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Abstract

We study the k-epistasis of a fitness function over a search space. This concept is a natural generalization
of that of epistasis, previously considered by Davidor, Suys and Verschoren and Van Hove and
Verschoren [Y. Davidor, in: Foundations of genetic algorithms, Vol. 1, (1991), pp. 23–25; D. Suys and
A. Verschoren, ‘Proc Int. Conf. on Intelligent Technologies in Human-Related Sciences (ITHURS’96),
Vol. II (1996), pp. 251–258; H. Van Hove and A. Verschoren, Comput. Artificial Intell. 14 (1994),
271–277], for example. We completely characterize fitness functions whose k-epistasis is minimal: these
are exactly the functions of order k. We also obtain an upper bound for the k-epistasis of nonnegative
fitness functions.
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1. Introduction

For really hard optimization problems, a probabilistic approach sometimes appears to
be quite useful. Here, by ‘probabilistic’, we mean a guided random search, that is,
a deterministic search algorithm which uses randomization in its initialization or in
directing its search path. Several algorithms of this type have been developed during
the last decades, amongst them genetic algorithms, directly inspired by nature and
Mendel’s ideas about evolution.

The underlying idea is extremely simple. Consider a population P of prey with
characteristics making its members more or less likely to be eaten by predators
surrounding them. Suppose also that we can describe by some function f : P → R the
features which permit an individual p ∈ P to survive, that is, the higher the value of
f (p), the higher the probability of survival of p. With a higher probability of surviving
and breeding, one expects prey with high fitness to eventually dominate the population.
Moreover, there is also the dynamics of mutation: if no new genetic material is thrown
into the population P , it will tend to stabilize and not improve further.
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226 M. T. Iglesias et al. [2]

The basic genetic algorithm (GA) works essentially in the same way, by considering
an evolving population P within a search space �, whose members are usually
encoded as binary strings, and working with some fitness function f :�→ R. The
aim of the GA is to find not only the optimal solution, but also the structure of the
good solutions with respect to f .

It remains an open problem to completely characterize functions difficult to
optimize by GAs (the so-called GA-hard functions), but it is known that features such
as the order of the function may contribute to this difficulty. It is also understood, in
particular through examples given in [2], that linkage between bits may make it hard
for the GA to find the maximum of f . In [11] Rawlins compares this phenomenon to
an analogous situation in genetics, where a gene at some locus in the chromosome may
hide the (phenotypical) effect of another gene at a different locus (see [12]). When this
phenomenon occurs, the first gene is referred to as being epistatic to the second.

Although order and epistasis are by no means sufficient to predict GA-hardness, for
particular classes of fitness functions, they jointly provide a decent estimation of the
optimization difficulty. In fact, there usually exists a reasonable correlation between
these factors and GA-hardness for functions described by a limited number of control
parameters, such as Forrest and Mitchell’s Royal Road functions [2]. We refer the
reader to [5, 7, 9] for examples and details.

This apparent correlation works satisfactorily for low-order functions but rather
poorly in the high-order case. Actually, epistasis can separate first-order functions
from higher-order functions but, even though functions of order k have lower epistasis
than functions of order k + 1, epistasis cannot reliably differentiate between different
higher orders of interaction. This motivated us to extend the concept of epistasis
to so-called k-epistasis and to show how this notion complements the information
provided by the ‘classical’ one. To give some examples of functions whose order is
higher than 1, the (NP-complete) graph colouring [3] and binary constraint satisfaction
problems are typical members of the class of 2-order functions. A search problem
consisting of iterations of order three or less is the famous NP-complete 3-SAT
problem [3]; the k-SAT problem extends this to interactions of order k or less.

Before properly introducing and studying our notion of ‘higher’ epistasis, we give
some background on ‘classical’ epistasis, with emphasis on its relation with Walsh
transforms.

In Section 3 we introduce the k-epistasis of a fitness function. This potential new
estimator for GA-hardness should be considered a good complement of normalized
epistasis, as defined in [13]. Our main results relate the k-epistatic behaviour of fitness
functions with their order and Walsh coefficients.

The relation between the algebraic definition of higher epistasis and Davidor’s
‘classical’ approach [1] is the subject of Section 4. We show, in particular, how our
set-up includes the 2-epistasis studied in [6] as a special case.

In the final two sections, we consider the maximal value of normalized k-epistasis
for positive-valued fitness functions and we explicitly calculate the higher epistasis of
some well-known ‘laboratory functions’.
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2. Background

In this section, we summarize (without proof) some basic results on epistasis
and Walsh transforms, needed in order to place our results in their proper context.
Throughout,�` = {0, 1}

` denotes the set of length ` binary strings; we shall frequently
identify a string s = s`−1 . . . s1s0 ∈�` with its numerical value

∑
si 2i . If f is a

(real-valued) fitness function on �`, then we may associate with it the corresponding
2`-dimensional real vector

f =
t( f (00 . . . 0) f (00 . . . 1) . . . f (11 . . . 1)

)
=

t( f0 f1 . . . f2`−1
)
.

