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A Compositional Shuffle Conjecture
Specifying Touch Points of the Dyck Path

J. Haglund, J. Morse, and M. Zabrocki

Abstract. We introduce a q, t-enumeration of Dyck paths that are forced to touch the main diago-

nal at specific points and forbidden to touch elsewhere and conjecture that it describes the action of

the Macdonald theory ∇ operator applied to a Hall–Littlewood polynomial. Our conjecture refines

several earlier conjectures concerning the space of diagonal harmonics including the “shuffle conjec-

ture” (Duke J. Math. 126 (2005), pp. 195–232) for ∇en[X]. We bring to light that certain general-

ized Hall–Littlewood polynomials indexed by compositions are the building blocks for the algebraic

combinatorial theory of q, t-Catalan sequences, and we prove a number of identities involving these

functions.

1 Introduction

Our study concerns the combinatorics behind the character of the space of diagonal

harmonics DHn and identities involving Macdonald polynomials that can be used to

form expressions for this character. At the root of this theory is a linear operator ∇,

introduced in [2], under which the modified Macdonald polynomials H̃µ[X; q, t] are

eigenfunctions. In [11], Haiman proved that the Frobenius image of the character

of DHn equals ∇en. This gives an explicit expression involving rational functions in

q, t for the multiplicity of an irreducible indexed by a partition λ in the character of

DHn.

An important open problem in this area is the “shuffle conjecture” of [9], which

asserts that the coefficient of mλ in∇en simplifies to a q, t statistic on lattice paths. A

major breakthrough in this direction was made with the conjectured combinatorial

formula of [6] for the coefficient of m1n = s1n in∇en. In this case, the coefficient is a

bi-graded version of the sign character, and it is called the q, t-Catalan Cn(q, t), since

it reduces to the n-th Catalan number when q = t = 1. The combinatorial formula

for Cn(q, t) was proved in [3, 4], and pursuant work [7] also settled the shuffle con-

jecture for partitions of hook-shape. However, the general case remains a mystery.

An unrelated study of Macdonald polynomials [14] led to the discovery of a new

family of symmetric functions called k-Schur functions s(k)
λ [X; t], which were con-

jectured to refine the special combinatorial properties held by Schur functions. The

k-Schur functions have a number of conjecturally equivalent characterizations, and it

has now been established in [13, 17] that those introduced in [16] refine combinato-

rial, geometric, and representation theoretic aspects of Schur theory. This prompted

Bergeron, Descouens, and Zabrocki to explore the role of k-Schur functions in the
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q, t-Catalan theory. To this end, they conjectured in [1] that the coefficient of s1n

in ∇s(k)
1n [X; t] is a positive polynomial in q, t and proved their conjecture for the

case t = 1.

Our work here was initially motivated by a desire to find a combinatorial descrip-

tion for this coefficient in general, ideally in terms of a q, t-statistic on lattice paths as

with the q, t-Catalans. We found such a description, but, more remarkably, this led

us to discover that a natural setting for the combinatorial theory of DHn is created by

applying ∇ to the general set of Hall–Littlewood polynomials indexed by composi-

tions. To be precise, it was proved in [15] that the k-Schur function s(k)
1n [X; t] is merely

a certain Hall–Littlewood polynomial. This led us to study ∇ on a Hall–Littlewood

polynomial indexed by any partition λ. But in fact, our work carries through to the

family of polynomials Cα[X; q], for any composition α, defined in terms of operators

similar to Jing operators.

A key component in the proof of the q, t-Catalan conjecture [4] is the use of sym-

metric functions En,k[X; q] that decompose en into pieces that remain positive under

the action of∇. We have discovered that the Cα[X; q] can be used as building blocks

in the q, t-Catalan theory that decompose the En,k[X; q] into finer pieces, still pos-

itive under the action of ∇. Our conjectures on these building blocks thus refine

earlier conjectures involving En,k[X; q], the conjectures in [1], the shuffle conjecture,

and the conjectures in [2] asserting that∇ applied to Hall–Littlewood functions have

q, t-positive Schur coefficients. Loehr and Warrington [18] introduced an intricate

conjecture for the combinatorics of∇ applied to a Schur function sλ. Our conjecture

is extremely simple, describes the action of∇ on a larger set of symmetric functions

than just a basis, and refines the conjecture of Loehr and Warrington when∇ acts on

the Schur function s(n−k,1k) [18, Conjecture 3] as explained at the end of Section 4.

Garsia, Xin, and Zabrocki [5], using a combinatorial argument of A. Hicks, have

now proven our generalized q, t-Catalan conjecture and expanded the result giving a

“compositional q, t-Schröder” theorem.

2 Definitions and Notation

2.1 Combinatorics

A Dyck path is a lattice path in the first quadrant of the xy-plane from the point

(0, 0) to the point (n, n) with steps +(0, 1) and +(1, 0) that stays above the line x = y.

For a Dyck path D, the cells in the i-th row are those unit squares in the xy-plane

that are below the path and fully above the line x = y and whose NE corner has a y

coordinate of i. The set of Dyck paths from (0, 0) to (n, n) will be denoted DPn, and

the number of paths in this set is well known to be the Catalan number

Cn =
1

n + 1

(
2n

n

)
.

For a Dyck path D, let ai = ai(D) equal the number of cells in the ith row of D.

It is always true that a1 = 0 and 0 ≤ ai+1 ≤ ai + 1. We define the arm sequence

arm(D) = (a1, a2, . . . , an) and note that this completely determines D. We consider
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two statistics (non-negative integers) on Dyck paths. The area statistic is the number

of whole cells that are below the path and above the diagonal, or

area(D) =

n∑

i=1

ai .

The dinv statistic is defined as

dinv(D) =
∑

1≤i< j≤n

χ
(

ai − a j ∈ {0, 1}
)
,

where χ(true) = 1 and χ(false) = 0.

Remark 2.1 The Dyck path D with arm sequence (0n) has area(D) = 0 and

dinv(D) =
(

n
2

)
. The Dyck path D ′ with arm sequence (0, 1, 2, 3, . . . , n − 1) has

area(D ′) =
(

n
2

)
and dinv(D ′) = 0.

arm sequence (0,0,0,0,0) (0,1,2,3,4) (0,1,2,2,1) (0,1,0,1,0)

area 0 10 6 2

dinv 10 0 4 7

Remark 2.2 The original proof of the combinatorial interpretation of the q, t-Cata-

lan polynomial was stated in terms of a third statistic bounce(D). Since we are able to

formulate our results more cleanly in terms of the dinv(D) statistic, we choose to state

all the results in this paper in terms of the dinv(D) statistic; however, the reference

[8, p. 50] describes an automorphism φ on DPn such that area(φ(D)) = bounce(D)

and dinv(φ(D)) = area(D).

