. 

Unequivocality can be internally characterized because it really depends 
on the relationship between the ring and its ideals or subideals, rather than 
on the class of all possible radical properties. A simple ring has no proper 
nonzero ideals and this is what makes it unequivocal rather than how it relates 
to various radicals. 

THEOREM 1. The following are all equivalent: 
(1) R is unequivocal. 
(2) R is S / radical for every nonzero ideal I of R (where 5 7 is the lowrer 

radical determined by / ) . 
(3) R is Sj radical for every nonzero subideal J of R. 
(4) R is semi-simple re the upper radical determined by any nonzero homo-

morphic image H of R. 
(5) For any nonzero subideal J of R and for any nonzero homomorphic image H 

of R, there exists a nonzero subideal K of H such that K is isomorphic to a homo­
morphic image of J. Symbolically: 

R->H 

Proof. If R is unequivocal and J is any nonzero subideal of R then R is Sj 
radical, for if not then R is Sj semi-simple. Then every nonzero ideal of R is 
S j semi-simple [1, p. 125, Corollary 2] and thus every nonzero subideal is Sj 
semi-simple. In particular / would have to be Sj semi-simple and since it is 
S j radical and nonzero, we have a contradiction. Thus (1) implies (3). Clearly 
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(3) implies (2). To see that (2) implies (1), suppose there is a radical Wsuch 
that W(R) T± 0 and W{R) ^ R. Now W(R) is an ideal of R and thus by (2), 
Ris S W(R) radical. Since SW(R) ^ W, R must be a W radical ring. Thus W{R) 
= R, a contradiction. Thus R is unequivocal. 

To get (1) implies (4), suppose R is unequivocal and H a nonzero homo-
morphic image of R. If R is radical for some radical then so is H. Thus since H 
is semi-simple re the upper radical determined by H, R must also be semi-
simple. Conversely, suppose we have (4) and suppose there is a radical W such 
that W(R) ^ 0 and ^ R. Then R/W{R) is W semi-simple. Let T be the 
upper radical determined by R/W{R). Then W ^ T. By (4), R is T semi-
simple and therefore it is W semi-simple. Thus W(R) = 0, a contradiction. 
Thus R is unequivocal. 

Finally we must get (1) if and only if (5). If R is unequivocal, / a nonzero 
subideal of R and H a nonzero homomorphic image of R, then R is Sj radical 
by (3). Then H is Sj radical and this means that H must have a nonzero 
subideal K which is a homomorphic image of / (see [8, Lemma 1]). 

Conversely if we have (5) then for any nonzero subideal / of R, every non­
zero homomorphic image H of R has a nonzero subideal K which is a homo­
morphic image of J. Therefore R is in Sj (see [7]). Thus (5) implies (3) and 
the theorem is established. 

We recall that every ring R has a so-called torsion ideal 

T = {x in R: the characteristic of x is nonzero} 

and that R/T is torsion free, i.e., my = 0 implies m = 0 or y = 0 for y in R/T 
and m an integer. If T = 0 then R itself is torsion free. \î T = R then i? is 
isomorphic to a direct sum of Rp's where 

RP = {x in R: the characteristic of # is pn, n a nonnegative integer}, 

where p is a prime. Rp is a so-called p ring. 
The other additive feature of a ring is divisibility. Every ring R has a 

maximal divisible ideal D (for every nonzero x in D and any positive integer n, 
there exists a ;y in D such that x = ny) and i?/Z) is reduced i.e. has no nonzero 
divisible ideals, in fact no nonzero divisible subgroups for D is, additively, the 
maximal divisible subgroup of R. R/D may have elements of infinite height 
(but not if it is torsion free). 

Since it is well known that the class of rings whose underlying additive 
group is torsion (resp. a ^-group, resp. a divisible group) is a radical class, 
it is easy to show that: 

THEOREM 2. If R is unequivocal then either R is torsion free or R is a p-ring, 
for some prime p. 