For any string t ∈�`, the associated Walsh function ψt is defined by ψt (s)
= (−1)s·t , where s · t =

∑
si ti denotes the scalar product of s and t . It is well known

(see [4], for example) that the set {ψt | t ∈�`} is a basis for the vector space of real-
valued functions on �`. Let f be a fitness function on �` and consider the matrix
V` = (ψt (s))s,t∈�` ∈M2`(Z), which satisfies the recursion formula

V`+1 =

(
V` V`
V` −V`

)
,

with

V1 =

(
1 1
1 −1

)
.

Putting
v` = (vi )= 2−`V`f,

vi = vi ( f ) is the i th coordinate of f with respect to the above basis. The vector w
= W`f, with W` = 2−`/2V`, defines the Walsh transform w of f and its components
wi = 2−`/2vi are the Walsh coefficients of f .

From the recursive relation of V`, it is easy to see that the Walsh matrix W` satisfies
W2
` = I` (I` denotes the 2`-dimensional identity matrix) and that

W`+1 = 2−1/2
(

W` W`

W` −W`

)
.

Moreover, the Walsh coefficients of f easily permit to recover f , as

f = W`(W`f)= W`w.

Note that, since W2
` = I`, clearly ‖f‖ = ‖w‖.

As already pointed out in the introduction, epistasis essentially measures the amount
of dependency between bits in strings to which a fitness function is applied. The first
quantitative approach to this concept, due to Davidor [1], is based on the hypothesis
that if a function has low epistasis, then it should be processed more efficiently by a
GA, whereas if it has high epistasis, then the search space has too little structure to
efficiently guide the search process. Starting from these principles, Davidor tries to
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predict the amount of nonlinearity present in a given problem by defining the epistasis
of a string s in a population P ∈�` of cardinality |P| as follows.

Denote by

f =
1

|P|

∑
s∈P

f (s)

the average fitness of f over P and, for any 0 ≤ i < ` and a ∈ {0, 1}, by

fi (a)=
1

|Pi (a)|

∑
s∈Pi (a)

f (s)

the average fitness over Pi (a), the subpopulation consisting of all s`−1 . . . s0 ∈ P with
si = a. The excess allele value Ei (a) is defined to be

Ei (a)= fi (a)− f ,

and the excess genic value as

E(s)=

`−1∑
i=0

Ei (si ).

The genic value of s ∈ P (the ‘expected’ fitness value) is finally given by

f̃ (s)= E(s)+ f ,

and the epistasis of s (with respect to P) by

ε(s)= f (s)− f̃ (s).

As shown in [13], working with the full search space �`, Davidor’s definition of
the epistasis of a string s (with respect to a fitness function f ) may be given by

ε`(s)= f (s)−
1
2`

[
2

∑
0≤i<`

∑
t∈�

si
i

f (t)+ (`− 1)
∑
t∈�

f (t)

]
,

with
�

si
i = {t ∈�; ti = si }.

The global epistasis of f is then defined as

ε`( f )=

√∑
s∈�

ε2
`(s),

and with
e =

t(ε`(00 . . . 0) ε`(00 . . . 1) . . . ε`(11 . . . 1)
)
,

it clearly follows that ε`( f )= ‖e‖.
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On the other hand, denote by d`st the Hamming distance between s and t (the
number of bits in which the binary representations of s and t differ) and consider,
as in [13], the matrix E` = (e`st ) whose (s, t)th entry is e`st = 2−`(`+ 1 − 2 d`st )

for any 0 ≤ s, t ≤ 2` − 1. Then it is not difficult to see that e = f − E`f and hence
ε`( f )= ‖f − E`f‖.

Since for any fitness function f and any real number r both f and r f share the same
‘linked’ bits, one should expect these functions to have the same ‘epistasis’. This leads
to the notion of normalized epistasis, defined in [13, 14] as

ε∗` ( f )= ε2
`

(
f

‖f‖

)
=

t f(I` − E`)f
t ff

.

3. A linear algebra approach to k-epistasis

This section is devoted to constructing, for any pair of positive integers `, k,
the matrices G`,k which are a natural generalization of those obtained in [13] for
normalized epistasis, and of those obtained in [6, 10] for 2-epistasis. These matrices
allow normalized higher epistasis to be introduced in an algebraic form consistent with
that in [6, 13].

For any `≥ 0, consider the matrix

G`,0 =

1 . . . 1
...

. . .
...

1 . . . 1

 ∈M2`(Z),

and recursively define for `, k ≥ 1 the matrix G`,k by G0,k = (1) and

G`,k =

(
G`−1,k + G`−1,k−1 G`−1,k − G`−1,k−1
G`−1,k − G`−1,k−1 G`−1,k + G`−1,k−1

)
∈M2`(Z). (3.1)

It may easily be verified that G`,k = 2` I` for any `≤ k. Moreover, the following
proposition holds.

PROPOSITION 3.1. For ` > k, the matrix G`,k = (g`,kst )0≤s,t<2` is given by

g`,kst =

k∑
j=0

(−1) j 2k− j
(
`− 1 − k + j

j

) (
`− d`st

k − j

)
.