We make use of a partial order on Dyck paths; namely D1 ≤ D2 if arm(D1) ≤
arm(D2), component-wise. In this case we say that D1 is “below” D2 because D1 will

not cross D2 and is hence weakly “between” D2 and the diagonal.

A compositionα of n, denotedα |= n, is an integer sequenceα = (α1, α2, . . . , αr)

with αi ≥ 1 and where |α| = α1 +α2 + · · ·+αr = n. The length of α is ℓ(α) = r. We

shall also use
←−
α = (αℓ(α), αℓ(α)−1, . . . , α2, α1). For any composition α, we define

n(α) =

ℓ(α)∑

i=1

(i − 1)αi .
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The descent set of a composition α is defined to be

Des(α) = {α1, α1 + α2, . . . , α1 + α2 + · · · + αℓ(α)−1}.

There is a common partial order defined on compositions α, β |= n by letting α ≤ β
when α is “finer” than β, i.e., Des(β) ⊆ Des(α). If α is a composition of n, DP(α)

represents the Dyck path consisting of α1 steps in the North (0, 1) direction followed

by α1 steps in the East (1, 0) direction, α2 (0, 1) steps followed by α2 (1, 0) steps, etc.

A partition λ = (λ1, . . . , λr) is a non-increasing sequence of positive integers.

When λ is a partition of n, denoted λ ⊢ n, |λ| =
∑

λi = n. The length of λ is

ℓ(λ) = r. Given a partition λ, we set

m(λ) =
(

m1(λ),m2(λ),m3(λ), . . . ,m|λ|(λ)
)
,

where the numbers mi(λ) represent the number of parts of size i in λ. The conjugate

of a partition λ is the partition λ ′ = (λ ′1, λ
′
2, . . . , λ

′
m), where λ ′i is the number of parts

of λ that are at least i. Partitions are generally considered to be compositions with

parts arranged in non-increasing order. Hence, notions defined on compositions

apply to partitions as well. Generally, we will use the symbols α, β, γ to represent

compositions and λ, µ, ν to represent partitions.

For a given Dyck path D, touch(D) denotes the composition

γ = (γ1, γ2, . . . , γℓ(γ)) |= n

that specifies in which rows the Dyck path “touches” the diagonal. That is, for

arm(D) = (a1, a2, . . . , an), ak = 0 if and only if k = 1 or k − 1 ∈ Des(γ). The

title of this paper comes from the notion of the touch composition. By requiring that

touch(D) = α for a fixed composition α, we have specified that the Dyck path will

touch the diagonal in rows 1, 1 +α1, 1 +α1 +α2, . . . , 1 +α1 +α2 + · · ·+αℓ(α)−1 and is

forbidden to touch the diagonal in the other rows. Note that under this definition, we

view all paths as touching the diagonal in row 1, but none touching in row n + 1, and

we say the path touches the diagonal ℓ(α) times. The partial order on compositions

is consistent with the partial order on Dyck paths in the sense that if D1 and D2 are

Dyck paths such that D1 ≤ D2, then touch(D1) ≤ touch(D2).

Using these notions, we introduce a new statistic doffα(D) for a given Dyck path

D with touch(D) ≤ α. If arm(D) = (a1, a2, . . . , an), let r1 be the number of rows

such that ai = 0 for 1 ≤ i ≤ α1, r2 be the number of rows such that ai = 0 for α1 <
i ≤ α1 + α2, and more generally rk = #{i : ai = 0 and

∑k−1
j=1 α j < i ≤

∑k
j=1 α j}.

We then set

doffα(D) =

ℓ(α)∑

k=1

(ℓ(α)− k)rk.

Remark 2.3 If arm(D) = (0, 1, 2, 0, 1, 2, 2, 1, 0, 1, 2, 3, 2, 1), then touch(D) =

(3, 5, 6). Taking α = (8, 6), we have doff(8,6)(D) = 2.
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The only Dyck path with touch(D) = (1n) has arm(D) = (0n). There are Cn−1

Dyck paths with touch(D) = (n), and, more generally, there are
∏ℓ(α)

i=1 Cαi−1 Dyck

paths such that touch(D) = α. Note that if D and E are two Dyck paths with

touch(D) = touch(E) ≤ α, then doffα(D) = doffα(E).

The results we have mentioned so far are stated in terms of Dyck paths, but we

will require the notion of parking functions to state the generalization of the shuffle

conjecture. For a Dyck path D in DPn with arm(D) = (a1, . . . , an), let WPD be the

set of words of length n in the alphabet {1, 2, . . . , n} such that wi < wi+1 if ai < ai+1.

We use the notation xw to denote the monomial xw1
xw2
· · · xwn

. We also define an

extension of the dinv statistic for words in WPD by setting

dinv(w) = |{(i, j) : 1 ≤ i < j ≤ n, ai = a j and wi < w j}|

+ |{(i, j) : 1 ≤ i < j ≤ n, ai = a j + 1 and wi > w j}|.

2.2 Symmetric Functions

Let X represent a sum of an infinite set of variables X = x1 + x2 + x3 + · · · considered

as elements of the ring of polynomial series in an infinite number of variables of

bounded degree. For r > 0, let pr represent a linear and algebraic morphism that acts

on polynomial series by pr[x] = xr. That is for two polynomial series of bounded

degree A and B,

pr[A + B] = pr[A] + pr[B],

pr[A− B] = pr[A]− pr[B],

pr[AB] = pr[A]pr[B]

and in particular, pr[X] = xr
1 + xr

2 + xr
3 + · · · represents the r-th power sum in the

variables {x1, x2, x3, . . . }. The ring of symmetric functions over the field F is defined

to be the polynomial ring

Λ = F
[

p1[X], p2[X], p3[X], . . .
]
.

https://doi.org/10.4153/CJM-2011-078-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-078-4


A Compositional Shuffle Conjecture 827

For our purposes, we choose the field F to be the ring of rational power series in the

variables q, t, u, z over Q where each of the parameters q, t, u, z has the property that

pr[a] = ar for each a = q, t, z, u.

Generally our symmetric functions f will be considered as polynomials in the el-

ements pr so the notation f [A] represents f with each pr replaced by pr[A]. The

degree of pr is r and the degree of a symmetric function f is determined by the de-

gree of the monomials in the power sums that appear in f . Following the notation

of Macdonald [19], we have the power sum basis pλ[X], Schur basis sλ[X], homoge-

neous basis hλ[X], and elementary basis eλ[X].

