MONOGENIC ENDOMORPHISMS OF A FREE MONOID by MARIO PETRICH

(Received 9 November, 1987)

1. Introduction and summary. Free monoids play a central role in the theory of formal languages. Their endomorphisms appear naturally in the context of deterministic OL-schemes which trace their origin to biology. Closely related to such a scheme is a DOL-system which consists of a triple (X, ϕ, w) where X is a finite set, ϕ is an endomorphism of the free monoid X^* and $w \in X$. The associated language is defined as the set $\{w, \phi w, \phi^2 w, \ldots\}$ called a DOL-language. For a full discussion of this subject, we recommend the book [2] by Herman and Rozenberg.

The monoid of endomorphisms of the free monoid X^* on an arbitrary alphabet X has a certain interest in its own right. It ought to have a structure which bears some resemblance to the monoid of all transformations on a set, or the monoid of all linear transformations on a vector space. The underlying spaces in these two cases are: (1) a set without further structure, hence simpler than X^* , and (2) a vector space, hence a structure richer than a free monoid on a set. We may thus expect that the endomorphism monoid of X^* harbours interesting structural complexity.

Semigroups of transformations, partial transformations, partial one-to-one transformations, linear transformations on a vector space, binary relations on a set and numerous others have a densely embedded ideal which is a completely O-simple semigroup (except for the first one in which it is a left zero semigroup if the functions are written on the left), see [3]. An ideal I of a semigroup S is densely embedded if (1) the only congruence on Swhose restriction to I is equality is the equality relation on S and (2) S is maximal with this property relative to I under set theoretical inclusion.

We call an endomorphism σ of X^* monogenic if its range is contained in a monogenic submonoid of X^* . The monogenic endomorphisms form a semigroup \mathfrak{M} with many remarkable properties.

We study the structure of \mathfrak{M} as well as its position in the monoid of all transformations $\mathcal{T}(X^*)$ on X^* (functions written on the left). Section 2 contains a construction of a Rees matrix semigroup S over the multiplicative semigroup of positive integers. It is then proved that this Rees matrix semigroup is isomorphic to \mathfrak{M} , thereby providing \mathfrak{M} with a Rees matrix representation. Hence this case bears strong similarity with the instances mentioned above with the notable difference that we now have a Rees matrix semigroup over a semigroup which is not a group. The left and the right idealizers of \mathfrak{M} in $\mathcal{T}(X^*)$ are identified in Section 4. The elements of the right idealizers are particularly interesting; they are called here generalized endomorphisms and are further investigated in Section 5. There is a curious phenomenon here of duality between $\mathcal{T}(X^*)$ and \mathbb{N}^X , the free commutative monoid on X. It is proved in Section 6 that \mathfrak{M} is a densely embedded ideal of its idealizer in $\mathcal{T}(X^*)$ which means that the isomorphism of S onto \mathfrak{M} is a dense embedding of the Rees matrix semigroup S into $\mathcal{T}(X^*)$.

Glasgow Math. J. 31 (1989) 87-101.

2. The basic construction. We fix a nonempty set X throughout the paper. By X^* denote the free monoid on X, that is the set of all words over the alphabet X with concatenation as product. The empty word 1 is the identity of X^* . The semigroup X^+ consisting of nonempty words over X is the free semigroup on X. A word $w \in X^*$ is primitive if $w = u^n$ for any $u \in X^*$ implies n = 1, and thus w = u. Denote by \mathcal{P} the set of all primitive words in X^* (or over X). For $w \in X^*$ and $x \in X$, let w_x denote the number of occurrences of x in w; let \bar{w} be the X-tuple of nonnegative integers w_x . The mapping

$$\xi: w \to \bar{w} = (w_x) \qquad (w \in X^*)$$

is called the Parikh mapping. Clearly $\overline{uv} = \overline{u} + \overline{v}$ for all $u, v \in X^*$.

For any X-tuple $q = (q_x)$ of nonnegative integers and $w \in X^*$, define their dot product by

$$q \cdot \bar{w} = \sum_{x \in X} q_x w_x.$$

Note that this sum is finite since \bar{w} has only a finite number of nonzero entries. For X-tuples of nonnegative integers, p, q and u, $v \in X^*$, one easily verifies that the following relations hold:

$$(p+q) \cdot \bar{u} = p \cdot \bar{u} + q \cdot \bar{u}, \tag{1}$$

$$q. \overline{uv} = q. (\overline{u} + \overline{v}) = q. \overline{u} + q. \overline{v},$$

 $p \cdot \bar{u} = q \cdot \bar{u}$ for all $u \in X^*$ implies p = q, (2)

$$q \cdot \bar{u} = q \cdot \bar{v}$$
 for all q implies $\bar{u} = \bar{v}$, (3)

when the sum of X-tuples is by components.

Let \mathcal{Q} denote the set of all X-tuples $q = (q_x)$ of nonnegative integers such that $gcd\{q_x \mid x \in X\} = 1$. We will be interested only in the dot product $q \cdot \bar{u}$ with $q \in \mathcal{Q}$ and $u \in \mathcal{P}$. All the relations above remain valid with these restrictions. We will use them freely without further reference. Denote by 0 the X-tuple all of whose entries are equal to zero. We also require that $0 \notin \mathcal{Q}$.

Denote by \mathbb{N} the multiplicative semigroup of nonnegative integers and by \mathbb{N}^+ its subsemigroup of positive integers. We may now define a Rees matrix semigroup in the usual way

$$S = \mathcal{M}^{0}(\mathcal{P}, \mathbb{N}^{+}, Q; (q \cdot \bar{p}))$$

with index sets \mathscr{P} and \mathscr{Q} over \mathbb{N}^+ with sandwich matrix denoted by (q, \bar{p}) . Clearly, in every row and in every column (q, \bar{p}) has at least one nonzero entry.

For each nonzero element (p, n, q) of S define a mapping

$$\theta_{(p,n,q)}: w \to p^{n(q \cdot \bar{w})} \qquad (w \in X^*)$$

and

$$\theta_0: w \to 1 \qquad (w \in X^*).$$

We will generally write functions as left operators. Let $\mathcal{T}(X^*)$ denote the semigroup of all transformations on X^* written and composed as left operators. Denote by \mathscr{C} its subsemigroup of endomorphisms of X^* . For each $w \in X^*$, let w^* stand for the submonoid of X^* generated by w. Finally let

$$\mathfrak{M} = \{ \theta \in \mathscr{C} \mid \theta X^* \subseteq w^* \text{ for some } w \in X^* \}$$

and call its elements monogenic endomorphisms of X^* . Denote by ζ the trivial endomorphism $\zeta: w \to 1$ for all $w \in X^*$.

Obviously \mathfrak{M} is a subsemigroup of \mathscr{E} . It represents the main subject of our study. In the succeeding sections, we will give a Rees matrix representation for it, its translational hull, its left and right idealizer in $\mathcal{T}(X^*)$ and finally, by means of it, construct a dense embedding of S into $\mathcal{T}(X^*)$.