PROOF. We argue by induction on `. For `= 1 the statement is obvious. Suppose that
the assertion holds true for ` and let us prove it for `+ 1.

If 0 ≤ s, t ≤ 2` − 1 or 2` ≤ s, t ≤ 2`+1
− 1, then, by (3.1),

g`+1,k
st = g`,kst + g`,k−1

st ,
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with

g`,k−1
st =

k−1∑
j=0

(−1) j 2k−1− j
(
`− k + j

j

) (
`− d`st

k − 1 − j

)

=

k−1∑
j=0

(−1) j 2k− j
(
`− k + j

j

) (
`− d`st

k − 1 − j

)

+

k∑
j=1

(−1) j 2k− j
(
`− 1 − k + j

j − 1

) (
`− d`st

k − j

)
.

Then

g`+1,k
st = g`,kst + g`,k−1

st

= 2k
(
`− d`st

k

)
+

k−1∑
j=1

(−1) j 2k− j
(
`− k + j

j

) (
`− d`st

k − j

)

+ (−1)k
(
`

k

)
+ 2k

(
`− d`st

k − 1

)
+

k−1∑
j=1

(−1) j 2k− j
(
`− k + j

j

) (
`− d`st

k − 1 − j

)

=

k∑
j=0

(−1) j 2k− j
(
`− k + j

j

) (
`+ 1 − d`st

k − j

)
.

As in this case d`+1
st = d`st , we indeed obtain

g`+1,k
st =

k∑
j=0

(−1) j 2k− j
(
`− k + j

j

) (
`+ 1 − d`+1

st

k − j

)
.

The corresponding expression for g`+1,k
st with 0 ≤ s ≤ 2` − 1 and 2` ≤ t ≤ 2`+1

− 1,
may be derived similarly, taking into account that now d`st = d`+1

st − 1. 2

A straightforward induction argument leads to the following corollary.

COROLLARY 3.2. For any `≥ k ≥ 0,
∑

0≤s,t<2` g`,kst = 22`.

The following proposition also holds.

PROPOSITION 3.3. For any `≥ k ≥ 0, (G`,k)
2
= 2`G`,k .

PROOF. For k = 0 the statement is obvious for all `. Suppose that the assertion holds
true for any `, if 1, . . . , k − 1, and let us prove it for k.

In this case, if `= k, then Gk,k = 2kI` and the result is obviously correct. Now,
if ` > k, applying (3.1), an induction argument on ` yields
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G2
`,k =

(
G`−1,k + G`−1,k−1 G`−1,k − G`−1,k−1
G`−1,k − G`−1,k−1 G`−1,k + G`−1,k−1

)2

=

(
2G2

`−1,k + 2G2
`−1,k−1 2G2

`−1,k − 2G2
`−1,k−1

2G2
`−1,k − 2G2

`−1,k−1 2G2
`−1,k + 2G2

`−1,k−1

)
= 2 · 2`−1

(
G`−1,k + G`−1,k−1 G`−1,k − G`−1,k−1
G`−1,k − G`−1,k−1 G`−1,k + G`−1,k−1

)
= 2`G`,k . 2

Note that this result implies that the (real) eigenvalues of G`,k are 0 and 2`. Indeed,
if v is an eigenvector of G`,k , say with eigenvalue λ, then

2`λv = 2`G`,kv = G2
`,kv = λ2v,

so λ= 0 or λ= 2`, as claimed.
In order to determine the eigenspaces of the matrices G`,k , let us first calculate their

rank. Note that rk(G`,k)= 2`, if `≤ k. On the other hand, the following proposition
holds.

PROPOSITION 3.4. For any ` > k ≥ 0,

rk(G`,k)=

k∑
j=0

(
`

j

)
.

PROOF. Observe that, by construction, rk(G`,0)= 1, for all `. On the other hand, if
k ≥ 1, applying (3.1), elementary row and column operations reduce G`,k to(

G`−1,k O`−1
O`−1 G`−1,k−1

)
,

with

O`−1 =

0 . . . 0
...

. . .
...

0 . . . 0

 ∈M2`−1(Z).

This yields rk(G`,k)= rk(G`−1,k)+ rk(G`−1,k−1). Hence, recursively,

rk(G`,k) = rk(G`−1,k)+ rk(G`−1,k−1)

= rk(G`−2,k)+ 2rk(G`−2,k−1)+ rk(G`−2,k−2)

...

=

k∑
j=0

(
`

`− j

)
rk(G0,k− j )=

k∑
j=0

(
`

j

)
,

which proves the assertion. 2

Let us denote by V 0
`,k (V 1

`,k) the eigenspace in R2` corresponding to the eigenvalue 0

(2`) of G`,k . Then R2`
= V 0

`,k ⊕ V 1
`,k and, as V 0

`,k = Ker(G`,k) and V 1
`,k = Im(G`,k),
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the previous result yields

dim V 1
`,k =

k∑
j=0

(
`

j

)
and

dim V 0
`,k =

∑̀
j=k+1

(
`

j

)
.

