# MONOGENIC ENDOMORPHISMS OF A FREE MONOID 

by MARIO PETRICH

(Received 9 November, 1987)

1. Introduction and summary. Free monoids play a central role in the theory of formal languages. Their endomorphisms appear naturally in the context of deterministic OL-schemes which trace their origin to biology. Closely related to such a scheme is a DOL-system which consists of a triple $(X, \phi, w)$ where $X$ is a finite set, $\phi$ is an endomorphism of the free monoid $X^{*}$ and $w \in X$. The associated language is defined as the set $\left\{w, \phi w, \phi^{2} w, \ldots\right\}$ called a DOL-language. For a full discussion of this subject, we recommend the book [2] by Herman and Rozenberg.

The monoid of endomorphisms of the free monoid $X^{*}$ on an arbitrary alphabet $X$ has a certain interest in its own right. It ought to have a structure which bears some resemblance to the monoid of all transformations on a set, or the monoid of all linear transformations on a vector space. The underlying spaces in these two cases are: (1) a set without further structure, hence simpler than $X^{*}$, and (2) a vector space, hence a structure richer than a free monoid on a set. We may thus expect that the endomorphism monoid of $X^{*}$ harbours interesting structural complexity.

Semigroups of transformations, partial transformations, partial one-to-one transformations, linear transformations on a vector space, binary relations on a set and numerous others have a densely embedded ideal which is a completely O -simple semigroup (except for the first one in which it is a left zero semigroup if the functions are written on the left), see [3]. An ideal $I$ of a semigroup $S$ is densely embedded if (1) the only congruence on $S$ whose restriction to $I$ is equality is the equality relation on $S$ and (2) $S$ is maximal with this property relative to $I$ under set theoretical inclusion.

We call an endomorphism $\sigma$ of $X^{*}$ monogenic if its range is contained in a monogenic submonoid of $X^{*}$. The monogenic endomorphisms form a semigroup $\mathfrak{M}$ with many remarkable properties.

We study the structure of $\mathfrak{M}$ as well as its position in the monoid of all transformations $\mathscr{T}\left(X^{*}\right)$ on $X^{*}$ (functions written on the left). Section 2 contains a construction of a Rees matrix semigroup $S$ over the multiplicative semigroup of positive integers. It is then proved that this Rees matrix semigroup is isomorphic to $\mathfrak{M}$, thereby providing $\mathfrak{M}$ with a Rees matrix representation. Hence this case bears strong similarity with the instances mentioned above with the notable difference that we now have a Rees matrix semigroup over a semigroup which is not a group. The left and the right idealizers of $\mathfrak{M}$ in $\mathscr{T}\left(X^{*}\right)$ are identified in Section 4. The elements of the right idealizers are particularly interesting; they are called here generalized endomorphisms and are further investigated in Section 5. There is a curious phenomenon here of duality between $\mathscr{T}\left(X^{*}\right)$ and $\mathbb{N}^{X}$, the free commutative monoid on $X$. It is proved in Section 6 that $\mathfrak{M}$ is a densely embedded ideal of its idealizer in $\mathscr{T}\left(X^{*}\right)$ which means that the isomorphism of $S$ onto $\mathfrak{M}$ is a dense embedding of the Rees matrix semigroup $S$ into $\mathscr{T}\left(X^{*}\right)$.

Glasgow Math. J. 31 (1989) 87-101.

## MARIO PETRICH

2. The basic construction. We fix a nonempty set $X$ throughout the paper. By $X^{*}$ denote the free monoid on $X$, that is the set of all words over the alphabet $X$ with concatenation as product. The empty word 1 is the identity of $X^{*}$. The semigroup $X^{+}$ consisting of nonempty words over $X$ is the free semigroup on $X$. A word $w \in X^{*}$ is primitive if $w=u^{n}$ for any $u \in X^{*}$ implies $n=1$, and thus $w=u$. Denote by $\mathscr{P}$ the set of all primitive words in $X^{*}$ (or over $X$ ). For $w \in X^{*}$ and $x \in X$, let $w_{x}$ denote the number of occurrences of $x$ in $w$; let $\bar{w}$ be the $X$-tuple of nonnegative integers $w_{x}$. The mapping

$$
\xi: w \rightarrow \bar{w}=\left(w_{x}\right) \quad\left(w \in X^{*}\right)
$$

is called the Parikh mapping. Clearly $\overline{u v}=\bar{u}+\bar{v}$ for all $u, v \in X^{*}$.
For any $X$-tuple $q=\left(q_{x}\right)$ of nonnegative integers and $w \in X^{*}$, define their dot product by

$$
q \cdot \bar{w}=\sum_{x \in X} q_{x} w_{x}
$$

Note that this sum is finite since $\bar{w}$ has only a finite number of nonzero entries. For $X$-tuples of nonnegative integers, $p, q$ and $u, v \in X^{*}$, one easily verifies that the following relations hold:

$$
\begin{align*}
(p+q) \cdot \bar{u} & =p \cdot \bar{u}+q \cdot \bar{u}  \tag{1}\\
q \cdot \overline{u v} & =q \cdot(\bar{u}+\bar{v})=q \cdot \bar{u}+q \cdot \bar{v} \\
p \cdot \bar{u} & =q \cdot \bar{u} \text { for all } u \in X^{*} \text { implies } p=q  \tag{2}\\
q \cdot \bar{u} & =q \cdot \bar{v} \text { for all } q \text { implies } \bar{u}=\bar{v} \tag{3}
\end{align*}
$$

when the sum of $X$-tuples is by components.
Let 2 denote the set of all $X$-tuples $q=\left(q_{x}\right)$ of nonnegative integers such that $\operatorname{gcd}\left\{q_{x} \mid x \in X\right\}=1$. We will be interested only in the dot product $q \cdot \bar{u}$ with $q \in \mathscr{Q}$ and $u \in \mathscr{P}$. All the relations above remain valid with these restrictions. We will use them freely without further reference. Denote by 0 the $X$-tuple all of whose entries are equal to zero. We also require that $0 \notin 2$.