For any $y \in X$, let $1_y = (q_x)$ where

$$q_x = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise.} \end{cases}$$

For any $w \in X^+$, let $w = (\pi w)^{\varepsilon w}$ where w is the primitive word which raised to the exponent εw gives w. By definition, $\pi 1 = 1$, $\varepsilon 1 = 1$.

3. A Rees representation for \mathfrak{M} . The principal result here is the existence of an isomorphism of S onto \mathfrak{M} , giving a Rees representation for \mathfrak{M} . A few properties of S are then investigated, providing a further clue as to the structure of \mathfrak{M} .

THEOREM 3.1. The mapping

$$\theta: s \to \theta_s \qquad (s \in S)$$

is an isomorphism of S onto \mathfrak{M} .

Proof. First, for $s = (p, n, q) \in S$ and $u, v \in X^*$, we obtain

$$(\theta_s u)(\theta_s v) = p^{n(q \cdot \bar{u})} p^{n(q \cdot \bar{v})} = p^{n(q \cdot \bar{u} + q \cdot \bar{v})}$$
$$= p^{n(q \cdot (\bar{u} + \bar{v}))} = p^{n(q \cdot \bar{u}\bar{v})} = \theta_s(uv)$$

and thus θ_s is an endomorphism of X^* . Trivially $\theta_0 = \zeta \in \mathfrak{M}$ so $\theta: S \to \mathfrak{M}$.

Next let $\mu \in \mathfrak{M}$ and suppose that $\mu \neq \zeta$. Then $\mu X^* \subseteq w^*$ for some $w \in X^+$. There is a unique primitive word p for which $w = p^t$ for some $t \ge 1$. For each $x \in X$, define t_x by $\mu x = p^{t_x}$. Let $n = \gcd\{t_x \mid x \in X\}$ and let $q_x = \frac{t_x}{n}$ for each $x \in X$. Then with $q = (q_x)$, we obtain for any $x \in X$,

$$\mu x = p^{t_x} = p^{nq_x} = p^{n(q \cdot \tilde{x})} = \theta_{(p,n,q)} x.$$

Therefore $\mu = \theta_{(p,n,q)}$ and thus θ maps S onto \mathfrak{M} .

Assume next that $\theta_{(p,n,q)} = \theta_{(r,m,t)}$. Applied to any $x \in X$, this gives

$$p^{nq_x} = p^{n(q \cdot \bar{x})} = r^{m(t \cdot \bar{x})} = r^{mt_x}.$$

Since both p and r are primitive words, it follows that p = r and $nq_x = mt_x$ for all $x \in X$. Let $g = gcd\{m, n\}$. Then n = gd with (d, m) = 1. Also d divides mt_x , so that d divides t_x . This is true for all $x \in X$, and by hypothesis $gcd\{t_x | x \in X\} = 1$, whence d = 1.

Consequently, n = g, so that *n* divides *m*. By symmetry, we conclude that m = n. But then $q_x = t_x$ for all $x \in X$, whence g = t. Therefore (p, n, q) = (r, m, t) and θ is one-to-one.

Further, if $t \cdot \bar{w} \neq 0$, then

$$\theta_{(p,n,q)}\theta_{(r,m,t)}w = \theta_{(p,n,q)}r^{m(t\cdot\bar{w})} = p^{n(q\cdot r(t\cdot\bar{w}))}$$
$$= p^{n(q\cdot\bar{r})(t\cdot\bar{w})} = \theta_{(p,n(q\cdot\bar{r}),t)}w$$
$$= \theta_{(p,n,q)(r,m,t)}w;$$

and if $t \cdot \bar{w} = 0$, then $\theta_{(p,n,q)}\theta_{(r,m,t)}w = 1 = \theta_{(p,n,q)(r,n,t)}w$. Consequently $\theta_s\theta_{s'} = \theta_{ss'}$ for s, s' nonzero elements of S. This equation can be easily verified to be true if one or both of s and s' is equal to zero. Therefore θ is a homomorphism and thus an isomorphism of S onto \mathfrak{M} .

In view of the above theorem, the semigroup S plays a central role in our investigation. It is thus worth having a closer look at its structure. To this end, we characterise Green's relations, idempotents, inverses, regular elements and an embedding into a completely 0-simple semigroup as an order. It will be convenient to introduce the following concepts.

DEFINITION 3.2. A word w in X^* is monic if there is a letter x in X which occurs in w only once. An element q of Q is monic if some component of q is equal to 1.

PROPOSITION 3.3. Let s = (p, n, q) and t = (z, m, r) be distinct (nonzero) elements of S. (i) $s \mathcal{L}t \Leftrightarrow p$ and z are monic, n = m, q = r.

(i)
$$s\mathcal{D}t \Leftrightarrow p = z, n = m, q \text{ and } r \text{ are monic.}$$

(ii) $s\mathcal{D}t \Leftrightarrow \begin{cases} \text{either } p \text{ and } z \text{ are monic or } p = z, \\ n = m, \\ \text{either } q \text{ and } r \text{ are monic or } q = r. \end{cases}$

(iv) $s \not = m, p, z, q$ and r are monic.

(v) \mathcal{H} is the equality relation.

Proof. (i) Indeed,

$$(p, n, q) = (u, k, x)(z, m, r), (z, m, r) = (v, l, y)(p, n, q)$$

$$\Leftrightarrow p = u, n = k(x \cdot \overline{z})m, q = r, z = v, m = l(y \cdot \overline{p})n, r = q$$

$$\Leftrightarrow p = u, n = m, k(x \cdot \overline{z}) = l(y \cdot \overline{p}) = 1, z = v, r = q,$$

whence the assertion concerning \mathcal{L} .

- (ii) The argument here is dual.
- (iii) This follows directly from items (i) and (ii).
- (iv) The assertion follows directly from the calculation

$$(p, n, q) = (u, k, x)(z, m, r)(v, l, y)$$

$$\Leftrightarrow p = u, n = k(x \cdot \overline{z})m(r \cdot \overline{v})l, q = y.$$

(v) This is a direct consequence of items (i) and (ii).

Comparing parts (iii) and (iv), we conclude that $\mathcal{D} \neq \mathcal{J}$ in S.

PROPOSITION 3.4. Let s = (p, n, q) and t = (z, m, r) be elements of S.

(i) s is idempotent if and only if $q_x p_x = 1$ for some $x \in X$ and $q_y p_y = 0$ if $y \neq x$ and n = 1.

(ii) s and t are mutually inverse if and only if $q \cdot \overline{z} = r \cdot \overline{p} = 1$ and n = m = 1.

(iii) s is regular if and only if both p and q are monic and n = 1.

(iv) $\{(x, 1, 1_v) | x, y \in X\} \cup \{0\}$ is a combinatorial Brandt semigroup.

Proof. Straightforward verification.

Simple verification also shows that S is an order in the completely 0-simple semigroup $\mathcal{M}^{0}(\mathcal{P}, \mathbb{Q}^{+}, \mathcal{Q}; (q, \bar{p}))$ where \mathbb{Q}^{+} is the multiplicative group of positive rationals. For a full discussion of these concepts, we refer the reader to [1].