To obtain an explicit orthogonal basis for V 1
`,k, let us now consider the (idempotent)

symmetric 2`-dimensional matrix E`,k = 2−`G`,k . We shall also need the diagonal
matrices D`,k defined as follows. If k = 0, then we put

D`,0 =


1 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 ,

for any `. If k ≥ `, then we put D`,k = I` and, finally, if ` > k then D`,k is the
diagonal matrix whose only nonzero diagonal entries dss have value 1 and are situated
at s = 0, s = 2i1 , with 0 ≤ i1 < `, s = 2i1 + 2i2 , with 0 ≤ i1 < i2 < `, . . . , s = 2i1

+ 2i2 + · · · + 2ik , with 0 ≤ i1 < i2 < · · ·< ik < `.
It is easy to see that D`,k satisfies the recursion relation

D`,k =

(
D`−1,k O`−1
O`−1 D`−1,k−1

)
,

for `≥ k > 0, and where O`−1 denotes the 2`−1-dimensional zero matrix. A
straightforward induction argument and the recursive description of the matrices G`,k
and W` then yield the following proposition.

PROPOSITION 3.5. For any positive integer `,

W`E`,kW` = D`,k .

The next result gives an explicit basis for V 1
`,k .

PROPOSITION 3.6. For any positive integer `, the columns of the matrix W` situated
at positions i = 0 and i = 2 j1 + · · · + 2 jp (1 ≤ p ≤ ` and 0 ≤ j1 < · · ·< jp < `)

form a basis for V 1
`,k .

PROOF. Denote by {ei ; 0 ≤ i < 2`} the canonical basis of R2` and consider the vectors
ws = W`es, for s = 0 and s = 2 j1 + · · · + 2 jp . The set of these is clearly independent
and, as its cardinality is

∑k
i=0

(
`
i

)
, it only remains to prove that each of these vectors
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ws belongs to the vector space V 1
`,k, that is, that G`ws = 2`ws or, equivalently,

E`ws = ws . But this immediately follows from

ws = W`es = W`D`,kes = W`D`,kW`W`es = W`D`,kW`ws = E`,kws . 2

Let us now introduce the k-epistasis of a fitness function as a generalization of the
corresponding notion of epistasis given in [13].

DEFINITION 3.7. The k-epistasis of a function f is given by

ε`,k( f )= ‖f − E`,kf‖.

As, just as for ordinary epistasis, we want k-epistasis to act as a measure of interactions
between genes, independently of scaling factors, we need to normalize as follows.

DEFINITION 3.8. The normalized k-epistasis of a function f is defined to be

ε∗`,k( f )= ε2
`,k

(
f

‖f‖

)
=

t f(I` − E`,k)f
‖f‖2 = 1 −

1
2`

t fG`,kf
t ff

.

Since the symmetric matrix E`,k is idempotent, it is an orthogonal projection, which
implies that

0 ≤ ε∗`,k( f )≤ 1.

Note that, by the algebraic study above, minimal and maximal values of ε∗`,k( f )

correspond to fitness functions whose associated vectors f belong to V 1
`,k and V 0

`,k ,
respectively.

The effective calculation of the normalized k-epistasis of a function is often rather
complicated, but may sometimes be simplified using Walsh coefficients.

PROPOSITION 3.9. If w0, . . . , w2`−1 are the Walsh coefficients of a function f , then
the normalized k-epistasis of f is given by

ε∗`,k( f )= 1 −

w2
0 +

∑
0≤i<` w

2
2i + · · · +

∑
0≤i1<···<ik<`

w2
2i1+···+2ik∑

0≤ j<2` w
2
j

.

PROOF. Note that, by Proposition 3.5,

t fE`,kf = (t wt W`)E`,k(W`w)=
t wD`,kw,

so, indeed,

ε∗`,k( f )= 1 −

t fE`,kf
t ff

= 1 −

t wD`,kw
t ww

. 2

We have just pointed out that ε∗`,k( f )= 0 if and only if f ∈ V 1
`,k . Let us now show

that this occurs exactly when f has order k, that is, if f may be written as∑
0≤i<`

gi (si )+

∑
0≤i1<i2<`

gi1i2(si1, si2)+ · · · +

∑
0≤i1<···<ik<`

gi1···ik (si1, . . . , sik ),
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for some functions gi1···ir on �r , which essentially describe the interaction between
the bits situated at locations i1, . . . , ir . In the next result, proved in [5], the weight
u(t) of t is the number of ones in the string t .

THEOREM 3.10. For any function f :�` → R with Walsh coefficients wt , the
following statements are equivalent:

(1) f has order k;
(2) wt = 0 for all t ∈�` with u(t) > k.

The next theorem is a direct consequence of the two previous results.

THEOREM 3.11. For any function f :�` → R, the following assertions are
equivalent:

(1) ε∗`,k( f )= 0;
(2) f has order k;
(3) wt = 0 for all t ∈�` with u(t) > k.

Theorem 3.11 extends the analogous result for classical normalized epistasis and
2-epistasis established in [8] and [6], respectively.