Denote by $\mathbb{N}$ the multiplicative semigroup of nonnegative integers and by $\mathbb{N}^{+}$its subsemigroup of positive integers. We may now define a Rees matrix semigroup in the usual way

$$
S=\mathcal{M}^{0}\left(\mathscr{P}, \mathbb{N}^{+}, Q ;(q \cdot \bar{p})\right)
$$

with index sets $\mathscr{P}$ and $\mathscr{2}$ over $\mathbb{N}^{+}$with sandwich matrix denoted by $(q \cdot \bar{p})$. Clearly, in every row and in every column ( $q \cdot \bar{p}$ ) has at least one nonzero entry.

For each nonzero element $(p, n, q)$ of $S$ define a mapping

$$
\theta_{(p, n, q)}: w \rightarrow p^{n(q \cdot \bar{w})} \quad\left(w \in X^{*}\right)
$$

and

$$
\theta_{0}: w \rightarrow 1 \quad\left(w \in X^{*}\right)
$$

We will generally write functions as left operators. Let $\mathscr{T}\left(X^{*}\right)$ denote the semigroup of all transformations on $X^{*}$ written and composed as left operators. Denote by $\mathscr{E}$ its
subsemigroup of endomorphisms of $X^{*}$. For each $w \in X^{*}$, let $w^{*}$ stand for the submonoid of $X^{*}$ generated by $w$. Finally let

$$
\mathfrak{M}=\left\{\theta \in \mathscr{E} \mid \theta X^{*} \subseteq w^{*} \text { for some } w \in X^{*}\right\}
$$

and call its elements monogenic endomorphisms of $X^{*}$. Denote by $\zeta$ the trivial endomorphism $\zeta: w \rightarrow 1$ for all $w \in X^{*}$.

Obviously $\mathfrak{M}$ is a subsemigroup of $\mathscr{E}$. It represents the main subject of our study. In the succeeding sections, we will give a Rees matrix representation for it, its translational hull, its left and right idealizer in $\mathscr{T}\left(X^{*}\right)$ and finally, by means of it, construct a dense embedding of $S$ into $\mathscr{T}\left(X^{*}\right)$.

For any $y \in X$, let $1_{y}=\left(q_{x}\right)$ where

$$
q_{x}= \begin{cases}1 & \text { if } x=y \\ 0 & \text { otherwise }\end{cases}
$$

For any $w \in X^{+}$, let $w=(\pi w)^{\varepsilon w}$ where $w$ is the primitive word which raised to the exponent $\varepsilon w$ gives $w$. By definition, $\pi 1=1, \varepsilon 1=1$.
3. A Rees representation for $\mathfrak{M}$. The principal result here is the existence of an isomorphism of $S$ onto $\mathfrak{M}$, giving a Rees representation for $\mathfrak{M}$. A few properties of $S$ are then investigated, providing a further clue as to the structure of $\mathfrak{M}$.

Theorem 3.1. The mapping

$$
\theta: s \rightarrow \theta_{s} \quad(s \in S)
$$

is an isomorphism of $S$ onto $\mathfrak{M}$.
Proof. First, for $s=(p, n, q) \in S$ and $u, v \in X^{*}$, we obtain

$$
\begin{aligned}
\left(\theta_{s} u\right)\left(\theta_{s} v\right) & =p^{n(q \cdot \bar{u})} p^{n(q \cdot \bar{v})}=p^{n(q \cdot \bar{u}+q \cdot \bar{v})} \\
& =p^{n(q \cdot(\bar{u}+\bar{v}))}=p^{n(q \cdot \bar{u} \bar{v})}=\theta_{s}(u v)
\end{aligned}
$$

and thus $\theta_{s}$ is an endomorphism of $X^{*}$. Trivially $\theta_{0}=\zeta \in \mathfrak{M}$ so $\theta: S \rightarrow \mathfrak{M}$.
Next let $\mu \in \mathfrak{M}$ and suppose that $\mu \neq \zeta$. Then $\mu X^{*} \subseteq w^{*}$ for some $w \in X^{+}$. There is a unique primitive word $p$ for which $w=p^{t}$ for some $t \geqslant 1$. For each $x \in X$, define $t_{x}$ by $\mu x=p^{t_{x}}$. Let $n=\operatorname{gcd}\left\{t_{x} \mid x \in X\right\}$ and let $q_{x}=\frac{t_{x}}{n}$ for each $x \in X$. Then with $q=\left(q_{x}\right)$, we obtain for any $x \in X$,

$$
\mu x=p^{t_{x}}=p^{n q_{x}}=p^{n(q \cdot \tilde{x})}=\theta_{(p, n, q)} x
$$

Therefore $\mu=\theta_{(p, n, q)}$ and thus $\theta$ maps $S$ onto $\mathfrak{M}$.
Assume next that $\theta_{(p, n, q)}=\theta_{(r, m, t)}$. Applied to any $x \in X$, this gives

$$
p^{n q_{x}}=p^{n(q \cdot \bar{x})}=r^{m(t \cdot \bar{x})}=r^{m t_{x}}
$$

Since both $p$ and $r$ are primitive words, it follows that $p=r$ and $n q_{x}=m t_{x}$ for all $x \in X$. Let $g=\operatorname{gcd}\{m, n\}$. Then $n=g d$ with $(d, m)=1$. Also $d$ divides $m t_{x}$, so that $d$ divides $t_{x}$. This is true for all $x \in X$, and by hypothesis $\operatorname{gcd}\left\{t_{x} \mid x \in X\right\}=1$, whence $d=1$.