THEOREM 3. If R is unequivocal then either R is divisible or R is reduced. 
Combining these two results we have: 

THEOREM 4. There are four kinds of unequivocal rings: 
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(1) Divisible torsion free. 
(2) Reduced torsion free. 
(3) Divisible p-rings. 
(4) Reduced p-rings. 

2. E x a m p l e s . Every nonzero simple ring is unequivocal and since we do 
not have a complete catalogue of simple rings it is unlikely tha t we will be able 
to classify all unequivocal rings. We will a t least discuss a few examples. 

If i^ is unequivocal then R © R and in fact any finite direct sum of copies 
of R, is unequivocal. In fact we can prove: 

L E M M A 1. If R is the discrete direct sum of the rings Ca, a in A, then R is 
unequivocal if and only if every Ca is unequivocal and SR = SCafor every a. 

Proof. Every Ca is an ideal of R and if R is unequivocal then R is in SCa or 
$R ^ SCa. On the other hand every Ca is a homomorphic image of R and thus 
is in SRj i.e., SCa = SR. Therefore SR = SCa for every a in A. Fur thermore if / 
is any nonzero ideal of Ca then it is a subideal of R. Then R is in 5 7 . Since Ca is 
a homomorphic image of R it must also be in 5 7 . Thus Ca is unequivocal 
(Theorem 1); and this is also true for every a in A. 

Conversely we assume tha t every Ca is unequivocal, tha t every SCa
 = SR 

and t ha t R is the discrete direct sum of the Ca. Let I be any nonzero ideal of R 
and let R/K be any nonzero homomorphic image of R. Define Ib to be the 
projection of I into Cb. Then each Ib is an ideal of Cb though Ib need not be 
contained in / . Since I is nonzero, Ib is nonzero for some b in A. Also / can be 
mapped homomorphically onto Ib. Since K ^ R there must exist a d in A 
such tha t Cd £ K. Define Kd = Cd H K ^ Cd. Then Cd/Kd = [Cd + K]/K is 
a nonzero ideal of R/K. Since SCd = SCb, Cd/Kd must have a nonzero subideal 
which is an image of Ib (and therefore of / ) . Thus R/K must have a nonzero 
subideal which is an image of / . Therefore R is in Sr and by Theorem 1, 
R is unequivocal. 

Remarks. If we have a class of unequivocal rings Ca with a in some index 
set A and if SCa

 = SCb for every a and b in A, then R equal to the discrete 
direct sum of the Cn will be unequivocal, i.e. we do not have to assume tha t 
SR = SCa f ° r every a in A because tha t will always be true (in the proof of 
the converse we only used the fact tha t SCa = SCb)- Therefore finite direct sums 
(or discrete ones in the infinite case) of copies of, for example, the same simple 
ring, are unequivocal and of course not simple. 

The Ca need not all be the same, e.g. if d = 5 © S, C2 = 5 © 5 0 S, for 
a simple ring S, then R = C i © C 2 = 5 © 5 © 5 © 5 © 5 i s unequivocal. 

There should be some connection between two rings B and C if SB = Sc 

and this connection should be even more int imate if we assume tha t B and C 
are both unequivocal. The precise nature of this connection seems to be an 
open question. 
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LEMMA 2. If R is a minimal ideal of some overring T then R is unequivocal. 

Proof. If R is not semi-simple for some radical 5 then S(R) is nonzero and is 
an ideal of T [1, Theorem 47, p. 124,]. Since R is minimal we must have S(R) = 
R and therefore R is unequivocal. 

LEMMA 3 [Andrunakievic]. / / R is a minimal ideal of some overring T then 
R is simple or R2 = 0. 

Proof. Take any nonzero x in R. Let (x) be the ideal of R generated by x. 
Now R3 Ç (x) since R must be equal to the ideal of T generated by x. If 
R2 9^ 0 then R2 must equal R (since R2 is an ideal of T and R is minimal) and 
then R3 = R2 = R = (x). Therefore R is simple. Otherwise R2 = 0. 