4. The left and the right idealizer of \mathfrak{M} in $\mathcal{T}(X^*)$. The (left, right) idealizer of a subsemigroup T of a semigroup S is the greatest subsemigroup $i_s(T)(li_s(T), ri_s(T))$ of S in which T is a (left, right) ideal. For these, we have the following simple expressions:

$$i_{S}(T) = \{ s \in S \mid sT, Ts \subseteq T \},\$$
$$i_{S}(T) = \{ s \in S \mid sT \subseteq T \},\$$

and analogously for $ri_s(T)$. It follows that $i_s(T) = li_s(T) \cap ri_s(T)$.

We start with the left idealizer. Recall the notation πw and εw from Section 2.

PROPOSITION 4.1.

$$li_{\mathcal{F}(X^*)}(\mathfrak{M}) = \{ \sigma \in \mathcal{T}(X^*) \mid \sigma(w^n) = (\sigma w)^n \text{ for all } w \in X^*, n \ge 1 \}.$$

Proof. First let $\sigma \in li_{\mathcal{F}(X^*)}(\mathfrak{M})$. Let $w \in X^*$ and $n \ge 1$. By the above formula and Theorem 3.1, $\sigma \theta_s$ is an endomorphism of X^* for any $s \in S$. Hence, for any $x \in X$,

$$\sigma w^{n} = \sigma \theta_{(\pi w, (\varepsilon w)n, 1_{x})} x = \sigma \theta_{(\pi w, \varepsilon w, 1_{x})} x'$$
$$= (\sigma \theta_{(\pi w, \varepsilon w, 1_{x})} x)^{n} = (\sigma w)^{n}.$$

Conversely, let σ be in the set on the right hand side in the statement of the proposition. Then for any $(p, n, q) \in S$ and $w \in X^*$, we obtain

$$\sigma\theta_{(p,n,q)}w = \sigma p^{n(q \cdot \bar{w})} = (\sigma p)^{n(q \cdot \bar{w})} = \theta_{(\pi\sigma p, (\varepsilon\sigma p)n, q)}w,$$

which proves that $\sigma \theta_{(p,n,q)} = \theta_{(\pi \sigma p, [\varepsilon(\sigma(p))]n,q)}$. Furthermore, for any $w \in X^*$ and $n \ge 1$, we have

$$\sigma\theta_0 w = \sigma \zeta w = \sigma 1 = \sigma 1^n = (\sigma 1)^n$$

which evidently implies that $\sigma 1 = 1$. Hence $\sigma \theta_0 = \theta_0$. Consequently $\sigma \in li_{\mathcal{T}(X^*)}(\mathfrak{M})$, as required.

We now consider the right idealizer. Recall the definition of the Parikh mapping ξ and the notation 1, from Section 2.

Denote by \mathbb{N}^{X} the semigroup of all X-tuples of nonnegative integers with only a finite number of nonzero entries under componentwise addition. For any set Y, denote by $\mathcal{T}'(Y)$ the semigroup of all transformations on Y written and composed as operators on the right. We say that $\sigma \in \mathcal{T}(X^*)$ and $\tau \in \mathcal{T}'(\mathbb{N}^X)$ are *adjoints* of each other if

$$r \cdot \overline{\sigma w} = r\tau \cdot \overline{w} \qquad (r \in \mathbb{N}^X, w \in X^*).$$

THEOREM 4.2.

$$r_{\mathcal{T}(X^{\bullet})}(\mathfrak{M}) = \{ \sigma \in \mathcal{T}(X) \mid \zeta \sigma \colon X^* \to \mathbb{N}^X \text{ is a homomorphism} \} \\ = \{ \sigma \in \mathcal{T}(X) \mid \sigma \text{ has an adjoint in } \mathbb{N}^X \}.$$

Proof. Let $\sigma \in ri_{\mathcal{F}(X^*)}(\mathfrak{M})$. Then for $s = (p, n, q) \in S$, we have $\theta_s \sigma \in \mathfrak{M}$ and hence for any $u, v \in X^*$, we get

$$\theta_s \sigma(uv) = (\theta_s \sigma u)(\theta_s \sigma v),$$

so that

$$p^{n(q \cdot \overline{\sigma(uv)})} = p^{n(q \cdot \overline{\sigma u})} p^{n(q \cdot \overline{\sigma v})} = p^{n(q \cdot \overline{\sigma u} + \overline{\sigma v})} = p^{n(q \cdot \overline{\sigma(uv)})}$$

whence $\underline{q} \cdot \overline{\sigma(uv)} = q \cdot \overline{(\sigma u)(\sigma v)}$. Since this holds for all $q \in \mathcal{D}$, by (3) we deduce that $\overline{\sigma(uv)} = \overline{(\sigma u)(\sigma v)}$. It follows that

$$\xi\sigma(uv) = \overline{\sigma(uv)} = \overline{(\sigma u)(\sigma v)} = \overline{\sigma u} + \overline{\sigma v} = \xi\sigma u + \xi\sigma v$$

and $\xi \sigma$ is a homomorphism.

Now assume that $\xi \sigma$ is a homomorphism. We define τ on \mathbb{N}^X as follows. For any $x, y \in X$, let $(1_y \tau)_x = \overline{\sigma x_y}$, that is, the *x*th component of the value of τ at 1_y is equal to the *y*th component of $\overline{\sigma x}$. This defines τ on the set $\{1_y \mid y \in X\}$. Since \mathbb{N}^X is the free commutative monoid on X, we may extend τ uniquely to an endomorphism of \mathbb{N}^X , again denoted by τ . We will now show that τ is an adjoint of σ in $\mathcal{T}'(\mathbb{N}^X)$.

Any $r \in \mathbb{N}^X$ can be written as $r = r_{z_1} 1_{z_1} + r_{z_2} 1_{z_2} + \ldots + r_{z_n} 1_{z_n}$ so that

$$r\tau = r_{z_1}(1_{z_1}\tau) + r_{z_2}(1_{z_2}\tau) + \ldots + r_{z_n}(1_{z_n}\tau)$$

$$= r_{z_1}(\overline{\sigma x}_{z_1})_{x \in X} + r_{z_2}(\overline{\sigma x}_{z_2})_{x \in X} + \ldots + r_{z_n}(\overline{\sigma x}_{z_n})_{x \in X}$$

$$= (r_{z_1}(\overline{\sigma x})_{z_1} + r_{z_2}(\overline{\sigma x})_{z_2} + \ldots + r_{z_n}(\overline{\sigma x})_{z_n})_{x \in X},$$

whence for $w = x_1^{w_{x_1}} x_2^{w_{x_2}} \dots x_m^{w_{x_m}}$, we get

$$r\tau \cdot \vec{w} = \sum_{x \in X} (r_{z_1}(\overline{\sigma x})_{z_1} + r_{z_2}(\overline{\sigma x})_{z_2} + \ldots + r_{z_m}(\overline{\sigma x})_{z_n})w_x$$
$$= \sum_{i=1}^m (r_{z_1}(\overline{\sigma x_i})_{z_1} + r_{z_2}(\overline{\sigma x_i})_{z_2} + \ldots + r_{z_n}(\overline{\sigma x_i})_{z_n})w_{x_i}$$
$$= \sum_{j=1}^n r_{z_j}((\overline{\sigma x_1})_{z_j}w_{x_1} + (\overline{\sigma x_2})_{z_j}w_{x_2} + \ldots + (\overline{\sigma x_m})_{z_j}w_{x_m}).$$
(4)