Consequently, $n=g$, so that $n$ divides $m$. By symmetry, we conclude that $m=n$. But then $q_{x}=t_{x}$ for all $x \in X$, whence $g=t$. Therefore $(p, n, q)=(r, m, t)$ and $\theta$ is one-to-one.

Further, if $t . \bar{w} \neq 0$, then

$$
\begin{aligned}
\theta_{(p, n, q)} \theta_{(r, m, t)} w & =\theta_{(p, n, q)} r^{m(t, \bar{w})}=p^{n(q \cdot \overline{r(t \cdot \bar{w})})} \\
& =p^{n(q \cdot \bar{r})(t, \bar{w})}=\theta_{(p, n(q, \bar{r}), t)} w \\
& =\theta_{(p, n, q)(r, m, t)} w
\end{aligned}
$$

and if $t \cdot \bar{w}=0$, then $\theta_{(p, n, q)} \theta_{(r, m, t)} w=1=\theta_{(p, n, q)(r, n, t)} w$. Consequently $\theta_{s} \theta_{s^{\prime}}=\theta_{s s^{\prime}}$ for $s, s^{\prime}$ nonzero elements of $S$. This equation can be easily verified to be true if one or both of $s$ and $s^{\prime}$ is equal to zero. Therefore $\theta$ is a homomorphism and thus an isomorphism of $S$ onto $\mathfrak{M}$.

In view of the above theorem, the semigroup $S$ plays a central role in our investigation. It is thus worth having a closer look at its structure. To this end, we characterise Green's relations, idempotents, inverses, regular elements and an embedding into a completely 0 -simple semigroup as an order. It will be convenient to introduce the following concepts.

Definition 3.2. A word $w$ in $X^{*}$ is monic if there is a letter $x$ in $X$ which occurs in $w$ only once. An element $q$ of $Q$ is monic if some component of $q$ is equal to 1 .

Proposition 3.3. Let $s=(p, n, q)$ and $t=(z, m, r)$ be distinct (nonzero) elements of $S$.
(i) $s \mathscr{L} t \Leftrightarrow p$ and $z$ are monic, $n=m, q=r$.
(ii) $s \mathscr{R} t \Leftrightarrow p=z, n=m, q$ and $r$ are monic.
(iii) $s \mathscr{D} t \Leftrightarrow\left\{\begin{array}{l}\text { either } p \text { and } z \text { are monic or } p=z, \\ n=m, \\ \text { either } q \text { and } r \text { are monic or } q=r .\end{array}\right.$
(iv) $s \not g_{t} \Leftrightarrow n=m, p, z, q$ and $r$ are monic.
(v) $\mathscr{H}$ is the equality relation.

Proof. (i) Indeed,

$$
\begin{aligned}
& (p, n, q)=(u, k, x)(z, m, r),(z, m, r)=(v, l, y)(p, n, q) \\
& \quad \Leftrightarrow p=u, n=k(x \cdot \bar{z}) m, q=r, z=v, m=l(y \cdot \bar{p}) n, r=q \\
& \quad \Leftrightarrow p=u, n=m, k(x \cdot \bar{z})=l(y \cdot \bar{p})=1, z=v, r=q
\end{aligned}
$$

whence the assertion concerning $\mathscr{L}$.
(ii) The argument here is dual.
(iii) This follows directly from items (i) and (ii).
(iv) The assertion follows directly from the calculation

$$
\begin{aligned}
&(p, n, q)=(u, k, x)(z, m, r)(v, l, y) \\
& \Leftrightarrow p=u, n=k(x . \bar{z}) m(r . \bar{v}) l, q=y .
\end{aligned}
$$

(v) This is a direct consequence of items (i) and (ii).

Comparing parts (iii) and (iv), we conclude that $\mathscr{D} \neq \mathscr{F}$ in $S$.
Proposition 3.4. Let $s=(p, n, q)$ and $t=(z, m, r)$ be elements of $S$.
(i) $s$ is idempotent if and only if $q_{x} p_{x}=1$ for some $x \in X$ and $q_{y} p_{y}=0$ if $y \neq x$ and $n=1$.
(ii) $s$ and $t$ are mutually inverse if and only if $q \cdot \bar{z}=r \cdot \bar{p}=1$ and $n=m=1$.
(iii) $s$ is regular if and only if both $p$ and $q$ are monic and $n=1$.
(iv) $\left\{\left(x, 1,1_{y}\right) \mid x, y \in X\right\} \cup\{0\}$ is a combinatorial Brandt semigroup.

Proof. Straightforward verification.
Simple verification also shows that $S$ is an order in the completely 0 -simple semigroup $\mathcal{M}^{0}\left(\mathscr{P}, \mathbb{Q}^{+}, \mathscr{2} ;(q \cdot \bar{p})\right)$ where $\mathbb{Q}^{+}$is the multiplicative group of positive rationals. For a full discussion of these concepts, we refer the reader to [1].
4. The left and the right idealizer of $\mathfrak{M}$ in $\mathscr{T}\left(X^{*}\right)$. The (left, right) idealizer of a subsemigroup $T$ of a semigroup $S$ is the greatest subsemigroup $i_{S}(T)\left(l i_{S}(T), r i_{S}(T)\right.$ ) of $S$ in which $T$ is a (left, right) ideal. For these, we have the following simple expressions:

$$
\begin{aligned}
i_{s}(T) & =\{s \in S \mid s T, T s \subseteq T\} \\
l i_{s}(T) & =\{s \in S \mid s T \subseteq T\}
\end{aligned}
$$

and analogously for $r i_{s}(T)$. It follows that $i_{S}(T)=l i_{S}(T) \cap r i_{S}(T)$.
We start with the left idealizer. Recall the notation $\pi w$ and $\varepsilon w$ from Section 2.
Proposition 4.1.