LEMMA 4. / / S is any simple ring then S°, the zero ring on the additive group of 
S, is unequivocal. 

Proof. If S2 = 0 then 5° = S, which is simple. If 52 ^ 0 then we consider the 

ring T = I 
0 5 

of upper triangular matrices with entries in S. Then K = 

0 5~| 
is an ideal of T and is isomorphic to S°. To show that K is a minimal 

[0 x~\ 
is any nonzero element of K then X T ^ O 

and so SxS = S. Then for any y in S we have 3> = Y^Xu%xvi a n d 

Lo oj 4" Lo oJ Lo oJ Lo vj ' 

[0 y"] TO x~~\ 

n belongs to the ideal in T generated by . Thus K is a 
minimal ideal of T, K is unequivocal and S° is unequivocal. 

In addition to all simple rings, all discrete direct sums of any number of 
copies of the same simple ring, all zero rings which are minimal ideals and, in 
particular, all zero rings on the additive group of a simple ring (e.g. (rationals)0), 
all hearts of subdirectly irreducible rings and discrete direct sums of any 
number of copies of the same unequivocal ring, there are several other un­
equivocal rings that should be singled out. 

A. The zero ring on an infinite cyclic additive group, Zœ°. This ring is iso­
morphic to each of its nonzero ideals / and therefore it is ST radical and thus 
it is unequivocal. Note that Zœ° is never a minimal ideal for if it is generated by 
x and if it is an ideal of T, then for every t in T, tx = ix for some integer i. 
Then if we let / be the ideal of T generated by nx with n > 1, we have t.nx = 
n.ix = i.nx in I and thus / is an ideal of T and I £ ZJ. This ring is reduced 
and torsion free. 

B. The zero ring on the additive group pœ [1, pp. 14, 15], Zp°(oo ). This ring 
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is isomorphic to each of its nonzero homomorphic images and is therefore 5 7 

radical for every nonzero ideal / . Thus it is unequivocal. I t is a divisible p-v'mg. 

Remarks. Zœ° is unequivocal but Z0O°/6Zoo° is not (because it is a torsion ring 
bu t not a p-r'mg). Similarly Z / ( O Q ) © Zp°(co) is unequivocal bu t its ideal 
ZP°(co) 0 (Z/pZ)° is not unequivocal because it is not divisible and not re­
duced (Z here means the integers). Thus the class of unequivocal rings is 
neither homomorphically closed nor hereditary. 

Z, the ring of integers, is not unequivocal. Let I = 2Z and let H = Z/I. 
Then / cannot be homomorphically mapped onto a nonzero subideal of Z/I, 
i.e. onto Z/I itself, because the only possibility is I/2I = 2 Z / 4 Z and this is 
a zero ring and not a field. In fact mZ is not unequivocal, for every positive 
integer m. 

C. A, the ring of all finite sums J^aaxa, aa rational, where xax$ = xa+p if 
a + j3 < 1 and xaXp = 0 z / a + /3 ^ 1, where the as are real between 0 and 1. 

Proof. We know tha t A2 = A. Let / be any nonzero ideal in A. Then some 
nonzero element is in / , say ]£*=iaa ,•#«», with «i < a2 < . . . < <xn. If we multi­
ply by cxi-a2 we get caai JCi_(a2_ai) in / . Since aai 7e 0 and c is any rational 
we have rxi_ ( a 2_ a i ) in / for any rational r. If we multiply Y^Aa<*ixai by cxi_a2_(a2_ai) 
we get caaiXi-2(a2-al) + Z/a«r :x:i-(«2-ai)+(a î-a2) in / . Since a t — a2 ^ 0 for every 
i^ 2, we have 1 — (a:2 — ai ) + (0:1 — 0:2) ^ 1 — («2 — «1). Then all the 
terms in the X^ c a n be removed by appropriate multiples of Xi_(a2_ai), and we 
can conclude tha t rxi_2(a2-ai) is in / for any rational r. We continue in this way, 
obtaining rx\-t(a2-ai) in / , until we reach the integer / tha t satisfies 