On the other hand,

$$r \cdot \overline{\sigma w} = r_{z_1}(\overline{\sigma w})_{z_1} + r_{z_2}(\overline{\sigma w})_{z_2} + \ldots + r_{z_n}(\overline{\sigma w})_{z_n}.$$
 (5)

For equality of (4) and (5), it thus suffices to prove that

$$(\overline{\sigma x_1})_{z_j} w_{x_1} + (\overline{\sigma x_2})_{z_j} w_{x_2} + \ldots + (\overline{\sigma x_m})_{z_j} w_{x_m} = (\overline{\sigma w})_{z_j}, \tag{6}$$

for j = 1, 2, ..., n. Indeed, using the hypothesis that $\xi \sigma$ is a homomorphism, we obtain

$$(\overline{\sigma w})_{z_j} = (\xi \sigma(x_1^{w_{x_1}} x_2^{w_{x_2}} \dots x_m^{w_{x_m}})) z_j$$

= $(w_{x_1}(\overline{\sigma x_1}) + w_{x_2}(\overline{\sigma x_2}) + \dots + w_{x_m}(\overline{\sigma x_m}))_{z_j}$
= $w_{x_1}(\overline{\sigma x_1})_{z_j} + w_{x_2}(\overline{\sigma x_2})_{z_j} + \dots + w_{x_m}(\overline{\sigma x_m})_{z_j},$

j = 1, 2, ..., n. This proves (6) and hence equality of (4) and (5) follows.

We have shown the equality $r. \overline{\sigma w} = r\tau. \overline{w}$ in the special case when $w = x_1^{w_{x_1}} x_2^{w_{x_2}} \dots x_m^{w_{x_m}}$. However, for any $w \in X^*$, we have $\overline{w} = \overline{u}$ where $u = x_1^{w_{x_1}} x_2^{w_{x_2}} \dots x_m^{w_{x_m}}$ with x_1, x_2, \dots, x_m distinct elements of X occurring in w. In fact, $u = x_1^{u_{x_1}} x_2^{u_{x_2}} \dots x_m^{u_{x_m}}$. Moreover $\overline{\sigma w} = \overline{\varepsilon} \sigma w = w_{\overline{v}} \overline{\sigma x_1} + w_{\overline{v}} \overline{\sigma x_2} + \dots + w_{\overline{w}} \overline{\sigma x_m}$

$$\overline{\sigma w} = \xi \sigma w = w_{x_1} \overline{\sigma x_1} + w_{x_2} \overline{\sigma x_2} + \ldots + w_{x_m} \overline{\sigma x_m}$$
$$= \xi \sigma u = \overline{\sigma u}.$$

We may thus conclude that

$$r \cdot \overline{\sigma w} = r \cdot \overline{\sigma u} = r\tau \cdot \overline{u} = r\tau \cdot \overline{w}$$

that is σ and τ are adjoints.

Finally assume that σ has an adjoint τ in \mathbb{N}^X . For any $s = (p, n, q) \in S$ and $u, v \in X^*$, we obtain

$$\theta_{s}\sigma(uv) = p^{n(q\cdot\sigma(uv))} = p^{n(q\tau\cdot uv)} = p^{n(q\tau\cdot(\tilde{u}+\tilde{v}))}$$
$$= p^{n(q\tau\cdot\tilde{u}+q\tau\cdot\tilde{v})} = p^{n(q\tau\cdot\tilde{u})}p^{n(q\tau\cdot\tilde{v})}$$
$$= p^{n(q\cdot\sigma\tilde{u})}p^{n(q\cdot\sigma\tilde{v}))} = (\theta_{s}\sigma u)(\theta_{s}\sigma v),$$

which proves that $\theta_s \sigma$ is an endomorphism of X^* . Clearly $(\theta_s \sigma)X^* \subseteq p^*$ and thus $\theta_s \sigma \in \mathfrak{M}$. Trivially $\theta_0 \sigma = \theta_0$. Therefore $\sigma \in ri_{\mathcal{F}(X^*)}(\mathfrak{M})$, as required.

5. Generalized endomorphisms. We will now elaborate upon the transformations on X^* which appear in Theorem 4.2. As a motivation, we first prove the following simple result.

PROPOSITION 5.1. A transformation $\sigma \in \mathcal{T}(X^*)$ has an adjoint in \mathbb{N}^X if and only if $\xi \sigma$ is a homomorphism. If τ is such an adjoint, then τ is an endomorphism of \mathbb{N}^X and is unique. For any $s = (p, n, q) \in S$, the adjoint of θ_s , again denoted by θ_s , is given by

$$r\theta_s = (r \cdot \bar{p})nq$$
 $(r \in \mathbb{N}^X),$

and
$$\theta_0 = 0$$
.

Proof. The first assertion is part of Theorem 4.2. Let τ be an adjoint of σ , let $r, r' \in \mathbb{N}^{X}$ and $w \in X^{*}$. Then, using (1),

$$(r+r')\tau \cdot \bar{w} = (r+r') \cdot \overline{\sigma w} = r \cdot \overline{\sigma w} + r' \cdot \overline{\sigma w}$$
$$= r\tau \cdot \bar{w} + r'\tau \cdot \bar{w} = (r\tau + r'\tau) \cdot \bar{w};$$

since w is arbitrary, (2) implies that $(r + r')\tau = r\tau + r'\tau$. Therefore τ is an endomorphism of \mathbb{N}^{x} .

Let τ' be also an adjoint of σ . Then for any $r \in \mathbb{N}^X$ and $w \in X^*$, we get

$$r\tau$$
. $\bar{w} = r$. $\overline{\sigma w} = r\tau'$. \bar{w} .

Again, w being arbitrary, (2) yields $r\tau = r\tau'$. Consequently $\tau = \tau'$, establishing uniqueness.

With the notation in the statement of the proposition and $r \in \mathbb{N}^{X}$, $w \in X^{*}$, we have

$$r\theta_s \cdot \bar{w} = (r \cdot \bar{p})nq \cdot \bar{w} = (r \cdot \bar{p})n(q \cdot \bar{w}) = r \cdot \bar{p}n(q \cdot \bar{w})$$
$$= r \cdot p^{\overline{n(q \cdot \bar{w})}} = r \cdot \overline{\theta_s w};$$

this holds trivially for s = 0.

We now consider the dual situation: which transformations on \mathbb{N}^X have an adjoint in X^* ? This is answered in the theorem below. It will be convenient to first prove an auxiliary statement of some independent interest.

LEMMA 5.2. Let δ be a homomorphism of X^* into \mathbb{N}^X . For each $x \in X$, let $\sigma x = x_1^{r_1} x_2^{r_2} \dots x_n^{r_n}$ if $\delta x = r_1 1_{x_1} + r_2 1_{x_2} + \dots + r_n 1_{x_n}$ (in some ordering of x_i 's). Extend σ to an endomorphism of X^* , again denoted by σ . Then $\xi \sigma = \delta$.