$$
l i_{\mathscr{G}\left(X^{*}\right)}(\mathfrak{P})=\left\{\sigma \in \mathscr{T}\left(X^{*}\right) \mid \sigma\left(w^{n}\right)=(\sigma w)^{n} \text { for all } w \in X^{*}, n \geq 1\right\} .
$$

Proof. First let $\sigma \in l_{\mathscr{G}_{\left(X^{*}\right)}}(\mathfrak{M})$. Let $w \in X^{*}$ and $n \geqslant 1$. By the above formula and Theorem 3.1, $\sigma \theta_{s}$ is an endomorphism of $X^{*}$ for any $s \in S$. Hence, for any $x \in X$,

$$
\begin{aligned}
\sigma w^{n} & =\sigma \theta_{\left(\pi w,(\varepsilon w) n, 1_{x} x\right.} x=\sigma \theta_{\left(\pi w, \varepsilon w, 1_{x}\right)} x^{n} \\
& =\left(\sigma \theta_{\left(\pi w, \varepsilon w, 1_{x}\right)} x\right)^{n}=(\sigma w)^{n} .
\end{aligned}
$$

Conversely, let $\sigma$ be in the set on the right hand side in the statement of the proposition. Then for any $(p, n, q) \in S$ and $w \in X^{*}$, we obtain

$$
\sigma \theta_{(p, n, q)} w=\sigma p^{n(q \cdot \bar{w})}=(\sigma p)^{n(q \cdot \bar{w})}=\theta_{(\pi \sigma p,(\varepsilon \sigma p) n, q)} w,
$$

which proves that $\sigma \theta_{(p, n, q)}=\theta_{(\pi \sigma p,[\varepsilon(\sigma(p))] n, q)}$. Furthermore, for any $w \in X^{*}$ and $n \geqslant 1$, we have

$$
\sigma \theta_{0} w=\sigma \zeta w=\sigma 1=\sigma 1^{n}=(\sigma 1)^{n}
$$

which evidently implies that $\sigma 1=1$. Hence $\sigma \theta_{0}=\theta_{0}$. Consequently $\sigma \in l i_{\mathcal{T}\left(X^{*}\right)}(\mathfrak{M})$, as required.

We now consider the right idealizer. Recall the definition of the Parikh mapping $\boldsymbol{\xi}$ and the notation $1_{y}$ from Section 2.

Denote by $\mathbb{N}^{X}$ the semigroup of all $X$-tuples of nonnegative integers with only a finite number of nonzero entries under componentwise addition. For any set $Y$, denote by $\mathscr{T}^{\prime}(Y)$ the semigroup of all transformations on $Y$ written and composed as operators on the right. We say that $\sigma \in \mathscr{T}\left(X^{*}\right)$ and $\tau \in \mathscr{T}^{\prime}\left(\mathbb{N}^{X}\right)$ are adjoints of each other if

$$
r . \overline{\sigma w}=r \tau \cdot \bar{w} \quad\left(r \in \mathbb{N}^{X}, w \in X^{*}\right)
$$

Theorem 4.2.

$$
\begin{aligned}
r i_{\mathscr{G}\left(X^{*}\right)}(\mathfrak{P}) & =\left\{\sigma \in \mathscr{T}(X) \mid \zeta \sigma: X^{*} \rightarrow \mathbb{N}^{X} \text { is a homomorphism }\right\} \\
& =\left\{\sigma \in \mathscr{T}(X) \mid \sigma \text { has an adjoint in } \mathbb{N}^{X}\right\} .
\end{aligned}
$$

Proof. Let $\sigma \in \operatorname{rig}_{\mathscr{G}\left(X^{*}\right)}(\mathfrak{M})$. Then for $s=(p, n, q) \in S$, we have $\theta_{s} \sigma \in \mathfrak{M}$ and hence for any $u, v \in X^{*}$, we get

$$
\theta_{s} \sigma(u v)=\left(\theta_{s} \sigma u\right)\left(\theta_{s} \sigma v\right)
$$

so that

$$
p^{n(q \cdot \overline{\sigma(u v)})}=p^{n(q \cdot \overline{\sigma u})} p^{n(q \cdot \overline{\sigma v})}=p^{n(q \cdot(\overline{\sigma u}+\overline{\sigma v}))}=p^{n(q \cdot(\overline{\sigma u})(\sigma v))},
$$

whence $q \cdot \overline{\sigma(u v)}=q \cdot \overline{(\sigma u)(\sigma v)}$. Since this holds for all $q \in \mathscr{2}$, by (3) we deduce that $\overline{\sigma(u v)}=\overline{(\sigma u)(\sigma v)}$. It follows that

$$
\xi \sigma(u v)=\overline{\sigma(u v)}=\overline{(\sigma u)(\sigma v)}=\overline{\sigma u}+\overline{\sigma v}=\xi \sigma u+\xi \sigma v
$$

and $\xi \sigma$ is a homomorphism.
Now assume that $\xi \sigma$ is a homomorphism. We define $\tau$ on $\mathbb{N}^{X}$ as follows. For any $x, y \in X$, let $\left(1_{y} \tau\right)_{x}=\overline{\sigma x}_{y}$, that is, the $x$ th component of the value of $\tau$ at $1_{y}$ is equal to the $y$ th component of $\overline{\sigma x}$. This defines $\tau$ on the set $\left\{1_{y} \mid y \in X\right\}$. Since $\mathbb{N}^{X}$ is the free commutative monoid on $X$, we may extend $\tau$ uniquely to an endomorphism of $\mathbb{N}^{X}$, again denoted by $\tau$. We will now show that $\tau$ is an adjoint of $\sigma$ in $\mathscr{T}^{\prime}\left(\mathbb{N}^{X}\right)$.