In the expressions of variables it is useful to have a special symbol ǫ that will rep-

resent a value of negative one but behaves differently than a negative symbol. If f is

of homogeneous degree r,

f [ǫX] = (−1)r f [X], f [−ǫX] = ω( f [X]),

where ω is an involution on symmetric functions such that

ω(pλ[X]) = (−1)|λ|+ℓ(λ) pλ[X], ω(en[X]) = hn[X], and ω(sλ[X]) = sλ ′[X].

We will also make use of the standard Hall scalar product, which is defined by

〈
pλ[X], pµ[X]/zµ

〉
=

〈
sλ[X], sµ[X]

〉
= χ(λ = µ),

where zµ =
∏

i≥1 mi(µ)!imi (µ).

For any symmetric function f , multiplication by f is an operation on symmetric

functions that raises the degree of the symmetric function by deg( f ). If we define f⊥

to be the operation that is dual to multiplication in the sense that

〈
f⊥g, h

〉
= 〈g, f h〉,

then f⊥ is an operator that lowers the degree of the symmetric function by deg( f ).

It is not difficult to show that

f [X + z] =
∑

k≥0

zk(h⊥k f )[X],

f [X − z] =
∑

k≥0

(−z)k(e⊥k f )[X].

In addition we will refer to the form of the Macdonald basis H̃λ[X; q, t] that is

relevant to the study of the n! Theorem [10] and the q, t-Catalan numbers. The

relation of this basis to the integral form Jµ[X; q, t] of [19] is

H̃µ[X; q, t] = tn(µ) Jµ

[ X

1− 1/t
; q, 1/t

]
.

It is also characterized as the unique basis such that

〈
H̃µ

[
X(1− 1/t); q, t

]
, H̃λ

[
X(1− q); q, t

]〉
= 0
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if λ 6= µ and 〈H̃µ[X; q, t], hn[X]〉 = 1.

We are particularly interested in the Hall–Littlewood symmetric functions. Fol-

lowing the notation of Macdonald we define the functions Q ′λ[X; q] to be the basis of

the symmetric functions that satisfy
〈

Q ′λ
[

X(1− q); q
]
,Q ′µ[X; q]

〉
= 0

if λ 6= µ and 〈Q ′λ[X; q], hn[X]〉 = qn(λ). Relating the definitions of the Hall–Little-

wood and Macdonald symmetric functions, we note that

Q ′λ[X; q] = H̃λ[X; 0, 1/q]qn(λ)
=

∑

λ

Kλµ(q)sλ[X].

The operator∇ was introduced in [2] and is defined by

∇H̃λ[X; q, t] = tn(λ)qn(λ ′)H̃λ[X; q, t].

This operator has been fundamental to the study of the q, t-combinatorial identities

associated with DHn and Macdonald polynomials. Its definition is chosen so that

〈
∇
(

en[X]
)
, en[X]

〉
= Cn(q, t),

where Cn(q, t) is the q, t-Catalan polynomial. References [3, 6, 8] showed that

(2.1) Cn(q, t) =
∑

D∈DPn

tarea(D)qdinv(D)

with the sum over all Dyck paths of length n.

Remark 2.4 A small example is C3(q, t) = q3 + qt + q2t + qt2 + t3, whose terms

can be computed (in order) from the 5 Dyck paths of length 3 with respective arm

sequences (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1) and (0, 1, 2).

We will make use of the Newton element

Ω[X] =
∑

λ

pλ[X]/zλ =

∑

m≥0

hm[X],

where we have the identities

Ω[X + Y ] = Ω[X]Ω[Y ],

Ω[X − Y ] = Ω[X]/Ω[Y ],

Ω[x1 + ǫx2 − x3 − ǫx4] =
(1− x3)(1 + x4)

(1− x1)(1 + x2)
,

Ω[XY ] =
∑

λ

sλ[X]sλ[Y ] =
∑

λ

pλ[X]pλ[Y ]/zλ.
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Jing [12] introduced a family of operators Hm indexed by m ∈ Z using the follow-

ing formal power series in the parameter z:

H(z)P[X] =
∑

m∈Z

zm
HmP[X] := P

[
X −

1− q

z

]
Ω[zX]

=

∑

m∈Z

zm
∑

r≥0

(−1)rhm+r[X]er[(1− q)X]⊥P[X].

(2.2)

He proved that these operators create the Hall–Littlewood polynomials by adding

rows.

Proposition 2.5 ([12]) For any partition λ = (λ1, . . . , λℓ),

Q ′λ[X; q] = Hλ1
Hλ2
· · ·Hλℓ

(1).

3 Two Families of Hall–Littlewood Symmetric Functions

Our primary focus is the study of two families of symmetric functions and the com-

binatorics surrounding them. These functions arise from the following operators Bm

and Cm, closely related to Jing’s Hm operators from equation (2.2):

B(z)P[X] =
∑

m∈Z

zm
BmP[X] := P

[
X + ǫ

(1− q)

z

]
Ω[−ǫzX]

=

∑

m∈Z

zm
∑

r≥0

(−1)rem+r[X]hr[X(1− q)]⊥P[X]

C(z)P[X] =
∑

m∈Z

zm
CmP[X] := −q P

[
X + ǫ

(1− q)

z

]
Ω[ǫ(z/q)X]

=

∑

m∈Z

(−1/q)m−1zm
∑

r≥0

q−rhm+r[X]hr[X(1− q)]⊥P[X].

(3.1)

The symmetric functions of particular interest here are those defined, for any com-

position α, by setting

Bα[X; q] = Bαℓ(α)
Bαℓ(α)−1

· · ·Bα1
(1),

Cα[X; q] = Cα1
Cα2
· · ·Cαℓ(α)

(1).

Note that the operators generating Bα and Cα are both indexed by the parts of α,

but are applied in reverse order with respect to one another. This is done so that the

associated combinatorial and algebraic identities are more uniform.

These operators are related by way of the equation:

B(z) = ωH(z)ω and C(z) = (−q)H
q→1/q(−z/q),
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or equivalently

(3.2) Cm = (−1/q)m−1
H

q→1/q
m = (−1/q)m−1ωB

q→1/q
m ω.

Thus the functions themselves are related as:

Q ′λ[X; q] = ωB←−
λ

[X; q] = (−q)ℓ(λ)−|λ|Cλ[X; 1/q].