Proof. With the notation introduced, we have

$$\xi \sigma x = \xi (x_1^{r_1} x_2^{r_2} \dots x_n^{r_n}) = r_1 1_{x_1} + r_2 1_{x_2} + \dots + r_n 1_{x_n} = \delta x,$$

so that for $w = y_1 y_2 \dots y_m$ with $y_1, y_2, \dots, y_m \in X$, we obtain

$$\xi \sigma w = \xi((\sigma y_1)(\sigma y_2) \dots (\sigma y_m))$$

= $(\xi \sigma) y_1 + (\xi \sigma) y_2 + \dots + (\xi \sigma) y_m$
= $\delta y_1 + \delta y_2 + \dots + \delta y_m = \delta w.$

Therefore $\xi \sigma = \delta$, as asserted.

The claim of the lemma can be expressed by saying that every homomorphism of X^* into \mathbb{N}^X can be "lifted" by ξ to an endomorphism of X^* .

THEOREM 5.3. A transformation $\tau \in \mathcal{T}'(\mathbb{N}^X)$ has an adjoint in X^* if and only if τ is an endomorphism of \mathbb{N}^X . If σ is such an adjoint, then $\xi \sigma$ is a homomorphism and is unique; in addition, τ has an adjoint which is an endomorphism of X^* .

Proof. If a transformation $\tau \in \mathcal{T}'(\mathbb{N}^X)$ has an adjoint σ in X^* , then by Proposition 5.1, τ is an endomorphism of \mathbb{N}^X . Conversely, assume that τ is an endomorphism of \mathbb{N}^X . We first define a function δ mapping X^* into \mathbb{N}^X as follows. For any $x, y \in X$, let $(\delta y)_x = (1_x \tau)_y$, that is, the *x*th component of the value of δ at *y* is equal to the *y*th component of the value of τ at 1_x . This defines δ on the set *X*. Now extend δ to a homomorphism from X^* into \mathbb{N}^X , again denoted by δ . We show next that

$$r. \ \delta w = r\tau. \ \bar{w} \qquad (r \in \mathbb{N}^X, \ w \in X^*). \tag{7}$$

https://doi.org/10.1017/S0017089500007588 Published online by Cambridge University Press

For
$$w = y_1 y_2 \dots y_n$$
, we get for any $x \in X$,
 $(\delta w)_x = (\delta y_1 + \delta y_2 + \dots + \delta y_n) = (\delta y_1)_x + (\delta y_2)_x + \dots + (\delta y_n)_x$
 $= (1_x \tau)_{y_1} + (1_x \tau)_{y_2} + \dots + (1_x \tau)_{y_n}$.
For $r \in \mathbb{N}^X$, say $r_{x_1} 1_{x_1} + r_{x_2} 1_{x_2} + \dots + r_{x_m} 1_{x_m}$, we then obtain on the one hand,
 $r \cdot \delta w = (r_{x_1} 1_{x_1} + r_{x_2} 1_{x_2} + \dots + r_{x_m} 1_{x_m})((\delta w)_{x_1} 1_{x_1} + (\delta w)_{x_2} 1_{x_2} + \dots + (\delta w)_{x_m} 1_{x_m})$
 $= r_{x_1}[(1_{x_1} \tau)_{y_1} + (1_{x_1} \tau)_{y_2} + \dots + (1_{x_1} \tau)y_n]$
 $+ r_{x_2}[(1_{x_2} \tau)_{y_1} + (1_{x_2} \tau)_{y_2} + \dots + (1_{x_m} \tau)_{y_n}]$
 $= r_{x_1}[(1_{x_1} \tau)_{y_1} + r_{x_2}(1_{x_2} \tau)_{y_1} + \dots + r_{x_m}(1_{x_m} \tau)_{y_1}$
 $+ \dots$
 $+ r_{x_1}(1_{x_1} \tau)_{y_2} + r_{x_2}(1_{x_2} \tau)_{y_2} + \dots + (r_{x_m} \tau)_{y_2}$
 $+ \dots$
 $+ r_{x_1}(1_{x_1} \tau)_{y_2} + r_{x_2}(1_{x_2} \tau)_{y_1} + \dots + r_{x_m}(1_{x_m} \tau)_{y_2}$
 $+ \dots$
 $+ r_{x_1}(1_{x_1} \tau)_{y_n} + r_{x_2}(1_{x_2} \tau)_{y_n} + \dots + r_{x_m}(1_{x_m} \tau)_{y_n},$ (8)

and on the other hand,

$$r\tau \cdot \bar{w} = (r_{x_{1}}1_{x_{1}} + r_{x_{2}}1_{x_{2}} + \ldots + r_{x_{m}}1_{x_{m}})\tau \cdot \overline{y_{1}y_{2}\ldots y_{n}}$$

$$= [r_{x_{1}}(1_{x_{1}}\tau) + r_{x_{2}}(1_{x_{2}}\tau) + \ldots + r_{x_{m}}(1_{x_{m}}\tau)] \cdot (1_{y_{1}} + 1_{y_{2}} + \ldots + 1_{y_{n}})$$

$$= (r_{x_{1}}(1_{x_{1}}\tau) + r_{x_{2}}(1_{x_{2}}\tau) + \ldots + r_{x_{m}}(1_{x_{m}}\tau))_{y_{1}}$$

$$+ ((r_{x_{1}}(1_{x_{1}}\tau) + r_{x_{2}}(1_{x_{2}}\tau) + \ldots + r_{x_{m}}(1_{x_{m}}\tau))_{y_{2}}$$

$$+ \ldots$$

$$+ (r_{x_{1}}(1_{x_{1}}\tau) + r_{x_{2}}(1_{x_{2}}\tau) + \ldots + r_{x_{m}}(1_{x_{m}}\tau))_{y_{n}}.$$
(9)

We now see that expressions (8) and (9) are equal, which then proves relation (7). Since δ is a homomorphism of X^* into \mathbb{N}^X , Lemma 5.2 yields that for some endomorphism σ of X^* we have $\xi \sigma = \delta$. Substitution in (7) gives $r \cdot \overline{\sigma w} = r\tau \cdot \overline{w}$ for all $r \in \mathbb{N}^X$ and $w \in X^*$, which shows that σ is an adjoint of τ . This establishes the converse part of the first assertion and the last assertion of the theorem.

Now let σ be any adjoint of τ . Then for any $u, v \in X^*$ and $r \in \mathbb{N}^X$, we obtain

$$r \cdot \sigma(uv) = r\tau \cdot \overline{uv} = r\tau \cdot (\overline{u} + \overline{v}) = r\tau \cdot \overline{u} + r\tau \cdot \overline{v}$$
$$= r \cdot \overline{\sigma u} + r \cdot \overline{\sigma v} = r \cdot (\overline{\sigma u} + \overline{\sigma v}).$$

Since r is arbitrary, (3) implies that $\overline{\sigma(uv)} = \overline{\sigma u} + \overline{\sigma v}$ and $\xi \sigma$ is indeed a homomorphism.