Any $r \in \mathbb{N}^{X}$ can be written as $r=r_{z_{1}} 1_{z_{1}}+r_{z_{2}} 1_{z_{2}}+\ldots+r_{z_{n}} 1_{z_{n}}$ so that

$$
\begin{aligned}
r \tau & =r_{z_{1}}\left(1_{z_{1}} \tau\right)+r_{z_{2}}\left(1_{z_{2}} \tau\right)+\ldots+r_{z_{n}}\left(1_{z_{n}} \tau\right) \\
& \left.=r_{z_{1}}(\overline{\sigma x})_{z_{1}}\right)_{x \in X}+r_{z_{2}}\left(\overline{\sigma x}_{z_{2}}\right)_{x \in X}+\ldots+r_{z_{n}}\left(\overline{\sigma x}_{z_{n}}\right)_{x \in X} \\
& =\left(r_{z_{1}}(\overline{\sigma x})_{z_{1}}+r_{z_{2}}(\overline{\sigma x})_{z_{2}}+\ldots+r_{z_{n}}(\overline{\sigma x})_{z_{n}}\right)_{x \in X},
\end{aligned}
$$

whence for $w=x_{1}^{\omega_{x_{1}}} x_{2}^{\omega_{x_{2}}} \ldots x_{m}^{w_{x_{m}}}$, we get

$$
\begin{align*}
r \tau . \bar{w} & =\sum_{x \in X}\left(r_{z_{1}}(\overline{\sigma x})_{z_{1}}+r_{z_{2}}(\overline{\sigma x})_{z_{2}}+\ldots+r_{z_{m}}(\overline{\sigma x})_{z_{n}}\right) w_{x} \\
& =\sum_{i=1}^{m}\left(r_{z_{1}}\left(\overline{\sigma x_{i}}\right)_{z_{1}}+r_{z_{2}}\left(\overline{\sigma x_{i}}\right)_{z_{2}}+\ldots+r_{z_{n}}\left(\overline{\sigma x_{i}}\right)_{z_{n}}\right) w_{x_{i}} \\
& =\sum_{j=1}^{n} r_{z_{i}}\left(\left(\overline{\sigma x_{1}}\right)_{z_{j}} w_{x_{1}}+\left(\overline{\sigma x_{2}}\right)_{z_{j}} w_{x_{2}}+\ldots+\left(\overline{\sigma x_{m}}\right)_{z_{j}} w_{x_{m}}\right) . \tag{4}
\end{align*}
$$

On the other hand,

$$
\begin{equation*}
r . \overline{\sigma w}=r_{z_{1}}(\overline{\sigma w})_{z_{1}}+r_{z_{2}}(\overline{\sigma w})_{z_{2}}+\ldots+r_{z_{n}}(\overline{\sigma w})_{z_{n}} \tag{5}
\end{equation*}
$$

For equality of (4) and (5), it thus suffices to prove that

$$
\begin{equation*}
\left(\overline{\sigma x_{1}}\right)_{z_{i}} w_{x_{1}}+\left(\overline{\sigma x_{2}}\right)_{z_{j}} w_{x_{2}}+\ldots+\left(\overline{\sigma x_{m}}\right)_{z_{j}} w_{x_{m}}=(\overline{\sigma w})_{z_{j}} \tag{6}
\end{equation*}
$$

for $j=1,2, \ldots, n$. Indeed, using the hypothesis that $\xi \sigma$ is a homomorphism, we obtain

$$
\begin{aligned}
(\overline{\sigma w})_{z_{j}} & =\left(\xi \sigma\left(x_{1}^{w_{x_{1}}} x_{2}^{w_{x_{2}}} \ldots x_{m}^{\left.w_{x_{m}}\right)}\right) z_{j}\right. \\
& =\left(w_{x_{1}}\left(\overline{\sigma x_{1}}\right)+w_{x_{2}}\left(\overline{\sigma x_{2}}\right)+\ldots+w_{x_{m}}\left(\overline{\sigma x_{m}}\right)\right)_{z_{j}} \\
& =w_{x_{1}}\left(\overline{\sigma x_{1}}\right)_{z_{j}}+w_{x_{2}}\left(\overline{\sigma x_{2}}\right)_{z_{j}}+\ldots+w_{x_{m}}\left(\overline{\sigma x_{m}}\right)_{z_{j}}
\end{aligned}
$$

$j=1,2, \ldots, n$. This proves (6) and hence equality of (4) and (5) follows.
We have shown the equality $r . \overline{\sigma w}=r \tau . \bar{w}$ in the special case when $w=$
 $x_{1}, x_{2}, \ldots, x_{m}$ distinct elements of $X$ occurring in $w$. In fact, $u=x_{1}^{u_{1}} x_{2}^{u_{x_{2}}} \ldots x_{m}^{u_{x_{m}}}$. Moreover

$$
\begin{aligned}
\overline{\sigma w} & =\xi \sigma w=w_{x_{1}} \overline{\sigma x_{1}}+w_{x_{2}} \overline{\sigma x_{2}}+\ldots+w_{x_{m}} \overline{\sigma x_{m}} \\
& =\xi \sigma u=\overline{\sigma u} .
\end{aligned}
$$