The Jing operators create Hall–Littlewood polynomials indexed by partitions that

form a basis for the symmetric function ring. The Cα and Bα symmetric functions

are indexed by compositions and are not linearly independent. The equations above

detail how Hall–Littlewood symmetric functions are included in these families, and

therefore, Schur positive expansions of the Cα and Bα hold in certain cases. However,

they are not Schur positive in complete generality. The smallest examples that are not

uniformly Schur positive or Schur negative are B(3,1)[X; q] and C(1,3)[X; q].

Remark 3.1 The following is a table of the symmetric functions Bα[X; q] and

Cα[X; q] for α |= 4. Notice that both B(3,1)[X; q] and C(1,3)[X; q] have mixed signs in

their coefficients.



B(1,1,1,1)[X; q]

B(1,1,2)[X; q]

B(1,2,1)[X; q]

B(2,1,1)[X; q]

B(1,3)[X; q]

B(2,2)[X; q]

B(3,1)[X; q]

B(4)[X; q]




=




q6 q3 + q4 + q5 q2 + q4 q + q2 + q3 1

q3 q + q2 q 1 0

q4 q2 + q3 q2 q 0

q5 q3 + q4 q3 q2 0

q 1 0 0 0

q2 q 1 0 0

q3 q2 q− 1 0 0

1 0 0 0 0







s(1,1,1,1)[X; q]

s(2,1,1)[X; q]

s(2,2)[X; q]

s(3,1)[X; q]

s(4)[X; q]







C(1,1,1,1)[X; q]

C(1,1,2)[X; q]

C(1,2,1)[X; q]

C(2,1,1)[X; q]

C(1,3)[X; q]

C(2,2)[X; q]

C(3,1)[X; q]

C(4)[X; q]




=




1 q−3 + q−2 + q−1 q−4 + q−2 q−5 + q−4 + q−3 q−6

0 −q−3 −q−4 −q−5 − q−4 −q−6

0 −q−2 −q−3 −q−4 − q−3 −q−5

0 −q−1 −q−2 −q−3 − q−2 −q−1

0 0 q−3 − q−2 q−4 q−5

0 0 q−2 q−3 q−4

0 0 0 q−2 q−3

0 0 0 0 q−3







s(1,1,1,1)[X; q]

s(2,1,1)[X; q]

s(2,2)[X; q]

s(3,1)[X; q]

s(4)[X; q]
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To manipulate these symmetric functions, we derive commutation relations be-

tween the symmetric function operators. Our first result enables us to expand an

element Cα[X; q], for any composition α, in terms of the Cλ[X; q] indexed by parti-

tions λ.

Proposition 3.2 For m, n ∈ Z, we have

(3.3) qCmCn − Cm+1Cn−1 = CnCm − qCn−1Cm+1.

In particular for m ∈ Z, CmCm+1 =
1
q

Cm+1Cm.

Proof We begin with the expressions for the C-operators from equation (3.1). For

ease of notation we shall use hm in place of hm[X] and h
q⊥
r in place of the expression

hr[X(1− q)]⊥. We compute that

hq⊥
r (hmP[X]) = hm[X + (1− q)z]P

[
X + (1− q)z

] ∣∣∣
zr

=

∑

i≥0

hm−ihi[1− q]P
[

X + (1− q)z
] ∣∣∣

zr−i

=

∑

i≥0

hm−ihi[1− q]h
q⊥
r−iP[X].

(3.4)

We also know that

(3.5) hr[1− q] =





0 if r < 0,

1 if r = 0,

1− q if r > 0.

These two identities imply that

qCmCn = (−1/q)m+n−2
∑

i≥0

∑

r≥0

∑

s≥0

q−r−s−i+1hm+r+ihn+s−ihi[1− q]hq⊥
r hq⊥

s

= (−1/q)m+n−2
∑

i≥0

∑

r≥0

∑

s≥0

q−r−s−i+1hm+r+ihn+s−ih
q⊥
r hq⊥

s

− (−1/q)m+n−2
∑

i≥1

∑

r≥0

∑

s≥0

q−r−s−i+2hm+r+ihn+s−ih
q⊥
r hq⊥

s

= (−1/q)m+n−2
∑

i≥0

∑

r≥0

∑

s≥0

q−r−s−i+1hm+r+ihn+s−ih
q⊥
r hq⊥

s

− (−1/q)m+n−2
∑

i≥0

∑

r≥0

∑

s≥0

q−r−s−i+1hm+r+i+1hn+s−i−1hq⊥
r hq⊥

s

= (−1/q)m+n−2
∑

r≥0

∑

s≥0

∑

i≥0

q−r−s−i+1s(m+r+i,n+s−i)h
q⊥
r hq⊥

s .

(3.6)
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where to arrive at (3.6) we have introduced the Schur function s(a,b) = hahb −
ha+1hb−1. Similarly,

Cm+1Cn−1 = (−1/q)m+n−2
∑

r≥0

∑

s≥0

∑

i≥0

q−r−s−is(m+r+i+1,n+s−i−1)h
q⊥
r hq⊥

s .

From these identities, we find that all terms in the difference qCmCn − Cm+1Cn−1

cancel except the i = 0 term in (3.6):

qCmCn − Cm+1Cn−1 = (−1/q)m+n−2
∑

r≥0

∑

s≥0

q−r−s+1s(m+r,n+s)h
q⊥
r hq⊥

s

+ (−1/q)m+n−2
∑

r≥0

∑

s≥0

∑

i≥1

q−r−s−i+1s(m+r+i,n+s−i)h
q⊥
r hq⊥

s

− (−1/q)m+n−2
∑

r≥0

∑

s≥0

∑

i≥0

q−r−s−is(m+r+i+1,n+s−i−1)h
q⊥
r hq⊥

s

= (−1/q)m+n−2
∑

r≥0

∑

s≥0

q−r−s+1s(m+r,n+s)h
q⊥
r hq⊥

s .

We can then compute CnCm − qCn−1Cm+1 from this by replacing m → n − 1 and

n→ m + 1. In particular,

qCn−1Cm+1 − CnCm =(−1/q)m+n−2
∑

r≥0

∑

s≥0

q−r−s+1s(n−1+r,m+1+s)h
q⊥
r hq⊥

s .

The identity −s(b−1,a+1) = s(a,b) and the commutation of h⊥ then imply our claim.

An important consequence of this result is that if α is a composition of length

ℓ, then Cα[X; q] can be written as a linear combination of the Cλ[X; q] where λ are

partitions that also have length ℓ.