4. A classical approach to k-epistasis

The aim of this section is to connect the above algebraic construction of k-epistasis
to Davidor’s approach [1], briefly recalled in Section 2.

Recall that the normalized k-epistasis of f :�` → R was defined as

ε∗`,k( f )=

t f(I − E)f
t ff

=

t f
‖f‖2 (f − Ef),

where we omit the indices ` and k, as no ambiguity may arise. Consider the vector
e = f − Ef, whose sth coordinate is es = f (s)− (Ef)s , with

(Ef)s =
1
2`
(Gf)s =

1
2`

2`−1∑
t=0

gst f (t)

=
1
2`

2`−1∑
t=0

[ k∑
j=0

(−1) j 2k− j
(
`− 1 − k + j

j

) (
`− d`st

k − j

)]
f (t)

=

k−1∑
j=0

(−1) j 2k− j−`
(
`− 1 − k + j

j

)[2`−1∑
t=0

(
`− d`st

k − j

)
f (t)

]

+ 2−`(−1)k
(
`− 1

k

) 2`−1∑
t=0

f (t).
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Denoting by �i1...ik− j (s) the set of all strings whose alleles situated at the loci
i1, . . . , ik− j are the same as those of s, that is,

�i1...ik− j (s)= {t ∈�`; ti1 = si1, . . . , tik− j = sik− j },

it is not difficult to see that

2`−1∑
t=0

(
`− d`st

k − j

)
f (t)=

∑
0≤i1<···<ik− j<`

∑
t∈�i1...ik− j (s)

f (t).

On the other hand, denoting the average fitness value of f on �i1...ik− j (s) by

f (�i1...ik− j (s))=
1

2`−k+ j

∑
t∈�i1...ik− j (s)

f (t),

it easily follows that

(Ef)s =

k−1∑
j=0

(−1) j
(
`− 1 − k + j

j

) ∑
0≤i1<···<ik− j<`

f (�i1...ik− j (s))

+ (−1)2k
{

1 +

k−1∑
j=0

(−1) j+1
(

`

k − j

)(
`− 1 − k + j

j

)}
f

=

k−1∑
j=0

(−1) j
(
`− 1 − k + j

j

)

×


( ∑

0≤i1<···<ik− j<`

f (�i1...ik− j (s))

)
−

(
`

k − j

)
f

 + f ,

and this is clearly equal to

k−1∑
j=0

(−1) j
(
`− 1 − k + j

j

)[ ∑
0≤i1<···<ik− j<`

{ f (�i1...ik− j (s))− f }

]
+ f .

Now, as in [1], let us denote by Ei1...ik− j (si1 . . . sik− j ) the excess alelic value
f (�i1...ik− j (s))− f of the (k − j)-tuple (si1, . . . , sik− j ) and define

E(s) =

k−1∑
j=0

(−1) j
(
`− 1 − k + j

j

) ∑
0≤i1<···<ik− j<`

Ei1...ik− j (si1 . . . sik− j )

to be the genic excess of the string s ∈�`. Then, it follows that E(s)+ f = (Ef)s
may be considered as the predicted genic value of s and, finally, just as in the
‘classical’ case k = 1 and the case k = 2 (see [1] and [6], respectively), the difference
es = f (s)− (Ef)s measures the k-epistasis of f for arbitrary k.
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5. The maximal value of k-epistasis

This section is devoted to studying the maximal value of the normalized k-epistasis
ε∗`,k . We have already mentioned that ε∗`,k ≤ 1. For positive-valued fitness functions f ,
it appears that ε∗`,k( f )≤ 1 − 2k−`. Moreover, if k = ` we have equality, for `= k + 1
we know exactly for which f we have equality, and for `≥ k + 2 this inequality is
always strict.

For any f :�` → R with corresponding vector f =
t ( f0, . . . , f2`−1) ∈ R2`, let us

denote by f 0, f 1
:�`−1 → R the functions whose corresponding vectors in R2`−1

are

t f 0
= ( f0 · · · f2`−1−1),

t f 1
= ( f2`−1 · · · f2`−1).

Let us also consider the functions g+
= f 0

+ f 1, g−
= f 0

− f 1 and the form
γ`,k( f )=

t fG`,kf. It then follows that

γ`,k( f ) = (t f 0 t f 1)

(
G`−1,k + G`−1,k−1 G`−1,k − G`−1,k−1
G`−1,k − G`−1,k−1 G`−1,k + G`−1,k−1

) (
f 0

f 1

)
=

t (f 0
+ f 1)G`−1,k(f 0

+ f 1)+
t (f 0

− f 1)G`−1,k−1(f 0
− f 1)

= γ`−1,k(g
+)+ γ`−1,k−1(g

−).

Using this, we may prove the following lemma.

LEMMA 5.1. For any f :�` → R with γ`,`−1( f )= 0 the corresponding vector is of
the form f = λ · ((−1)u(s))0≤s<2`, for some λ ∈ R.