Assume, in addition, that σ' is also an adjoint of τ . Then for any $r \in \mathbb{N}^{X}$ and $w \in X^{*}$, we have

$$r. \overline{\sigma w} = r\tau. \overline{w} = r. \overline{\sigma' w},$$

so again by (3), we conclude that $\overline{\sigma w} = \sigma' w$. It follows that $\xi \sigma$ is unique.

Motivated by the above theorem, we introduce the following concept.

DEFINITION 5.4. A transformation σ of X^* is a generalized endomorphism if $\xi \sigma$ is a homomorphism.

In the notation employed above, this means that $\overline{\sigma(uv)} = \overline{(\sigma u)(\sigma v)}$ for all $u, v \in X^*$. According to Proposition 5.1, $\sigma \in \mathcal{T}(X^*)$ is a generalized endomorphism if and only if it has an adjoint in \mathbb{N}^X . Generalized endomorphisms of X^* may be constructed in a similar fashion, as the following simple result shows.

PROPOSITION 5.5. Let $\sigma: X \to X^*$ be any mapping. For $w = x_1 x_2 \dots x_n \in X^*$ let σw be any word in X^* satisfying

$$\overline{\sigma w} = (\sigma x_1)(\sigma x_2) \dots (\sigma x_n)$$

Then σ is a generalized endomorphism of X^* . Also, every generalized endomorphism of X^* can be so constructed.

Proof. Let
$$u = x_1 x_2 \dots x_m$$
 and $v = y_1 y_2 \dots y_n$ be words in X^* . Then
 $\overline{\sigma u} + \overline{\sigma v} = \overline{(\sigma x_1)(\sigma x_2) \dots (\sigma x_m)} + \overline{(\sigma y_1)(\sigma y_2) \dots (\sigma y_n)}$
 $= \overline{\sigma x_1} + \overline{\sigma x_2} + \dots + \overline{\sigma x_m} + \overline{\sigma y_1} + \overline{\sigma y_2} + \dots + \overline{\sigma y_n}$
 $= (\overline{\sigma x_1})(\sigma x_2) \dots (\sigma x_m)(\sigma y_1)(\sigma y_2) \dots (\sigma y_n)$
 $= \overline{(\sigma (uv))},$

as required.

Conversely, let σ be a generalized endomorphism of X^* . Then for all $w = x_1 x_2 \dots x_m$ in X^* , we have $\overline{\sigma w} = \overline{\sigma(x_1 x_2 \dots x_n)} = \overline{(\sigma x_1)(\sigma x_2) \dots (\sigma x_m)},$

as required.

It should now be clear how much generalized endomorphisms are indeed more general than endomorphisms. Nevertheless, we have the following statement.

PROPOSITION 5.6. Let σ be a generalized endomorphism of X^* such that $\sigma X^* \subseteq w^*$ for some $w \in X^*$. Then σ is an endomorphism.

Proof. If w = 1, the assertion is trivial. Assume that $w \neq 1$. For every $x \in X$, we have $\sigma x = w^{r_x}$ for a positive integer r_x . Hence

$$\sigma(x_1x_2\ldots x_n) = \overline{\sigma x_1} + \overline{\sigma x_2} + \ldots + \overline{\sigma x_n}$$

= $r_{x_1}\bar{w} + r_{x_2}\bar{w} + \ldots + r_{x_n}\bar{w}$
= $(r_{x_1} + r_{x_2} + \ldots + r_{x_n})\bar{w}$,

so that $\sigma(x_1x_2...x_n) = w^{r_{x_1}+r_{x_2}+...+r_{x_n}}$. But this implies that

$$\sigma(x_1 \dots x_n y_1 \dots y_m) = w^{r_{x_1} + \dots + r_{x_n} + r_{y_1} + \dots + r_{y_m}}$$

= $w^{r_{x_1} + \dots + r_{x_m}} w^{r_{y_1} + \dots + r_{y_m}}$
= $\sigma(x_1 \dots x_n) \sigma(y_1 \dots y_m),$

which gives $\sigma(uv) = (\sigma u)(\sigma v)$ for all $u, v \in X^*$. Therefore σ is an endomorphism.

The following examples illustrate the nature of some of the transformations studied.

EXAMPLE 5.7. Let |X| > 1 and fix $a \in X^+$. For every $w \in X^*$, let $\sigma w = a^{\varepsilon w}$ where εw was defined in Section 2. For any $w \in X^*$ and $n \ge 1$, we obtain

$$\sigma w^n = a^{\varepsilon w^n} = a^{n(\varepsilon w)} = (a^{\varepsilon w})^n = (\sigma w)^n.$$

For any $x, y \in X$, $x \neq y$, we further get

$$\sigma(xy) = a \neq a^2 = (\sigma x)(\sigma y)$$

and σ is not an endomorphism. Hence Proposition 5.7 is not valid under the hypothesis that $\sigma w^n = (\sigma w)^n$ for all $w \in X^*$ and all $n \ge 1$ instead of σ being a generalized endomorphism.

EXAMPLE 5.8. Let $X = \{a, b\}$ and define σ by:

$$\sigma w = w \quad \text{if} \quad w \notin (ab)^* \qquad (w \in X^*),$$

$$\sigma(ab)^n = (ba)^n \qquad (n \ge 1).$$

For m, $n \ge 1$, we get $\sigma w^n = (\sigma w)^n$ trivially if $w \notin (ab)^*$ and

$$\sigma((ab)^{m})^{n} = \sigma(ab)^{mn} = (ba)^{mn} = ((ba)^{m})^{n} = (\sigma(ab)^{m})^{n}$$

Therefore $\sigma w^n = (\sigma w)^n$ for all $w \in X^*$, $n \ge 1$.

Next let $u, v \in X^*$. Then for $x \in X$,

$$(\sigma(uv))_x = (uv)_x = u_x + v_x = (\sigma u)_x + (\sigma v)_x,$$

which implies that $\overline{\sigma(uv)} = \overline{\sigma u} + \overline{\sigma v}$ and σ is a generalized endomorphism. However,

$$\sigma(ab) = ba = (\sigma b)(\sigma a)$$

and σ is not an endomorphism. This shows that \mathscr{C} is properly contained in $i_{\mathcal{T}(X^*)}(\mathfrak{M})$.

6. A dense embedding. Let I be an ideal of a semigroup S. We say that S is an *ideal* extension of I. If the equality relation on S is the only congruence on S whose restriction to I is the equality on I, then S is a dense (ideal) extension of I. If, in addition, S is, under inclusion, a maximal dense extension of I, then I is a densely embedded ideal of I.

An isomorphism ϕ of a semigroup S into a semigroup T is a *dense embedding* if $S\phi$ is a densely embedded ideal of its idealizer in T.

Our aim here is to prove that the mapping θ in Theorem 3.1, considered as an isomorphism of S into $\mathcal{T}(X^*)$, is a dense embedding. In order to achieve this goal, we will make use of the following useful tool.