Remark 3.3 The symmetric function C(1,3)[X; q] can be expressed in terms of

C(3,1)[X; q] and C(2,2)[X; q] using this commutation relation,

since qC1C3 = C2C2 + C3C1 − qC2C2. Consequently,

C(1,3)[X; q] = (1/q− 1)C(2,2)[X; q] + 1/qC(3,1)[X; q].

The relation of C to B given in (3.2) enables us to derive an identity on B from

Theorem 3.2. In particular, we simply apply ω to (3.3) and replace q by 1/q.

Corollary 3.4 For m ∈ Z,

BmBn − qBm+1Bn−1 = qBnBm − Bn−1Bm+1.

In particular, letting n = m + 1 gives BmBm+1 = qBm+1Bm.

https://doi.org/10.4153/CJM-2011-078-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-078-4


A Compositional Shuffle Conjecture 833

In fact, we can also pin down commutation relations between the B and C opera-

tors if m + n > 0 (note, the relation does not hold when m + n ≤ 0).

Proposition 3.5 If m + n > 0, then BnCm = qCmBn.

Proof We use identities (3.4) and (3.5) to compute an expression for BmCn:

BmCn =(−1/q)n−1
∑

r≥0

∑

s≥0

∑

i≥0

(−1)rq−sem+rhn+s−ihi[1− q]h
q⊥
r−ih

q⊥
s

=(−1/q)n−1
∑

r≥0

∑

s≥0

(−1)rq−sem+rhn+sh
q⊥
r hq⊥

s

+ (−1/q)n−1
∑

i≥1

∑

r≥0

∑

s≥0

(−1)r+iq−sem+r+ihn+s−i(1− q)hq⊥
r hq⊥

s .

Analogously, we also have the equations

hq⊥
r em =

∑

i≥0

em−iei[1− q]h
q⊥
r−i and er[1− q] = (−q)r−1hr[1− q]

if r > 0. From this we derive a similar expression for qCnBm:

qCnBm =(−1/q)n−1
∑

s≥0

∑

r≥0

∑

i≥0

(−1)rq−s+1hn+sem+r−iei[1− q]h
q⊥
s−ih

q⊥
r

=(−1/q)n−1
∑

s≥0

∑

r≥0

(−1)rq−s+1em+rhn+sh
q⊥
s hq⊥

r

+ (−1/q)n−1
∑

i≥1

∑

s≥0

∑

r≥0

(−1)r+i+1q−sem+r−ihn+s+i(1− q)hq⊥
s hq⊥

r .

Their difference is

BmCn − qCnBm

= (1− q)(−1/q)n−1
∑

s≥0

∑

r≥0

q−s(−1)rem+rhn+sh
q⊥
r hq⊥

s

+ (1− q)(−1/q)n−1
∑

r≥0

∑

s≥0

q−s

(∑

i≥1

(−1)r+iem+r−ihn+s+i

)
hq⊥

r hq⊥
s

+ (1− q)(−1/q)n−1
∑

r≥0

∑

s≥0

q−s

(∑

i≥1

(−1)r+iem+r+ihn+s−i

)
hq⊥

r hq⊥
s .

In fact, the right-hand side reduces to zero, since m + n > 0 implies that for each

r, s ≥ 0, m + n + r + s > 0 and

(−1)rem+rhn+s +
∑

i≥1

(−1)r+iem+r−ihn+s+i +
∑

i≥1

(−1)r+iem+r+ihn+s−i

=

m+r∑

i=−n−s

(−1)r+iem+r−ihn+s+i = 0
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by the identity
∑d

i=0(−1)ied−ihi = 0 for all d > 0.

Jing’s operators generalize operators of Bernstein (see [19]), defined by

S(z)P[X] =
∑

m∈Z

zm
SmP[X] = P

[
X −

1

z

]
Ω[zX]

=

∑

m∈Z

zm
∑

r≥0

(−1)rhm+r[X]er[X]⊥P[X].

These are creation operators for the Schur functions, since Sλ1
Sλ2
· · · Sλℓ

(1) = sλ[X],

and they satisfy the commutation relation SmSn = −Sn−1Sm+1. We can write the

Schur creation operators in terms of the Ca operators, which will help us to write

Schur functions in terms of the Cα in Section 5.

Proposition 3.6 For m ∈ Z,

(3.7) Sm = (−q)m−1
∑

i≥0

Cm+ie
⊥
i .

Proof We will use the identity

hr[(1− q)X] =
∑

j≥0

h j[X]hr− j[−qX] =
∑

j≥0

(−q)r− jh j[X]er− j[X]

and calculate directly

(−q)m−1
∑

i≥0

Cm+ie
⊥
i

= (−q)m−1
∑

i≥0

(−1/q)m+i−1
∑

r≥0

q−rhm+i+r[X]hr[X(1− q)]⊥e⊥i

=

∑

r≥0

∑

i≥0

∑

j≥0

(−1/q)i−r+ jq−rhm+i+r[X]h⊥j e⊥r− je
⊥
i

=

∑

d≥0

d∑

j=0

∑

r≥0

(−1)d−rq−dhm+d+r− j[X]h⊥j e⊥r− je
⊥
d− j

=

∑

d≥0

d∑

j=0

∑

r≥0

(−1)d−r− jq−dhm+d+r[X]h⊥j e⊥r e⊥d− j

=

∑

r≥0

(−1)−rhm+r[X]e⊥r = Sm,

where the last equality follows because
∑d

j=0(−1) jh jed− j = 0 for all d > 0, so the

remaining sum is only the part where d = 0.
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Remark 3.7 In reference [5], the operator Ca is presented in a slightly different but

equivalent expression. We note that a series f (z) =
∑

n∈Z
fnzn has the property that

f (ǫz/q)|za = (−1/q)a f (z)|za . For this reason,

CaP[X] = −qP
[

X + ǫ
(1− q)

z

]
Ω[ǫ(z/q)X]

∣∣∣
za

= −q(−1/q)aP
[

X +
(1− q)

qz

]
Ω[zX]

∣∣∣
za

= (−1/q)a−1P
[

X −
1− 1/q

z

]
Ω[zX]

∣∣∣
za
.

4 The Combinatorics of ∇ Applied to Hall–Littlewood Polynomials

Recall that in the special case where α is a partition, Bα[X; q] and Cα[X; q] are closely

related to the Hall–Littlewood symmetric functions. It was conjectured in [2, Con-

jecture II and III] (partially attributed to A. Lascoux) that applying ∇ to a Hall–

Littlewood polynomial produces a Schur positive function. Our main discovery is

that including all compositions α in the study of∇(Bα[X; q]) and∇(Cα[X; q]) leads

to a natural refinement for the combinatorics of Dyck paths. Moreover, our combi-

natorial exploration led us to discover new symmetric function identities.