OL2 — Oil Oil — OL\ 

Since 

1 — ai _ \ — a* _ 1 

« 2 — Oil OL<i — OL\ 

there is precisely one such integer. Now a\ < 1 — t(a2 — ai) ^ a2 and thus 
all the terms in J^aaixai can be removed by appropriate multiples of Xi_,(a2_a i ). 
Then aaixai is in / . If any nonzero multiple of xa is in / then every multiple of 
x$ is in / for any fi > a. Therefore every nonzero proper ideal I oî A is of 
the form: 

I = {tx$ + J2aPx& where /3 > ô > 0 and where / ranges over some 
additive subgroup T of the rationals Q.) 

Note tha t T may be 0 or all of Q. Then every nonzero proper homomorphic 
image of A is of the form: 

A/K = {cxa + S w where 0 < P < a and where c ranges over some 

additive quotient group Q/S of the rationals} 

where xuxv = 0 for u + v > a; xuxv = xu+v for u + v < a; and when u -\- v = a 

then axubxv = abxa where ab is the representative of the coset ab + S in (2/5. 
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We want to show tha t any nonzero ideal 7 can be homomorphically mapped 
onto a nonzero subideal of A/K for any nonzero A/K. If 7 $£ K then 

K -~IDK 
works. T h u s we need only consider the cases when 7 Ç K. 

Take any r such tha t <5 < r < 25 and let 

B = {gxr + JlapXp, P > r, and where g ranges over S}. 

Then B is an ideal of 7 and 

7' = I/B = {tx8 + Z ^ W + ftxr where ô < /3 < r, where / ranges over 
T and ft over Q / 5 } . 

Now V is a zero ring since ô + 5 > r. 
Next we take any <J such tha t a / 2 < er < a and let 

/ ' = {ex,, + dxa + Z ! a ^ where o- < 0 < a, where c ranges over 
T and d over Ç / 5 } . 

Then J' is also a zero ring since a + a > a. Now 7 ; is isomorphic to J'. They 
are both zero rings and additively there is a one-to-one correspondence between 
(5, r ) and (a, a). Thus we can set up a one-to-one correspondence between V 
and / ' which preserves addit ion and of course preserves multiplication. 

Thus in all cases I can be mapped to a subideal of A/K and thus every 
nonzero homomorphic image of A has a nonzero subideal which is a homo-
morphic image of I. Therefore A is in 5 7 for every nonzero ideal I of A, and 
by Theorem 1, A is unequivocal. This ring A is divisible and torsion free. 

Note. A similar proof establishes t ha t if the aa are in Z/pZ for a prime p, 
the ring is also unequivocal, and this ring is a reduced p ring. 

D. The set R of all 2m/(2n + 1), where m and n are integers. 

Proof. This well known example is nil semisimple bu t Jacobson radical. 
First we establish t ha t the only nonzero ideals of R are of the form 2nR for 
some n ^ 0. Let / be a nonzero ideal of R and let 2a be minimal among all 
positive integers tha t are numerators of elements of / . Then 2a/ (2n + 1) is in I 
and thus 2a is in I. Then (2a) C I. Also 2a/(2b + 1) = 2a - 2a(2b/(2b + 1)) 
is in I, for every b. Therefore aR C / . Fur thermore , if a is not a power of 2, 
then some odd prime p divides into a. Then 2a(2/p) is in 7 and is an even 
integer < 2a, contradict ing the minimali ty of 2a. Thus a = 2n for some n > 0. 
T o see tha t I Ç1 aR = 2nR} let 2m/(/In + 1) be any element in 7, and write 
2m = qa + &, with 0 ^ b < a. Then 