PROOF. We argue by induction on `. As from the very definition of G`,k the statement
is obviously correct for `= 1, suppose that the assertion holds true for ` and let us
prove it for length `+ 1. In order to do this, use the above remarks to first show that

γ`+1,`( f ) = γ`,`( f 0
+ f 1)+ γ`,`−1( f 0

− f 1)

= 2`‖f 0
+ f 1

‖
2
+ γ`,`−1( f 0

− f 1),

where, of course, γ`,`−1( f )≥ 0. Then, as f satisfies the hypothesis of the lemma,
we obtain that f 0

= −f 1
= (1/2)(f 0

− f 1) and γ`,`−1( f 0
− f 1)= 0. By applying

the induction hypothesis on f 0
− f 1, we get f 0

− f 1
= λ((−1)u(s))0≤s<2` , for some

λ ∈ R, and hence

f 0
= −f 1

=
λ

2
((−1)u(s))0≤s<2` .

This completes the proof. 2

We may now show the following proposition.

PROPOSITION 5.2. For any `≥ k and any positive-valued fitness function f :

�` → R,

ε∗`,k( f )≤ 1 −
1

2`−k .
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PROOF. Observe first that we may obviously assume that ‖f‖ = 1 and the assertion is
then equivalent to proving that γ`,k( f )≥ 2k . Note also that if `= k, then

γk,k( f )=
t f 2kI2k f = 2k

‖f‖2
= 2k,

so, it remains to prove the statement if ` > k.

Since f only takes nonnegative values and the corresponding vector f is normalized,
‖g+

‖ ≥ 1. Let us now assume that γ`,k( f ) < 2k , for some positive integer ` > k and
some positive-valued normalized fitness function f . Then, with g = g+/‖g+

‖, we
obtain

γ`−1,k(g) = γ`−1,k

(
g+

‖g+‖

)
=

1

‖g+‖2 γ`−1,k(g
+)≤ γ`−1,k(g

+)

≤ γ`−1,k(g
+)+ γ`−1,k−1(g

−)= γ`,k( f ) < 2k .

Iterating this procedure, we find some fitness function f over �k with ‖f‖ = 1
and γk,k( f ) < 2k , which is impossible of course. This contradiction proves the
assertion. 2

Let us now characterize positive-valued normalized fitness functions f with
ε∗`,k( f )= 1 − (1/2`−k), or equivalently γ`,k( f )= 2k . To do this, let ` > k and, with
notation as before, define the vectors

w+
= W`−1 g+

=
t (w+

0 , w
+

1 , . . . , w
+

2`−1−1
)

and

w−
= W`−1 g−

=
t (w−

0 , w
−

1 , . . . , w
−

2`−1−1
).

By using Proposition 3.5 and the fact that W2
` = I`, we obtain

γ`−1,k(g
+) =

t g+G`−1,kg+ (5.1a)

= 2`−1 t g+E`−1,kg+

= 2`−1 t w+D`−1,kw+

= 2`−1
{
(w+

0 )
2
+

∑
0≤i<`−1

(w+

2i )
2
+

∑
0≤i< j<`−1

(w+

2i +2 j )
2

+ · · · +

∑
0≤i1<···<ik<`−1

(w+

2i1+···+2
ik
)2

}
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and

γ`−1,k−1(g
−) = 2`−1 t w−D`−1,k−1w− (5.1b)

= 2`−1
{
(w−

0 )
2
+

∑
0≤i<`−1

(w−

2i )
2
+

∑
0≤i< j<`−1

(w−

2i +2 j )
2

+ · · · +

∑
0≤i1<···<ik−1<`−1

(w−

2i1+···+2
ik−1

)2
}
.

Taking into account that γ`−1,k−1(g−)≥ 0 and that

γ`−1,k(g
+)= ‖g+

‖
2γ`−1,k

(
g+

‖g+‖

)
≥ 2k

‖g+
‖

2,

it follows that the minimal value γ`,k( f )= γ`−1,k(g+)+ γ`−1,k−1(g−)= 2k occurs
when γ`−1,k(g+)= 2k and γ`−1,k−1(g−)= 0, which is impossible if ‖g+

‖> 1.
With notation as before, we now obtain the following proposition.

PROPOSITION 5.3. Let f be a positive-valued fitness function.

(1) If `= k, then ε∗`,k( f )= 1 − (1/2`−k)= 0.

(2) If `= k + 1, then ε∗`,k( f )= 1 − (1/2`−k)= 1/2 if and only if, up to a factor,

t f = ((1 + (−1)u(s))0≤s<2k , (1 + (−1)u(s)+1)2k≤s<2k+1) (5.2a)

or
t f = ((1 + (−1)u(s)+1)0≤s<2k , (1 + (−1)u(s))2k≤s<2k+1). (5.2b)

(3) If `≥ k + 2, then

ε∗`,k( f ) < 1 −
1

2`−k .