We may thus conclude that

$$
r \cdot \overline{\sigma w}=r \cdot \overline{\sigma u}=r \tau \cdot \bar{u}=r \tau \cdot \bar{w},
$$

that is $\sigma$ and $\tau$ are adjoints.
Finally assume that $\sigma$ has an adjoint $\tau$ in $\mathbb{N}^{X}$. For any $s=(p, n, q) \in S$ and $u, v \in X^{*}$, we obtain

$$
\begin{aligned}
\theta_{s} \sigma(u v) & =p^{n(q \cdot \bar{\sigma}(\overline{u v}))}=p^{n(q \tau \cdot \overline{u v})}=p^{n(q \tau \cdot(\bar{u}+\bar{v}))} \\
& =p^{n(q \tau \cdot \bar{u}+q \tau \cdot \bar{v})}=p^{n(q \tau \cdot \bar{u})} p^{n(q \tau \cdot \bar{v})} \\
& =p^{n(q \cdot \overline{\sigma u})} p^{n(q \cdot \bar{\sigma}))}=\left(\theta_{s} \sigma u\right)\left(\theta_{s} \sigma v\right),
\end{aligned}
$$

which proves that $\theta_{s} \sigma$ is an endomorphism of $X^{*}$. Clearly $\left(\theta_{s} \sigma\right) X^{*} \subseteq p^{*}$ and thus $\theta_{s} \sigma \in \mathfrak{M}$. Trivially $\theta_{0} \sigma=\theta_{0}$. Therefore $\sigma \in \boldsymbol{r i}_{\sigma_{\left(X^{*}\right)}(\mathbb{M})}$, as required.
5. Generalized endomorphisms. We will now elaborate upon the transformations on $X^{*}$ which appear in Theorem 4.2. As a motivation, we first prove the following simple result.

Proposition 5.1. A transformation $\sigma \in \mathscr{T}\left(X^{*}\right)$ has an adjoint in $\mathbb{N}^{X}$ if and only if $\xi \sigma$ is a homomorphism. If $\tau$ is such an adjoint, then $\tau$ is an endomorphism of $\mathbb{N}^{X}$ and is unique. For any $s=(p, n, q) \in S$, the adjoint of $\theta_{s}$, again denoted by $\theta_{s}$, is given by
and $\theta_{0}=0$.

$$
r \theta_{s}=(r \cdot \bar{p}) n q \quad\left(r \in \mathbb{N}^{X}\right),
$$

Proof. The first assertion is part of Theorem 4.2. Let $\tau$ be an adjoint of $\sigma$, let $r, r^{\prime} \in \mathbb{N}^{X}$ and $w \in X^{*}$. Then, using (1),

$$
\begin{aligned}
\left(r+r^{\prime}\right) \tau \cdot \bar{w} & =\left(r+r^{\prime}\right) \cdot \overline{\sigma w}=r \cdot \overline{\sigma w}+r^{\prime} \cdot \overline{\sigma w} \\
& =r \tau \cdot \bar{w}+r^{\prime} \tau \cdot \bar{w}=\left(r \tau+r^{\prime} \tau\right) \cdot \bar{w}
\end{aligned}
$$

since $w$ is arbitrary, (2) implies that $\left(r+r^{\prime}\right) \tau=r \tau+r^{\prime} \tau$. Therefore $\tau$ is an endomorphism of $\mathbb{N}^{X}$.

Let $\tau^{\prime}$ be also an adjoint of $\sigma$. Then for any $r \in \mathbb{N}^{X}$ and $w \in X^{*}$, we get

$$
r \tau \cdot \bar{w}=r \cdot \overline{\sigma w}=r \tau^{\prime} \cdot \bar{w} .
$$

Again, w being arbitrary, (2) yields $r \tau=r \tau^{\prime}$. Consequently $\tau=\tau^{\prime}$, establishing uniqueness.

With the notation in the statement of the proposition and $r \in \mathbb{N}^{X}, w \in X^{*}$, we have

$$
\begin{aligned}
r \theta_{s} \cdot \bar{w} & =(r \cdot \bar{p}) n q \cdot \bar{w}=(r \cdot \bar{p}) n(q \cdot \bar{w})=r \cdot \bar{p} n(q \cdot \bar{w}) \\
& =r \cdot p^{\overline{n(q \cdot \bar{w})}}=r \cdot \overline{\theta_{s} w} ;
\end{aligned}
$$

this holds trivially for $s=0$.
We now consider the dual situation: which transformations on $\mathbb{N}^{x}$ have an adjoint in $X^{*}$ ? This is answered in the theorem below. It will be convenient to first prove an auxiliary statement of some independent interest.

Lemma 5.2. Let $\delta$ be a homomorphism of $X^{*}$ into $\mathbb{N}^{X}$. For each $x \in X$, let $\sigma x=x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{n}^{r_{n}}$ if $\delta x=r_{1} 1_{x_{1}}+r_{2} 1_{x_{2}}+\ldots+r_{n} 1_{x_{n}}$ (in some ordering of $x_{i}$ 's). Extend $\sigma$ to an endomorphism of $X^{*}$, again denoted by $\sigma$. Then $\xi \sigma=\delta$.

Proof. With the notation introduced, we have

$$
\xi \sigma x=\xi\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{n}^{r_{n}}\right)=r_{1} 1_{x_{1}}+r_{2} 1_{x_{2}}+\ldots+r_{n} 1_{x_{n}}=\delta x
$$

so that for $w=y_{1} y_{2} \ldots y_{m}$ with $y_{1}, y_{2}, \ldots, y_{m} \in X$, we obtain

$$
\begin{aligned}
\xi \sigma w & =\xi\left(\left(\sigma y_{1}\right)\left(\sigma y_{2}\right) \ldots\left(\sigma y_{m}\right)\right) \\
& =(\xi \sigma) y_{1}+(\xi \sigma) y_{2}+\ldots+(\xi \sigma) y_{m} \\
& =\delta y_{1}+\delta y_{2}+\ldots+\delta y_{m}=\delta w .
\end{aligned}
$$

Therefore $\xi \sigma=\delta$, as asserted.
The claim of the lemma can be expressed by saying that every homomorphism of $X^{*}$ into $\mathbb{N}^{X}$ can be "lifted" by $\xi$ to an endomorphism of $X^{*}$.

Theorem 5.3. A transformation $\tau \in \mathscr{T}^{\prime}\left(\mathbb{N}^{X}\right)$ has an adjoint in $X^{*}$ if and only if $\tau$ is an endomorphism of $\mathbb{N}^{X}$. If $\sigma$ is such an adjoint, then $\xi \sigma$ is a homomorphism and is unique; in addition, $\tau$ has an adjoint which is an endomorphism of $X^{*}$.