2m _ gq b 

2n + f ~ 2n + 1 ~ 2n + 1 

is in 7 and since 26 < 2a, we must have b = 0. Therefore 7 = 2wi?. 
Now if 7 = 2mi? is any nonzero ideal of R and if R/2nR is any nonzero 

homomorphic image of R, we can m a p 7 onto a nonzero subideal of R/2nR if 
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2mR $ 2nR. Thus we consider only those cases when 2mR ^ 2nR, i.e., m ^ n. 
Then we map 2mR to 2mR/2.2mR and this is isomorphic to 2n~1R/2nR, an ideal 
of R/2nR> because both are zero rings with only two elements. If we take any 
element 2m(2a/(2b + 1)) in 2mR then if a is even, it is in 2.2mR and thus 0 
in the factor ring; and if a is odd then 2m(2a/(2b + 1)) is equal to2w(2/(26 + 1)) 
in the factor ring and this is equal to 2m.2 in the factor ring because 

in the factor ring. Thus 2mR/2.2mR = {0, 2"l.2}. Similarly 2n~1R/2nR = 
{0, 2n_1.2}. Therefore R is in 5 7 for every ideal / and R is unequivocal. This 
ring is reduced and torsion free. 

Before we tabulate our examples we shall consider the four classes of 
Theorem 4. If R is a divisible p-r'mg then it must be a zero ring. For if x and 
y are in R then pnx = 0 for some n. Also y = pnz for some z in R since R is 
divisible. Then xy = xpnz = 0. Furthermore [3, Theorem 19.1] any divisible 
p-group is a discrete direct sum of perhaps an infinite number of copies of pœ. 
Therefore R must be a discrete direct sum of copies of Zp°(co ). Since Zp°(co ) 
is unequivocal R is unequivocal by Lemma 1. We thus have: 

THEOREM 5. Every divisible p ring is unequivocal and is a discrete direct sum 
of copies of Zp°(co ). 

For divisible torsion free rings, we know that their additive groups are discrete 
direct sums of copies of the rational numbers under addition [3, Theorem 19.1]. 

Reduced torsion free rings are, additively, discrete direct sums of subgroups 
of the additive rationals. We also know there are no simple rings in this class 
for there must exist a prime p such that pR is a proper nonzero ideal of R. 

Our table may then look like this [this is not a complete classification]: 

Unequivocal Not Unequivocal 

Divisible 
p Rings 

E 2 P ° ( » ) 

e 
none 

Divisible 
Torsion Free 

All simple rings, char. o. (R2 = R) 
All zero rings which are div. 
torsion free i.e. £ (Rationals)0 

Example C. ® 

Rationals © Example C (R2 = R) 
Rationals © (Rationals)0 (R2 j* R) 

Reduced 
Torsion Free 

LZJ 
e 
Example D 

Z 
mZ 

All simple rings R, R2 = 0 
All simple rings R, R2 = R, char. p. 

Reduced Example C with coefficients in Z/pZ © Ex. C on Z/pZ (R2 = R) 
p Rings Z/pZ. Z/pZ © (Z/pZ)° (R2 * R) 

L(z/pzr 
e 
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3. Partitions of the unequivocal rings. Every radical partitions the 
unequivocal rings into two disjoint classes, an upper and a lower class. An 
arbitrary partition of the unequivocals into two disjoint classes, an upper and 
a lower, may not lead to a radical. If S is simple then if 5 and S ® S are in 
different parts of the partition, no radical corresponds to it. An allowable 
partition [4] is a partition into two disjoint classes, one designated as upper 
the other as lower, such that every ring in the upper class is semi-simple re 
the lower radical determined by the lower class. 

For any allowable partition we let S be the lower radical determined by the 
lower class and T the upper radical determined by the upper class. Then 
S ^ T and both correspond to the partition. When is 5 < T? We give a partial 
answer to this question. 