Let S be a semigroup. A transformation λ (respectively ρ) written on the left (respectively right) is a *left* (respectively *right*) *translation* of S if $\lambda(xy) = (\lambda x)y$ (respectively $(xy)\rho = x(y\rho)$) for all $x, y \in S$; the two translations are *linked* if $(x\rho)y = x(\lambda y)$ for all $x, y \in S$ in which case (λ, p) is a *bitranslation*. The set $\Omega(S)$ of all bitranslations of S under the componentwise multiplication is the *translational hull* of S.

For any $a \in S$, let $\lambda_a x = ax$ and $x\rho_a = xa$ for all $x \in S$. Then $\pi_a = (\lambda_a, \rho_a)$ is an inner bitranslation of S. The mapping $\pi: a \to \pi_a$ $(a \in S)$ is the canonical homomorphism of S into $\Omega(S)$ with image $\Pi(S)$. Finally, S is weakly reductive if π is one-to-one, that is, for any $a, b \in S$, ax = bx and xa = xb for all $x \in S$ implies that a = b. The proof of the above stated goal is based on the following well-known

RESULT 6.1. If a semigroup S is weakly reductive, then $\Pi(S)$ is a densely embedded ideal of $\Omega(S)$.

Since in this case π is an isomorphism of S onto $\Pi(S)$, the proof will be effected by constructing an isomorphism of the idealizer of $S\phi$ onto $\Omega(S)$ which maps $S\phi$ onto $\Pi(S)$. For a complete discussion concerning these concepts, consult [4, Chapter II].

As the first part of our program, we prove

LEMMA 6.2. The semigroup S is weakly reductive.

Proof. Let (p, n, q), (z, m, r) be nonzero elements of S and assume that

$$(u, k, x)(p, n, q) = (u, k, x)(z, m, r),$$

 $(p, n, q)(u, k, x) = (z, m, r)(u, k, x)$

for all $(u, k, x) \in S$. We can choose $x \in \mathcal{Q}$ such that $x \cdot \bar{p} \neq 0$ which gives $k(x \cdot \bar{p})n = k(x \cdot \bar{z})m \neq 0$ and q = r. Also, we can find $u \in \mathcal{P}$ such that $q \cdot \bar{u} \neq 0$ which implies that p = z and $n(q \cdot \bar{u})k = m(r \cdot \bar{u})k \neq 0$. But q = r then gives n = m. Therefore (p, n, q) = (z, m, r), as required.

For any set Y, denote by $\mathscr{F}(Y)$ (respectively $\mathscr{F}'(Y)$) the semigroup of all partial transformations on the set Y written and composed as left (respectively right) operators. For $\phi \in \mathscr{F}(Y) \cup \mathscr{F}'(Y)$, denote by $\mathbf{d}\phi$ the domain of ϕ .

The following lemma gives a description of left and right translations of the semigroup S.

LEMMA 6.3. (i) For $\alpha \in \mathcal{F}(\mathcal{P})$ and $\phi: \mathbf{d}\alpha \to \mathbb{N}^+$, the function λ defined by

$$\lambda(p, n, q) = \begin{cases} (\alpha p, (\phi p)n, q) & \text{if } p \in \mathbf{d}\alpha \\ 0 & \text{otherwise} \end{cases}, \qquad \lambda 0 = 0,$$

is a left translation of S. Conversely, every left translation of S has this form.

(ii) For $\beta \in \mathcal{F}'(\mathcal{Q})$ and $\psi: \mathbf{d}\beta \to \mathbb{N}^+$, the function ρ defined by

$$(p, n, q)\rho = \begin{cases} (p, n(q\psi), q\beta) & \text{if } q \in \mathbf{d}\beta \\ 0 & \text{otherwise} \end{cases}, \qquad 0\rho = 0$$

is a right translation of S. Conversely, every right translation of S has this form.

(iii) With the above notation, λ and ρ are linked if and only if for any $p \in \mathcal{P}$ and $q \in \mathcal{Q}$,

$$p \in \mathbf{d}\alpha, q \cdot \overline{\alpha p} \neq 0 \Leftrightarrow q \in \mathbf{d}\beta, q\beta \cdot \overline{p} \neq 0$$

and if one side holds, then

$$(q \cdot \overline{\alpha p})(\phi p) = (q\psi)(q\beta \cdot \overline{p}).$$

Proof. The proofs in [4, V.3] remain valid in any Rees matrix semigroup over a semigroup with a zero adjoined. The above is an application of this remark to the semigroup $S = \mathcal{M}^0(\mathcal{P}, \mathbb{N}^+, \mathcal{Q}; (q, \bar{p}))$.

THEOREM 6.4. Let $\mathcal{I} = i_{\mathcal{T}(X^*)}(\mathfrak{M})$ and define a mapping χ by

$$\chi: \sigma \to (\lambda, \rho) \qquad (\sigma \in \mathscr{I})$$

where

$$\sigma\theta_s = \theta_{\lambda s}, \ \theta_s \sigma = \theta_{s\rho} \qquad (s \in S)$$

Then χ is an isomorphism of \mathcal{I} onto $\Omega(S)$ and the following diagram commutes:

$$\Omega(S) \supseteq \Pi(S)$$

$$x \bigwedge^{\pi} \bigwedge^{\pi} f^{\pi}$$

$$\mathscr{I} \supseteq \mathfrak{M} \xleftarrow{\theta} S$$

Proof. First note that χ is well-defined since $\sigma \in \mathcal{I}$ so that $\sigma \mathfrak{M}$, $\mathfrak{M} \sigma \subseteq \mathfrak{M}$ and by Lemma 6.2, $\theta_{\lambda s}$ and $\theta_{s\rho}$ uniquely determine λs and $s\rho$, respectively. Further, for any $s, t \in S$, we have

$$\theta_{(\lambda s)t} = \theta_{\lambda s} \theta_t = (\sigma \theta_s) \theta_t = \sigma(\theta_s \theta_t) = \sigma \theta_{st} = \theta_{\lambda(st)},$$

so that $(\lambda s)t = \lambda(st)$ and analogously $s(t\rho) = (st)\rho$ and $(s\rho)t = s(\lambda t)$. Consequently $(\lambda, \rho) \in \Omega(S)$ and hence χ maps \mathcal{I} into $\Omega(S)$.

Let σ , $\tau \in \mathcal{I}$ and $\sigma \chi = (\lambda, \rho)$, $\tau \chi = (\alpha, \beta)$. Then for any $s \in S$, we have

$$\sigma\tau\theta_s = \sigma\theta_{\alpha s} = \theta_{\lambda\alpha s}, \qquad \theta_s\sigma\tau = \theta_{s\rho}\tau = \theta_{s\rho\beta}$$

whence

$$(\sigma\tau)\chi = (\lambda\alpha, \beta\rho) = (\lambda, \rho)(\alpha, \beta) = (\sigma\chi)(\tau\chi)$$

and χ is a homomorphism.