One useful tool in the exploration of the operator ∇ is the fact that ∇q=1 is a

multiplicative operator. Since we can deduce from the operator definitions of our

symmetric functions that Bα[X; 1] = eα[X] and Cα[X; 1] = hα[X], we have

∇q=1
(

Bα[X; 1]
)
= ∇q=1

(
eαℓ

[X]
)
∇q=1

(
eαℓ−1[X]

)
· · · ∇q=1

(
eα1

[X]
)

and

∇q=1
(

Cα[X; 1]
)
= ∇q=1

(
hα1

[X]
)
∇q=1

(
hα2

[X]
)
· · · ∇q=1

(
hαℓ

[X]
)
.

From this we can deduce the coefficient of en[X]. In particular, the coefficients

of en[X] in ∇(en[X]) and in ∇(hn[X]) are the q, t-Catalan numbers Cn(q, t) and

Cn−1(q, t), respectively. Thus, the coefficient of en[X] in ∇q=1(Bα[X; 1]) and in

∇q=1(Cα[X; 1]) is
∏

i Cαi
(1, t) and

∏
i Cαi−1(1, t), respectively. The combinatorial

interpretation for Cn(1, t) then gives combinatorial meaning to these coefficients.

Namely, 〈en[X],∇q=1(Bα[X; 1])〉 is the t-enumeration of Dyck paths (with weight t

raised to the area) that lie below the staircase consisting of α1 steps up and over, α2

steps up and over, etc., and 〈en[X],∇q=1(Cα[X; 1])〉 is a t-enumeration of Dyck paths

that touch the diagonal only in rows 1, 1 + α1, 1 + α1 + α2 steps, etc.

Proposition 4.1 For α a composition of n,
〈
∇q=1

(
Bα[X; 1]

)
, en[X]

〉
=

∑

D≤DP(α)

tarea(D)

and 〈
∇q=1

(
Cα[X; 1]

)
, en[X]

〉
=

∑

touch(D)=α

tarea(D).
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Remarkably, we have empirical evidence to suggest that, in general, there

is a combinatorial interpretation for the coefficients of en[X] in ∇(Bα[X; q])

and in ∇(Cα[X; q]) that naturally generalizes the beautiful combinatorics of the

q, t-Catalan.

Conjecture 4.2 For α |= n,

〈
∇
(

Bα[X; q]
)
, en[X]

〉
=

∑

D≤DP(α)

tarea(D)qdinv(D)+doffα(D).

Conjecture 4.3 For α |= n,

〈
∇
(

Cα[X; q]
)
, en[X]

〉
=

∑

touch(D)=α

tarea(D)qdinv(D).

Our work was inspired by the work of [1] where they considered coefficients

∇(B←−
λ

[X; q]) for λ a hook partition (since for that case doff←−
λ

(D) = 0). The innova-

tion in these identities is to consider symmetric functions indexed by compositions

which allowed us to conjecture the action of ∇ on a spanning set of the symmetric

functions.

More generally, we have conjectures for the expansion of ∇(Bα[X; q]) and

∇(Cα[X; q]) into monomials.

Conjecture 4.4

(4.1) ∇(Bα[X; q]) =
∑

D≤DP(α)

∑

w∈WPD

tarea(w)qdinv(w)+doffα(D)xw.

Conjecture 4.5

(4.2) ∇(Cα[X; q]) =
∑

touch(D)=α

∑

w∈WPD

tarea(D)qdinv(w)xw.

By the arguments in [9] (see also [8, p. 99]) Conjectures 4.4 and 4.5 imply Con-

jectures 4.2 and 4.3. The case α = (n) of (4.1) reduces to the shuffle conjecture, since

B(n)[X; q] = en[X]. Also, because of the expansion of s(n−k,1k) in Proposition 5.3,

(4.2) implies the special case of the Loehr–Warrington conjecture [18, Conjecture 3]

involving the action of∇ on the Schur function s(n−k,1k).

We will prove in the next section that Conjectures 4.4 and 4.5 are equivalent to

each other (and by consequence Conjectures 4.2 and 4.3 are equivalent as well). In

work building on our results here, [5] with contributions from A. Hicks, proved Con-

jecture 4.3.

5 Symmetric Function Identities

The exploration of q, t-Catalans led [3] to the special symmetric function elements

En,k[X; q], defined by the algebraic identity

en

[
X

1− z

1− q

]
=

n∑

k=1

(z; q)k

(q; q)k

En,k[X; q],
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where (z; q)k = (1 − z)(1 − qz) · · · (1 − qk−1z). These elements play a fundamental

role in the proof that the q, t-Catalan polynomial is the q, t-enumeration of Dyck

paths as given in (2.1). Namely, the proof follows by showing that

(5.1)

〈
∇En,k[X; q], en[X]

〉
= q(k

2)tn−k

n−k∑

r=0

[
r + k− 1

r

]

q

〈
∇
(

En−k,r[X; q]
)
, en−r[X]

〉
,

where [
n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

,

and the combinatorial interpretation for 〈∇En,k[X; q], en[X]〉 in terms of Dyck paths

satisfies the same recurrence.

In particular, the coefficient of en[X] in ∇(En,k[X; q]) q, t-enumerates the Dyck

paths that touch the diagonal k times. From this, Conjecture 4.3 leads us to expect

that 〈
en[X],∇(En,k[X; q])

〉
=

∑

α|=n,ℓ(α)=k

〈
en[X],∇(Cα[X; q])

〉
.

In fact, we have discovered much more generally that

En,k[X; q] =
∑

α|=n
ℓ(α)=k

Cα[X; q].

This section is devoted to proving this surprising result, which suggests that the

Cα[X; q] are the building blocks in q, t-Catalan theory.

Remark 5.1 A key step in the proof of our Conjectures 4.2 and 4.3 relies on ex-

tending the recurrence (5.1) to involve Dyck paths that touch the diagonal at certain

points. This is carried out in [5].

Our point of departure is a simple expression for en[X] in terms of the Hall–

Littlewood symmetric functions Cα[X; q].

Proposition 5.2

(5.2) en[X] =
∑

α|=n

Cα[X; q].

Proof Assume by induction on n that equation (5.2) holds (the base cases of n = 0

and 1 are easily verified). Since the operator Sm is a creation operator for the Schur

functions, by (3.7) we have

en[X] = s(1n)[X] = S1(s(1n−1)[X]) =

n−1∑

i=0

C1+is(1n−i−1)[X],
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which, by induction, gives

en[X] =

n−1∑

i=0

∑

α|=n−i−1

Ci+1Cα[X; q] =
∑

α|=n

Cα[X; q].