PROOF. The first statement has already been proved above. To prove the second
statement note that (5.2a) and (5.2b) are easily checked to yield ε∗`,k( f )= 1/2. Let us
now assume that this equality holds for some fitness function f , which we may assume
to be normalized. Then, as pointed out before, we have ‖g+

‖ = 1 and, by (5.1b), we
find that the only nonzero Walsh coefficient of g− is w−

21+···+2k , as γk,k−1(g−)= 0.
On the other hand,

t f 0f 1
=

2k
−1∑

j=0

f j f2k+ j = 0,

as ‖g+
‖ = ‖f‖ = 1. Of course, this is equivalent to

f j f2k+ j = 0 for all 0 ≤ j < 2k, (5.3)

as f is positive. Moreover,

‖w−
‖ = ‖Wkg−

‖ = ‖g−
‖ = 1
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and so w−
= ±(0, . . . , 0, 1). Hence,

t g−
=

t w−Wk = (0, . . . , 0, 1)Wk = 2−(k/2)((−1)u(s))0≤s<2k

= 2−((k+2)/2)(1 + (−1)u(s))0≤s<2k − 2−((k+2)/2)(1 + (−1)u(s)+1)0≤s<2k .

Note that, as all of the components of g−
= f 1

− f 0 are nonzero and f ≥ 0, we obtain
from (5.3) that

t f 0
= 2−(k+2/2)(1 + (−1)u(s))0≤s<2k

t f 1
= 2−(k+2/2)(1 + (−1)u(s)+1)0≤s<2k ,

and so
t f = 2−((k+2)/2)((1 + (−1)u(s))0≤s<2k , (1 + (−1)u(s)+1)0≤s<2k ).

The corresponding expression for g− when w−
=

t (0, . . . , 0,−1) may be derived
similarly.

In order to prove the last assertion, we now consider `= k + 2 and then argue by
induction on `. First, note that we obtain by recursion

γk+2,k( f ) = γk+1,k(g
+)+ γk+1,k−1(g

−)

= γk+1,k(g
+)+ γk,k−1(g

−+)+ γk,k−2(g
−−),

and suppose that there exists some normalized fitness function f with γk+2,k( f )= 2k

—observe that again ‖g+
‖ = 1. Then, as in the case `= k + 1, we require

γk+1,k(g+)= 2k and γk,k−1(g−+)= γ(k,k−2)(g−−)= 0, but this is impossible, as we
prove next.

First, suppose that γk+1,k(g+)= 2k , that is, that g+ is one of the vectors given in
the first part of the proposition. Assume that g+ is given by (5.2a):

t g+
= 2−((k+2)/2)((1 + (−1)u(s))0≤s<2k , (1 + (−1)u(s)+1)0≤s<2k ).

It then follows that

(g+)s =

{
2−(k/2) if u(s) is even,

0 if u(s) is odd.

Observe that, for 0 ≤ s < 2k, (g+)s = 0 if and only if fs = fs+2k = 0 as f takes
nonnegative values. In this case, (g−)s = fs − fs+2k = 0, hence g−+

= (g−)0 +

(g−)1 and g−−
= (g−)0 − (g−)1 verify for any 0 ≤ s < 2k that

(g−+)s = (g−)s + (g−)s+2k =

{
(g−)s if u(s) is even,

(g−)s+2k if u(s) is odd,

and

(g−−)s = (g−)s − (g−)s+2k =

{
(g−)s if u(s) is even,

−(g−)s+2k if u(s) is odd,

respectively. Now suppose also that γk,k−1(g−+)= 0 or, equivalently, g−+
∈ V 0

k,k−1.

Then, by Lemma 5.1 and the above relations, (g−+)s = 2−(k/2)(−1)u(s) and so
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(g−−)= 2−(k/2) t (1, . . . , 1). Finally, taking into account Corollary 3.2, we obtain

γk,k−2(g
−−) = 2−k t (1, . . . , 1)Gk,k−2(1, . . . , 1)= 2−k

∑
0≤i, j<2k

gk,k−2
i j = 2k > 0.

In a similar way, if g+ is the vector given by (5.2b) we obtain the same values for the
vector g−−. This finishes the proof for `= k + 2.

For ` > k + 2, iterating the previously used recursive procedure, we obtain

γ`,k( f ) = γ`−1,k(g
+)+ γ`−1,k−1(g

−)

= γ`−2,k(g
++)+ γ`−2,k−1(g

+−)+ γ`−1,k−1(g
−)

= γ`−3,k(g
+++)+ γ`−3,k−1(g

++−)+ γ`−2,k−1(g
+−)+ γ`−1,k−1(g

−)

...

= γk+2,k(g

`−k−2︷ ︸︸ ︷
+ · · · +)+

`−k−2∑
i=1

γ`−i,k−1(g

i−1︷ ︸︸ ︷
+ · · · + −) > 2k,

as γk+2,k > 2k for all k and all other terms are positive. 2

6. Three elementary examples

In this section we explicitly calculate the higher epistasis of some classical
‘laboratory functions’. The functions we chose, the Dirac, the camel and the quasi-
camel function, are all extremely hard to optimize. Other, more ‘natural’ functions
will be considered in future work.