Proof. If a transformation $\tau \in \mathscr{T}^{\prime}\left(\mathbb{N}^{X}\right)$ has an adjoint $\sigma$ in $X^{*}$, then by Proposition $5.1, \tau$ is an endomorphism of $\mathbb{N}^{X}$. Conversely, assume that $\tau$ is an endomorphism of $\mathbb{N}^{X}$. We first define a function $\delta$ mapping $X^{*}$ into $\mathbb{N}^{X}$ as follows. For any $x, y \in X$, let $(\delta y)_{x}=\left(1_{x} \tau\right)_{y}$, that is, the $x$ th component of the value of $\delta$ at $y$ is equal to the $y$ th component of the value of $\tau$ at $1_{x}$. This defines $\delta$ on the set $X$. Now extend $\delta$ to a homomorphism from $X^{*}$ into $\mathbb{N}^{X}$, again denoted by $\delta$. We show next that

$$
\begin{equation*}
r . \delta w=r \tau . \bar{w} \quad\left(r \in \mathbb{N}^{X}, w \in X^{*}\right) \tag{7}
\end{equation*}
$$

For $w=y_{1} y_{2} \ldots y_{n}$, we get for any $x \in X$,

$$
\begin{aligned}
(\delta w)_{x} & =\left(\delta y_{1}+\delta y_{2}+\ldots+\delta y_{n}\right)=\left(\delta y_{1}\right)_{x}+\left(\delta y_{2}\right)_{x}+\ldots+\left(\delta y_{n}\right)_{x} \\
& =\left(1_{x} \tau\right)_{y_{1}}+\left(1_{x} \tau\right)_{y_{2}}+\ldots+\left(1_{x} \tau\right)_{y_{n}} .
\end{aligned}
$$

For $r \in \mathbb{N}^{X}$, say $r_{x_{1}} 1_{x_{1}}+r_{x_{2}} 1_{x_{2}}+\ldots+r_{x_{m}} 1_{x_{m}}$, we then obtain on the one hand,

$$
\begin{align*}
r . \delta w= & \left(r_{x_{1}} 1_{x_{1}}+r_{x_{2}} 1_{x_{2}}+\ldots+r_{x_{m}} 1_{x_{m}}\right)\left((\delta w)_{x_{1}} 1_{x_{1}}+(\delta w)_{x_{2}} 1_{x_{2}}+\ldots+(\delta w)_{x_{m}} 1_{x_{m}}\right) \\
= & r_{x_{1}}\left[\left(1_{x_{1}} \tau\right)_{y_{1}}+\left(1_{x_{1}} \tau\right)_{y_{2}}+\ldots+\left(1_{x_{1}} \tau\right) y_{n}\right] \\
& +r_{x_{2}}\left[\left(1_{x_{2}} \tau\right)_{y_{1}}+\left(1_{x_{2}} \tau\right)_{y_{2}}+\ldots+\left(1_{x_{2}} \tau\right) y_{n}\right] \\
& +\ldots \\
& +r_{x_{m}}\left[\left(1_{x_{m}} \tau\right)_{y_{1}}+\left(1_{x_{m}} \tau\right)_{y_{2}}+\ldots+\left(1_{x_{m}} \tau\right)_{y_{n}}\right] \\
= & r_{x_{1}}\left(1_{x_{1}} \tau\right)_{y_{1}}+r_{x_{2}}\left(1_{x_{2}} \tau\right)_{y_{1}}+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)_{y_{1}} \\
& +r_{x_{1}}\left(1_{x_{1}} \tau\right)_{y_{2}}+r_{x_{2}}\left(1_{x_{2}} \tau\right)_{y_{2}}+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)_{y_{2}} \\
& +\ldots \\
& +r_{x_{1}}\left(1_{x_{1}} \tau\right)_{y_{n}}+r_{x_{2}}\left(1_{x_{2}} \tau\right)_{y_{n}}+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)_{y_{n}} \tag{8}
\end{align*}
$$

and on the other hand,

$$
\begin{align*}
r \tau . \bar{w}= & \left(r_{x_{1}} 1_{x_{1}}+r_{x_{2}} 1_{x_{2}}+\ldots+r_{x_{m}} 1_{x_{m}}\right) \tau \cdot \overline{y_{1} y_{2} \ldots y_{n}} \\
= & {\left[r_{x_{1}}\left(1_{x_{1}} \tau\right)+r_{x_{2}}\left(1_{x_{2}} \tau\right)+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)\right] \cdot\left(1_{y_{1}}+1_{y_{2}}+\ldots+1_{y_{n}}\right) } \\
= & \left(r_{x_{1}}\left(1_{x_{1}} \tau\right)+r_{x_{2}}\left(1_{x_{2}} \tau\right)+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)\right)_{y_{1}} \\
& +\left(\left(r_{x_{1}}\left(1_{x_{1}} \tau\right)+r_{x_{2}}\left(1_{x_{2}} \tau\right)+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)\right)_{y_{2}}\right. \\
& +\ldots \\
& +\left(r_{x_{1}}\left(1_{x_{1}} \tau\right)+r_{x_{2}}\left(1_{x_{2}} \tau\right)+\ldots+r_{x_{m}}\left(1_{x_{m}} \tau\right)\right)_{y_{n}} . \tag{9}
\end{align*}
$$

We now see that expressions (8) and (9) are equal, which then proves relation (7).
Since $\delta$ is a homomorphism of $X^{*}$ into $\mathbb{N}^{X}$, Lemma 5.2 yields that for some endomorphism $\sigma$ of $X^{*}$ we have $\xi \sigma=\delta$. Substitution in (7) gives $r . \overline{\sigma w}=r \tau . \bar{w}$ for all $r \in \mathbb{N}^{X}$ and $w \in X^{*}$, which shows that $\sigma$ is an adjoint of $\tau$. This establishes the converse part of the first assertion and the last assertion of the theorem.