Proposition 5.2 can be stated in a more general form, suggesting that any Schur

function may expand nicely in terms of our Hall–Littlewood spanning set.

Proposition 5.3 For 0 ≤ k < n,

s(n−k,1k)[X] = (−q)n−k−1
∑

α|=n
α1≥n−k

Cα[X; q].

Proof Again using that S is a Schur function creation operator, by (3.7) we have

s(n−k,1k)[X] = Sn−k

(
s1k [X]

)
= (−q)n−k−1

k∑

i=0

Cn−k+i

(
s(1k−i )[X]

)
.

The previous proposition then implies that

s(n−k,1k)[X] = (−q)n−k−1
k∑

i=0

Cn−k+i

( ∑

α|=k−i

Cα[X; q]

)

= (−q)n−k−1
k∑

i=0

∑

α|=k−i

C(n−k+i,α)[X; q]

= (−q)n−k−1
∑

α|=n
α1≥n−k

Cα[X; q].

We are now in the position to prove that En,k[X; q] can be decomposed canonically

in terms of the Cα[X; q].

Proposition 5.4 For 0 ≤ k < n,

(5.3) En,k[X; q] =
∑

µ⊢n
ℓ(µ)=k

q−n(µ)−k+M(µ)

[
k

m(µ)

]

q

Cµ[X; q],

where M(µ) =
∑n

i=1

(
mi (µ)+1

2

)
and

[
k

m(µ)

]
q
= (q; q)k/

∏n
i=1(q; q)mi (µ).

Proof Recall that the expansion of the elementary symmetric functions in the Mac-

donald basis is given by (see [3])

en

[
X

1− z

1− q

]
=

∑

µ⊢n

H̃µ[X; q, t]H̃µ[(1− z)(1− t); q, t]

h̃µ(q, t)h̃ ′µ(q, t)
,
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where h̃µ(q, t) =
∏

c∈µ(qa(c) − t l(c)+1) and h̃ ′µ(q, t) =
∏

c∈µ(t l(c) − qa(c)+1). When

t = 0, these expressions reduce to

h̃µ(q, 0) =
∏
c∈µ

(qa(c) − 0l(c)+1) = qn(µ ′),

h̃ ′µ(q, 0) =
∏
c∈µ

l(c)=0

(1− qa(c)+1)
∏
c∈µ

l(c) 6=0

(−qa(c)+1)

= (−1)n−µ1 qn+n(µ ′)−M(µ ′)
n∏

i=1

(q; q)mi (µ ′).

Therefore, since H̃µ[X; q, t] = H̃µ ′[X; t, q], when we set t = 0 everywhere, we have

(5.4) en

[
X

1− z

1− q

]
=

∑

µ⊢n

(−1)n−µ1 q−n−2n(µ ′)+M(µ ′) H̃µ ′[X; 0, q]H̃µ[(1− z); q, 0]∏n
i=1(q; q)mi (µ ′)

.

Now the evaluation

H̃µ[(1− z); q, t] =
∏
c∈µ

(1− zt l ′(c)qa ′(c))

also yields H̃µ[(1 − z); q, 0] = (z; q)µ1
. Thus, replacing µ by µ ′ in (5.4), and thereby

exchanging µ1 and ℓ(µ), gives

en

[
X

1− z

1− q

]
=

∑

µ⊢n

(−1)n−ℓ(µ)q−n−2n(µ)+M(µ) H̃µ[X; 0, q](z; q)ℓ(µ)∏n
i=1(q; q)mi (µ)

.

Since H̃µ[X; 0, q] = (−1)n−ℓ(µ)qn(µ)+n−ℓ(µ)Cµ[X; q], we have

en

[
X

1− z

1− q

]
=

n∑

k=1

(z; q)k

(q; q)k

∑

µ⊢n
ℓ(µ)=k

q−k−n(µ)+M(µ) Cµ[X; q](q; q)k∏n
i=1(q; q)mi (µ)

,

which implies our claim.

The q-binomial coefficients that appear in equation (5.3) suggest that there is a

relation between the terms of the Cλ[X; q] basis and subsets of a k element set. It

turns out that Proposition 5.4 can be more cleanly written over compositions using

a different expansion.

Corollary 5.5 For 0 ≤ k < n,

En,k[X; q] =
∑

α|=n
ℓ(α)=k

Cα[X; q].

https://doi.org/10.4153/CJM-2011-078-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-078-4


840 J. Haglund, J. Morse, and M. Zabrocki

Proof Using the straightening relations of the Cm operators, if α is a composition of

n and λ is a partition of n such that ℓ(λ) 6= ℓ(α), then

Cα[X; q]
∣∣∣

Cλ[X;q]
= 0.

Now for ℓ(λ) = k, by Proposition 5.4 and the fact that en[X] =
∑n

k=1 En,k[X; q],

En,k[X; q]
∣∣∣

Cλ[X;q]
= en[X]

∣∣∣
Cλ[X;q]

=

∑

α|=n

Cα[X; q]
∣∣∣

Cλ[X;q]

=

∑

α|=n
ℓ(α)=k

Cα[X; q]
∣∣∣

Cλ[X;q]
.

Furthermore, if ℓ(λ) 6= k, then

En,k[X; q]
∣∣∣

Cλ[X;q]
= 0 =

∑

α|=n
ℓ(α)=k

Cα[X; q]
∣∣∣

Cλ[X;q]
.

Since the functions Cλ[X; q] are a basis, this implies that

En,k[X; q] =
∑

α|=n
ℓ(α)=k

Cα[X; q].

We have seen in (3.2) that C is naturally related to B. Here we pin down the

relationship between the symmetric functions Bα[X; q] and Cα[X; q]. A by-product

of this identity is that Conjecture 4.5 implies Conjecture 4.4.

Theorem 5.6 For n ≥ 0 and any composition α |= n,

(5.5) Bα[X; q] =
∑

β≤α

qdoffα(DP(β))Cβ[X; q].

Proof We show this result by induction on the number of parts of α. The base case

follows, since Bm(1) = em[X] which is equal to
∑

γ|=m Cγ[X; q] by Proposition 5.2.