We consider the extreme cases and let Sn be the lower radical determined by 
U, the class of all unequivocal rings. We know [2, Theorem 2] that if U\ is 
the class of all homomorphic images of unequivocal rings then Sv is the class 
of all rings R such that every nonzero homomorphic image of R contains a 
nonzero subideal in U\. We wish to find some Sv semi-simple rings. 

LEMMA 5. Ris Sv semi-simple if and only if no unequivocal ring can be mapped 
homomorphically onto a nonzero subideal of R. 

Proof. If R is Sn semi-simple then it cannot have a nonzero subideal in U\. 
Conversely if R has no nonzero subideal in U\ then SV(R) is 0, else SV(R) has 
a nonzero subideal in U\ and this would also be a subideal of 7?. 

THEOREM 6. Z, the ring of integers, is Sv semi-simple and thus is semi-simple 
re the lower radical determined by any class of unequivocal rings. 

Proof. We will prove that no unequivocal ring can be homomorphically 
mapped onto a nonzero subideal of Z. Assume then that R is unequivocal and 
that R maps onto a nonzero subideal of Z. But every subideal of Z is in fact 
an ideal and of the form wZ, for some integer m > 0. Since mZ is torsion free, 
R itself must be torsion free. If we take any prime p which is relatively prime 
to m, then mZ/pmZ = Z/pZ, a finite field. Then R can be homomorphically 
mapped onto Z/pZ. 

Let Q be the upper radical determined by this field Z/pZ. Then R must be Q 
semisimple (Theorem 1). Then R is a subdirect sum of copies of Z/pZ (see 
[1, Theorem 46, p. 12]). Now each Z/pZ has characteristic p and therefore R 
has characteristic p. But R is supposed to be torsion free and therefore no 
such R can exist. 

LEMMA 6. The Baer lower radical is < the Su radical, and thus if R is S j 
semi-simple then R is semi-prime. 

Proof. Since ZJ is unequivocal, it is Sv radical. Since it is known that the 
Baer Lower radical is the smallest radical containing ZJ, it must be ^ the Sv 
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radical. Since any field is unequivocal and thus Sv radical, and is not Baer 
Lower radical, the lemma is proved. 

Next we let Tv be the upper radical determined by all unequivocal rings. 
Let F be the class of all subideals of unequivocal rings. Then we know [2, 
Theorem 6] that the class of all rings R such that every nonzero subideal of R 
can be mapped homomorphically onto a nonzero ring in F is the class of all 
Tn semi-simple rings. A ring is Tv radical if and only if it cannot be mapped 
onto a nonzero Tv semi-simple ring and this happens if and only if it cannot 
be mapped onto a nonzero ring in F. We thus have: 

LEMMA 7. R is TJJ radical if and only if R cannot be homomorphically mapped 
onto a nonzero subideal of an unequivocal ring. 

LEMMA 8. The Tv radical is < the Brown-McCoy radical. 

Proof. If a ring R is not Brown-McCoy radical it can be mapped onto a 
subdirect sum of simple rings with unity. Thus R can be mapped onto a single 
simple ring. Then R is not Tv radical. Thus Tv ^ Brown-McCoy. Example D 
is Brown-McCoy radical but unequivocal and therefore Tv semi-simple. Thus 
Tu < Brown-McCoy. 

We wish to find some Tv radical rings. 

LEMMA 9. If there exists a ring R such that 

R= U Sn D . . . D Sn D . . . D Si D So = 0 
n=-l 

where the Sn are the only ideals of R, where each Sn+\/Sn is simple (i.e. the Sn are 
the only subideals of R) and where for every n ^ 0 there exists an m > n such 
that Sn+i/Sn and Sm+i/Sm are not isomorphic, then R is a Tv radical ring. 