6.1. The Dirac function The Dirac function f = δ0 may be defined by its
associated vector δ0 =

t (10 . . . 0). Clearly, the search for the global maximum is then
essentially a random search (a so-called needle-in-a-haystack problem). Actually, it is
straightforward to show that when the location of the needle is unknown, exhaustive
enumeration is the most efficient algorithm to find it, the time required to reach the
solution being exponential in the string length.

As w = Wδ0 = 2−`/2 t (1, . . . , 1), we obtain

ε∗`,k(δ0) = 1 −

w2
0 +

∑k
j=1

(∑
0≤i1<···<i j<`

w2
2i1+···+2i j

)
‖w‖2

= 1 −

[
1 +

k∑
j=1

(
`

j

)]
(2−`/2)2

= 1 −

∑k
j=0

(
`
j

)
2`

.

Clearly δ0 = (1 − x0) . . . (1 − x`−1) has order ` and, since
∑`

j=0

(
`
j

)
= 2`, in

accordance with Theorem 3.11, it indeed follows that ε∗`,`(δ0)= 0, whereas for k < `,
we have ε∗`,k(δ0) 6= 0.
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6.2. The camel function In this second example, we consider the camel function
c (the twin-peak problem). It is formally defined by c(0 . . . 0)= c(1 . . . 1)= 1
and c(t)= 0 for all other strings t in �`, that is, c = δ0 + δ2`−1, and the vector
representation is c =

t (1, 0, . . . , 0, 1). The function c has two peaks at maximal
Hamming distance from each other and is essentially the only function for which
classical normalized epistasis has maximal value (see [13]). In fact, since the two
peaks have the same (high) fitness, both of them have the same (poor) probability of
being selected. With a sufficiently large population, it is possible to stably maintain
copies of both peaks in the population, and in this case most of the crossovers of
parents belonging to the different peaks yield offspring that are far away in Hamming
distance terms from both peaks and consequently do not survive more than a few
generations.

For any s ∈�`, the sth entry of the vector w = W`c is now given by

ws = 2−`/2(ψ0...0(s)+ ψ1...1(s))= 2−`/2(1 + (−1)u(s)).

In particular,
w0 = 2−`/2(1 + (−1)0)= 2 · 2−`/2

and

w2i1+···+2iq =

{
2 · 2−`/2 if q is even,

0 if q is odd.

It thus follows that

ε∗`,k(c) = 1 −

w2
0 +

∑k
j=1

(
`
j

)
w2

2i1+···+2i j

‖w‖2

= 1 −

w2
0 +

∑m
j=1

(
`

2 j

)
w2

2i1+···+2i2 j

‖w‖2

= 1 −

∑m
j=0

(
`

2 j

)
2`−1 ,

where m is the largest positive integer with 2m ≤ k. Since

c = δ0 + δ2`−1 = (1 − x0) . . . (1 − x`−1)+ x0 . . . x`−1,

clearly c has order ` if ` is even and order `− 1 if ` is odd. Using
∑r

j=0

(2r
2 j

)
= 22r−1

and
∑r

j=0

(2r+1
2 j

)
= 22r , it indeed follows that ε∗`,`(c)= 0 if ` is even and ε∗`,`−1(c)= 0

if ` is odd, and that ε∗`,k(c) 6= 0 for lower values of k.

6.3. The quasi-camel function The quasi-camel function d is similar to the camel
function considered in the previous section: it also has two peaks, but now these are
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situated at distance `− 1 (hence there is a higher probability of survival when applying
crossover). One may define d formally by d(0 . . . 00)= d(1 . . . 10)= 1 and d(t)= 0
for all other t ∈�`. So, d = δ0 + δ2`−2 and d =

t (1, 0, . . . , 0, 1, 0). As, for any
s ∈�`,

ws = (w)s = (Wd)s = 2−`/2(ψ0...0(s)+ ψ1...10(s))= 2−`/2(1 + (−1)u(s`−1,...,s1)),

it follows that
w0 = 2−`/2(1 + (−1)0)= 2 · 2−`/2,

and the first order Walsh coefficients of d are w20 = 2 · 2−`/2 and w2i = 0, for i 6= 0.
Moreover, for any 1 ≤ i1 < · · ·< i j−1 < ` with 2 ≤ j ≤ `,

w
20+2i1+···+2i j−1 =

{
0 if j is even,

2 · 2−`/2 if j is odd,

and for 1 ≤ i1 < · · ·< i j < `,

w2i1+···+2i j =

{
2 · 2−`/2 if j is even,

0 if j is odd.

It is now easy to see that

ε∗`,k(d) =


1 − 2−`+1

{
2

m∑
j=0

(
`− 1

2 j

)
+

(
`− 1
2m

)}
if k = 2m,

1 − 2−`+2
m∑

j=0

(
`− 1

2 j

)
if k = 2m + 1.

Clearly d = δ0 + δ2`−2 = (1 − x0) . . . (1 − x`)+ x0 . . . x`−2(1 − x`−1) has order
`− 1 if ` is even and order ` if ` is odd and, just as for the camel function, one
can easily check that ε∗`,`−1(d)= 0 and ε∗`,`(d)= 0, whereas ε∗`,k(d) 6= 0 for lower
values of k.
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