Before proving that χ is one-to-one, we make the following observation. For any $s = (p, n, q) \in S$ and $w \in X^*$, we get

$$\sigma\theta_s w = \sigma p^{n(q \cdot \bar{w})} = (\sigma p)^{n(q \cdot \bar{w})} = [\pi(\sigma p)]^{[\varepsilon(\sigma p)]n(q \cdot \bar{w})}$$
$$= \theta_{(\pi(\sigma p), [\varepsilon(\sigma p)]n, q)} w,$$

which implies

$$\sigma \theta_{(p,n,q)} = \begin{cases} \theta_{(\pi(\sigma p), [\varepsilon(\sigma p)]n, q)} & \text{if } \sigma p \neq 1, \\ \zeta & \text{otherwise.} \end{cases}$$
(10)

Now assume that for σ , $\tau \in \mathcal{I}$, we have $\sigma \theta_s = \tau \theta_s$ for all $s \in S$. In view of (10), we conclude that

$$\sigma p = 1 \Leftrightarrow \tau p = 1$$
 $(p \in \mathcal{P}),$

and otherwise $\theta_{(\pi(\sigma p), [\varepsilon(\sigma \rho)]n, q)} = \theta_{(\pi(\tau p), [\varepsilon(\tau p)]n, q)}$, which yields

$$\sigma p = [\pi(\sigma p)]^{\varepsilon(\sigma p)} = [\pi(\tau p)]^{\varepsilon(\tau p)} = \tau p.$$

This evidently implies that $\sigma w = \tau w$ for all $w \in X^*$, whence $\sigma = \tau$. Therefore χ is one-to-one.

In order to show that χ is onto, we let $(\lambda, \rho) \in \Omega(S)$. By Lemma 6.3, to (λ, ρ) is associated a quadruple $(\alpha, \phi, \psi, \beta)$. We thus may define the following two functions. For $w \in X^+$, say $w = p^m$ where $p \in \mathcal{P}$, let

$$\sigma w = \begin{cases} (\alpha p)^{(\phi p)m} & \text{if } p \in \mathbf{d}\alpha \\ 1 & \text{otherwise} \end{cases}, \qquad \sigma 1 = 1.$$

For $r \in \mathbb{N}^{X}$, $r \neq 0$, say r = nq where $q \in \mathcal{Q}$, let

$$r\tau = \begin{cases} (q\psi)n(q\beta) & \text{if } q \in \mathbf{d}\beta \\ 1 & \text{otherwise} \end{cases}, \qquad 0\tau = 0.$$

With this notation, we have for $k \ge 1$,

$$\sigma w^{k} = \sigma p^{mk} = \begin{cases} (\alpha p)^{(\phi p)mk} & \text{if } p \in \mathbf{d}\alpha \\ 1 & \text{otherwise} \end{cases} = (\sigma p^{m})^{k} = (\sigma w)^{k},$$

which proves that $\sigma \in li_{\mathcal{T}(X^*)}(\mathfrak{M})$ by Proposition 4.1. Furthermore,

$$r \cdot \overline{ow} = \begin{cases} nq \cdot (\phi p)m\overline{\alpha p} & \text{if } p \in \mathbf{d}\alpha, \\ 0 & \text{otherwise,} \end{cases}$$
$$r\tau \cdot \overline{w} = \begin{cases} (q\psi)m(q\beta) \cdot m\overline{p} & \text{if } q \in \mathbf{d}\beta, \\ 0 & \text{otherwise.} \end{cases}$$

The conditions on the quadruple $(\alpha, \phi, \psi, \beta)$ in Lemma 6.3(iii) imply that $r \cdot \overline{\sigma w} = r\tau \cdot \overline{w}$. Since this holds trivially for r = 0 or w = 1, we conclude that σ and τ are adjoints. By Theorem 4.2, we have that $\sigma \in ri_{\mathcal{T}(X^*)}(\mathfrak{M})$. Consequently $\sigma \in \mathcal{I}$.

It remains to prove that $\sigma \chi = (\lambda, \rho)$. Let $s = (p, n, q) \in S$ and $w \in X^*$. On the left we get

$$\sigma\theta w = \sigma(p^{n(q \cdot \tilde{w})}) = (\sigma p)^{n(q \cdot \tilde{w})} = \theta_{(\pi(\sigma p), [\varepsilon(\sigma p)]n, q)} w$$
$$= \theta_{(\alpha p, (\phi p)n, q)} w = \theta_{\lambda(p, n, q)} w = \theta_{\lambda s} w$$

and thus $\sigma \theta_s = \theta_{\lambda s}$; this holds trivially if s = 0. On the right, we obtain

$$\theta_{s}\sigma w = \theta_{s}\sigma(\pi w)^{\varepsilon w} = \theta_{s} \begin{cases} [\alpha(\pi w)]^{[(\phi(\pi w)](\varepsilon w)} & \text{if } \pi w \in \mathbf{d}\alpha \\ 1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} p^{n(q \cdot \overline{\alpha(\pi w)})} [\phi(\pi w)]^{(\varepsilon w)} & \text{if } \pi w \in \mathbf{d}\alpha, \\ 1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} p^{n(q \cdot \overline{\pi w})} (q \psi)^{(\varepsilon w)} & \text{if } q \in \mathbf{d}\beta, \\ 1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \theta_{(p,n(q \psi), q \beta)} (\pi w)^{\varepsilon w} & \text{if } q \in \mathbf{d}\beta, \\ 1 & \text{otherwise} \end{cases}$$

$$= \theta_{(p,n,q)\rho} w = \theta_{s\rho} w$$

and thus $\theta_s \sigma = \theta_{s\sigma}$; this holds trivially for s = 0. Consequently $\sigma \chi = (\lambda, \rho)$.

Therefore χ is an isomorphism of \mathcal{I} onto $\Omega(S)$. It remains to show that θ followed by χ equals π , that is $\theta_s \chi = \pi_s$ for every $s \in S$. Indeed, let $s, t \in S$. Then

$$\theta_s \theta_t = \theta_{st} = \theta_{\lambda,t}, \qquad \theta_t \theta_s = \theta_{ts} = \theta_{t\rho},$$

and hence $\theta_s \chi = (\lambda_s, \rho_s) = \pi_s$, as required.

We can finally deduce the desired result.

COROLLARY 6.5. The mapping

$$\theta: s \to \theta_s \qquad (s \in S)$$

is a dense embedding of S into $\mathcal{T}(X^*)$.

Proof. By Lemma 6.2, S is weakly reductive. Hence by Result 6.1, $\Pi(S)$ is a densely embedded ideal of $\Omega(S)$. According to Theorem 6.4, χ is an isomorphism of $\mathscr{I} = i_{\mathscr{T}(X^*)}(\mathfrak{M})$ onto $\Omega(S)$ which maps \mathfrak{M} onto $\Pi(S)$. Therefore \mathfrak{M} is a densely embedded ideal of \mathscr{I} and hence θ is a dense embedding of S into $\mathscr{T}(X^*)$.

REFERENCES

1. J. Fountain and M. Petrich, Completely 0-simple semigroups of quotients, J. Algebra 101 (1986), 365-402.

2. G. T. Herman and G. Rozenberg, *Developmental systems and languages* (North Holland, 1975).

3. M. Petrich, Translational hull in semigroups and rings, Semigroup Forum 1 (1970), 283-360.

4. M. Petrich, Introduction to semigroups (Merrill, 1973).

Department of Mathematics and Statistics Simon Fraser University Burnaby, British Columbia Canada V5A 1S6