Proof. Suppose that R is not Tv radical. Then some nonzero homomorphic 
image R/Sn is a subideal of some unequivocal ring Q. Then Sn+i/Sn is also a 
subideal of Q. Let V be the lower radical determined by this one simple ring 
Sn+i/Sn. Since Q is unequivocal it must be V radical. It is known that such a 
radical V must be hereditary [5, Theorem 2] and therefore R/Sn must be V 
radical. Thus every homomorphic image of R/Sn and in particular R/Sm must 
be V radical. Therefore R/Sm must have a nonzero subideal which is a homo­
morphic image of Sn+i/Sn. The only possibility is for Sn+i/Sn to be isomorphic 
to Sm+i/Sm and this is not possible. Therefore R is a Tv radical ring. 

Remarks. Each Sn is Tv semisimple because each of its ideals, including 
itself, can be mapped onto a simple (i.e. unequivocal) ring. 

It is easy to show that the conditions of Lemma 9 force R2 = R. Example B 
satisfies most of the conditions of Lemma 9 but not the last one, i.e. all the 
Sn+i/Sn are isomorphic. Furthermore Example B is neither idempotent nor 
Tu radical. 

Now we are ready to find a Tv radical ring. 
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Example Ef Let F be a vector space over a division ring Dy of dimension 

K„o i-e-> a n infinite cardinal whose subscript is the first limit ordinal. Then 

No < Ki < . . . < Xn < . . . < Xo>o-

Let L be the ring of all linear transformations on V. Then it is known (see 
[6, pp . 789, 790; 9, p . 360]) t h a t the only ideals of L are 

0 < So < Si < . . . < Sn < . . . < Sm < L, 

where Sn = {x in L\ 0(x) < X„} where 0(x) is the dimension of Vx. Also 
L/Sœo is a simple ring with uni ty element; So is a simple ring wi thout uni ty 
element bu t with minimal one sided ideals; Sn+i/Sn are simple rings wi thout 
uni ty element and without minimal one sided ideals. T h e only ideals of Sm 

are the Sn with n ^ m. 
The ring L is not Tv radical because L/Suo is simple. We note t ha t L is not 

unequivocal because L/SœQ is not radical re the lower radical determined by 
So, since So has no uni ty element and thus cannot be mapped into (i.e. onto) 

T o obtain a Tv radical ring we consider Swo. Now the only ideals of Suo are: 
0 < So < Si < . . . < Sn < . . . < 5W0 = VJ 5 n . T o apply Lemma 9 we mus t 
only prove t ha t for every n there exists an m > n such t h a t Sn+i/Sn is not 
isomorphic to Sm+i/Sm. We do know tha t So is not isomorphic to any of the 
Sm+i/Sm and thus we consider only the Sn+i/Sn. 

Suppose then t ha t Sn+1/Sn is isomorphic to Sm+i/Sm for m > n. We select 
a basis of V in sets of Xm elements i.e. 

(biu bn, . . . , &m), (62i, b22, . . . , &2Û), . . • , (&ni, ^«2, . • . , &on), . • • , 

where {1, . . . , 17) has cardinal number Xm. We define ep to be 1 on the basal 
elements bn, . . . , bpn, for all 0 g 12, and 0 on the remaining basal elements. 
This gives us a set of idempotents {ep\, each one in 5m + i , such t ha t 

eye& = esey = ey, for every 7 and 8, with 1 ^ 7 < 5 ^ 12. 

None of the e$ are in Sm and each ^ gives us a distinct coset ^ + Sm in Sw+i/5OT . 
T o each e$ + Sm there must correspond a coset x^ + Sn in 5 n + i / S n , and we 

mus t have: 

(pep + Sn) (xfi + Sn) = xfi + Sn 

as well as: 

(Xy + Sn) (Xi + Sn) = (Xt + Sn) (Xy + Sn) = Xy + Sn 

for all 1 ^ 7 < ô S 12. 