Assume by induction that (5.5) holds for a composition α of length ℓ and consider a

composition (m, α). We then have

B(α,m)[X; q] = Bm

(
Bα[X; q]

)
=

∑

β≤α

qdoffα(DP(β))
Bm

(
Cβ[X; q]

)
.(5.6)

Now consider Bm(Cβ[X; q]) = Bm ◦ Cβ1
◦ Cβ2

◦ · · · ◦ Cβℓ(β)
(1). The commutation

relation between the Cn and Bm from Theorem 3.5 implies

Bm(Cβ[X; q]) = qℓ(β)
Cβ1
◦ Cβ2

◦ · · · ◦ Cβℓ(β)
◦ Bm(1).
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By Proposition 5.2, we then have

Bm(Cβ[X; q]) = qℓ(β)
Cβ1
◦ Cβ2

◦ · · · ◦ Cβℓ(β)

(∑

γ|=m

Cγ[X; q]

)

= qℓ(β)
∑

γ|=m

C(β,γ)[X; q].

(5.7)

Putting (5.7) into (5.6), we thus find that

B(α,m)[X; q] =
∑

β≤α

qdoffα(DP(β))+ℓ(β)
∑

γ|=m

C(β,γ)[X; q].

For each term in the sum, the composition (β, γ) is finer than the composition

(α,m). Moreover, if we let ri be the number of times that DP(β) touches the di-

agonal below the i-th bump of the Dyck path DP(α), then

doff(α,m)(DP(β, γ)) =

ℓ(α)∑

i=1

ri(ℓ(α) + 1− i) =

ℓ(α)∑

i=1

ri(ℓ(α)− i) +

ℓ(α)∑

i=1

ri

= doffα(DP) + ℓ(β).

To prove that Conjectures 4.5 and 4.4 are in fact equivalent, we need to express

Cα[X; q] in terms of Bβ[X; q].

Lemma 5.7 Let γ, α be compositions with γ ≤ α. Then

∑

β
γ≤β≤α

(−1)ℓ(α)−ℓ(β)q
ℓ(α)−ℓ(β)+doffβ(DP(γ))−doff←−

α
(DP(
←−
β ))

=

{
0 if γ < α,

1 if γ = α.

Proof First assume that γ < α and consider the difference of the descent sets

Des(γ)\Des(α) = {i1, i2, . . . , id}.

There are 2d compositions β such that γ ≤ β ≤ α, and we will pair them up with a

sign reversing involution.

If i1 ∈ Des(β), let β̃ be the composition with Des(β̃) = Des(β)\{i1} (the terms

with i1 ∈ Des(β) will match with the terms i1 /∈ Des(β̃)). There is some r > 1 such

that α1 = β1, α2 = β2, . . . , αr > βr, because Des(β) contains the descent i1 that is

not in Des(α). Calculating directly we have that

ℓ(α)− ℓ(β) = ℓ(α)− ℓ(β̃)− 1,

doffβ(DP(γ)) = doffβ̃(DP(γ)) + r,

−doff←−
α

(DP(
←−
β )) = −doff←−

α
(DP(

←−
β̃ ))− r + 1.
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Therefore,

ℓ(α)− ℓ(β) + doffβ
(

DP(γ)
)
− doff←−

α

(
DP(
←−
β )

)
=

ℓ(α)− ℓ(β̃) + doffβ̃
(

DP(γ)
)
− doff←−

α

(
DP(
←−
β̃ )

)

and the signs of these terms are different in the sum. This provides a sign reversing

involution and hence those terms with touch(D) < α sum to 0 matching those terms

with Des(β) that include the smallest descent.

Now for those terms with touch(D) = α, we have γ = β = α and

ℓ(α)− ℓ(β) + doffβ(DP(γ))− doff←−
α

(DP(
←−
β )) = 0,

since doffα(DP(α)) =
(
ℓ(α)

2

)
.

Theorem 5.8 For n ≥ 0 and for any composition α |= n,

Cα[X; q] =
∑

β≤α

(−q)ℓ(α)−ℓ(β)q
−doff←−

α
(DP(
←−
β ))

Bβ[X; q].

Proof By Theorem 5.6 we have

∑

β≤α

(−q)ℓ(α)−ℓ(β)q
−doff←−

α
(DP(
←−
β ))

Bβ[X; q]

=

∑

β≤α

(−q)ℓ(α)−ℓ(β)q
−doff←−

α
(DP(
←−
β ))

∑

γ≤β

qdoffβ(DP(γ))Cγ[X; q]

=

∑

γ

Cγ[X; q]
∑

β
γ≤β≤α

(−q)ℓ(α)−ℓ(β)q
−doff←−

α
(DP(
←−
β ))

qdoffβ(DP(γ)),

and our claim now follows by Lemma 5.7.

Theorem 5.9 Conjecture 4.5 is true if and only if Conjecture 4.4 is true.

Proof Theorem 5.6 gives Bα[X; q] in terms of Cβ[X; q], to which we apply∇:

∇(Bα[X; q]) =
∑

β≤α

qdoffα(DP(β))∇(Cβ[X; q]).

Given that Conjecture 4.5 holds, we then have that

∇(Bα[X; q]) =
∑

β≤α

∑

D
touch(D)=β

∑

w∈WPD

tarea(D)qdinv(w)+doffα(DP(β))xw

=

∑

D≤DP(β)

∑

w∈WPD

tarea(D)qdinv(w)+doffα(DP(β))xw.
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On the other hand, assuming Conjecture 4.4 holds, Theorem 5.8 gives

∇(Cα[X; q])

=

∑

β≤α

(−q)ℓ(α)−ℓ(β)q
−doff←−

α
(DP(
←−
β ))∇(Bβ[X; q])

=

∑

β≤α

∑

D≤DP(β)

∑

w∈WPD

tarea(D)(−q)ℓ(α)−ℓ(β)q
dinv(w)+doffβ(D)−doff←−

α
(DP(
←−
β ))

xw.

(5.8)

For a Dyck path D in the sum, let γ = touch(D). Note that D ≤ DP(β) implies that

γ ≤ β ≤ α, and thus we may rearrange sums as follows:

∑

β≤α

∑

D≤DP(β)

(−q)ℓ(α)−ℓ(β)q
doffβ(D)−doff←−

α
(DP(
←−
β ))

=

∑

γ≤α

∑

D
touch(D)=γ

∑

β
γ≤β≤α

(−1)ℓ(α)−ℓ(β)q
ℓ(α)−ℓ(β)+doffβ(D)−doff←−

α
(DP(
←−
β )).

Lemma 5.7 allows us to conclude that (5.8) reduces to Conjecture 4.5.

Corollary 5.10 Conjecture 4.2 is true if and only if Conjecture 4.3 is true.
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