The cosets xp + Sn must all be distinct. If 7 < 5 then no ma t t e r which 
representat ives we take from the cosets xy + Sn and x& + Sn, say xy and x«, 

yThe author would like to thank Professor O. Kegel for his help in working out this example. 
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we know tha t x7x$ + Sn = x7 + Sn = xyxy + Sn. Then xyx& — xyxy is in Sn, 
or the dimension of F(x7x$ — xyXi) = Fx7(xs — x7) is < Xn- On the other 
hand since x$xs + Sn = xs + 5 n ^ x7 + 5 n = XÔX7 + Sn, we know tha t 
X0X5 — XÔXT is not in Sn (it is of course in Sn+i). Thus the dimension of 
F(XÔXS — XÔXT) = FXS(XÔ — xy) is Xn. This allows us to conclude tha t the 

image spaces Vxy and Vx^ must be distinct, for if they were equal, then we 
would have: 

Vxy(xs — xy) = VXB(XS — xy) 

bu t these spaces have different dimensions. 
Again if 7 < è we have x7x$ + Sn = xT + Sn or X7XÔ = xy + t, with / in Sn. 

Then F(x 7 + /) = Vxyx& S Vx5. Now (x7 + /) + Sn — x7 + Sn and thus by 
selecting a different representative of the coset x7 + Sny we can guarantee 
that F(x7 + /) g Fx5. 

T o finish our example, we consider x^ and its image space Vxn. Since XQ is 
in 5n+i, the dimension of Vxçi is Xn- For every /3 ^ ÏÏ we select representatives 
say X/3, of the cosets x^ + Sni so tha t Fx^ ^ Vx^. Since the cosets are all 
distinct, we know tha t all the image spaces Vx$ are distinct. There are Xm 

such distinct subspaces of Vx (a space of dimension Xn). If the division ring D 
of V is the field of two elements, or any division ring of cardinality S Xre, then the 
number of distinct subspaces of VXQ is ^ Xre+i-t Thus if m > n + 1, there are 
simply too many distinct subspaces to squeeze into Vxçi. Therefore no isomor­
phism can exist between Sm+i/Sm and Sn+i/Sn when m > n + 1 and the cardinality 
of D is ^ Kn. 

Thus by Lemma 9 we have: 

T H E O R E M 7. The ring SœQ of example E, with D of cardinality ^ Xo, is a Tu 
radical ring, and thus is radical re the upper radical determined by any class of 
unequivocal rings. 

Remark. If the division ring D in Example E is a held of characteristic 0 
the SuQ is divisible torsion free. If D is a field of characteristic p then Sœo is 
a reduced p-r'mg. 

We define a nonzero ring R to be ambiguous if no unequivocal ring can be 
mapped onto a nonzero subideal of R and if R cannot be mapped onto a 
nonzero subideal of an unequivocal ring. I t is an open question as to whether 
ambiguous rings exist. If one does then we will know tha t S < T for any 
allowable parti t ion of the unequivocal rings. Note tha t an ambiguous ring 
must be Baer-Lower semi-simple and Brown-McCoy radical. 

Since we are usually interested in radicals ^ the Jacobson radical, the 
following partial solution to the problem of when S < T may be of interest. 

fWe are happy to assume the generalized continuum hypothesis. Prof. Osofsky claims to be 
able to prove this result without it and in fact to show that the result holds for any D. 
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THEOREM 8. For any allowable partition of the unequivocal rings having all 
Jacob son semi-simple unequivocal rings in the upper class, we do have S < T. 

Proof. We know that Suo of example E is Tv radical and therefore T radical. 
To see that it is 5 semisimple we must show that no unequivocal ring Q in 

the lower class can be mapped onto a nonzero subideal of 5W0, i.e. onto some Sn. 
Now Suo and therefore Sn is Jacobson semisimple. Thus Q would have to be 
Jacobson semisimple-but these unequivocals are all in the upper class. Thus 
no such Q can exist and Suo is 5 semisimple and S < T. 
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