Now let $\sigma$ be any adjoint of $\tau$. Then for any $u, v \in X^{*}$ and $r \in \mathbb{N}^{X}$, we obtain

$$
\begin{aligned}
r \cdot \overline{\sigma(u v)} & =r \tau \cdot \overline{u v}=r \tau \cdot(\bar{u}+\bar{v})=r \tau \cdot \bar{u}+r \tau \cdot \bar{v} \\
& =r \cdot \overline{\sigma u}+r \cdot \overline{\sigma v}=r \cdot(\overline{\sigma u}+\overline{\sigma v}) .
\end{aligned}
$$

Since $r$ is arbitrary, (3) implies that $\overline{\sigma(u v)}=\overline{\sigma u}+\overline{\sigma v}$ and $\xi \sigma$ is indeed a homomorphism.
Assume, in addition, that $\sigma^{\prime}$ is also an adjoint of $\tau$. Then for any $r \in \mathbb{N}^{X}$ and $w \in X^{*}$, we have

$$
r \cdot \overline{\sigma w}=r \tau \cdot \bar{w}=r \cdot \overline{\sigma^{\prime} w}
$$

so again by (3), we conclude that $\overline{\sigma w}=\overline{\sigma^{\prime} w}$. It follows that $\xi \sigma$ is unique.

Motivated by the above theorem, we introduce the following concept.
Definition 5.4. A transformation $\sigma$ of $X^{*}$ is a generalized endomorphism if $\xi \sigma$ is a homomorphism.

In the notation employed above, this means that $\overline{\sigma(u v)}=\overline{(\sigma u)(\sigma v)}$ for all $u, v \in X^{*}$. According to Proposition 5.1, $\sigma \in \mathscr{T}\left(X^{*}\right)$ is a generalized endomorphism if and only if it has an adjoint in $\mathbb{N}^{X}$. Generalized endomorphisms of $X^{*}$ may be constructed in a similar fashion, as the following simple result shows.

Proposition 5.5. Let $\sigma: X \rightarrow X^{*}$ be any mapping. For $w=x_{1} x_{2} \ldots x_{n} \in X^{*}$ let ow be any word in $X^{*}$ satisfying

$$
\overline{\sigma w}=\overline{\left(\sigma x_{1}\right)\left(\sigma x_{2}\right) \ldots\left(\sigma x_{n}\right)}
$$

Then $\sigma$ is a generalized endomorphism of $X^{*}$. Also, every generalized endomorphism of $X^{*}$ can be so constructed.

Proof. Let $u=x_{1} x_{2} \ldots x_{m}$ and $v=y_{1} y_{2} \ldots y_{n}$ be words in $X^{*}$. Then

$$
\begin{aligned}
\overline{\sigma u}+\overline{\sigma v} & =\overline{\left(\sigma x_{1}\right)\left(\sigma x_{2}\right) \ldots\left(\sigma x_{m}\right)}+\overline{\left(\sigma y_{1}\right)\left(\sigma y_{2}\right) \ldots\left(\sigma y_{n}\right)} \\
& =\overline{\sigma x_{1}}+\overline{\sigma x_{2}}+\ldots+\overline{\sigma x_{m}}+\overline{\sigma y_{1}}+\overline{\sigma y_{2}}+\ldots+\overline{\sigma y_{n}} \\
& =\left(\overline{\left(\sigma x_{1}\right)\left(\sigma x_{2}\right) \ldots\left(\sigma x_{m}\right)\left(\sigma y_{1}\right)\left(\sigma y_{2}\right) \ldots\left(\sigma y_{n}\right)}\right. \\
& =\overline{(\sigma(u v)},
\end{aligned}
$$

as required.
Conversely, let $\sigma$ be a generalized endomorphism of $X^{*}$. Then for all $w=x_{1} x_{2} \ldots x_{m}$ in $X^{*}$, we have

$$
\overline{\sigma w}=\overline{\sigma\left(x_{1} x_{2} \ldots x_{n}\right)}=\overline{\left(\sigma x_{1}\right)\left(\sigma x_{2}\right) \ldots\left(\sigma x_{m}\right)},
$$

as required.
It should now be clear how much generalized endomorphisms are indeed more general than endomorphisms. Nevertheless, we have the following statement.

Proposition 5.6. Let $\sigma$ be a generalized endomorphism of $X^{*}$ such that $\sigma X^{*} \subseteq w^{*}$ for some $w \in X^{*}$. Then $\sigma$ is an endomorphism.

Proof. If $w=1$, the assertion is trivial. Assume that $w \neq 1$. For every $x \in X$, we have $\sigma x=w^{r_{x}}$ for a positive integer $r_{x}$. Hence

$$
\begin{aligned}
\overline{\sigma\left(x_{1} x_{2} \ldots x_{n}\right)} & =\overline{\sigma x_{1}}+\overline{\sigma x_{2}}+\ldots+\overline{\sigma x_{n}} \\
& =r_{x_{1}} \bar{w}+r_{x_{2}} \bar{w}+\ldots+r_{x_{n}} \bar{w} \\
& =\left(r_{x_{1}}+r_{x_{2}}+\ldots+r_{x_{n}}\right) \bar{w},
\end{aligned}
$$

so that $\sigma\left(x_{1} x_{2} \ldots x_{n}\right)=w^{r_{1}+x_{x_{2}}+\ldots+r_{x_{n}} \text {. But this implies that }}$

$$
\begin{aligned}
\sigma\left(x_{1} \ldots x_{n} y_{1} \ldots y_{m}\right) & =w^{r_{x_{1}}+\ldots+r_{x_{n}}+r_{y_{1}}+\ldots+r_{y_{m}}} \\
& =w^{x_{1}}+\ldots+r_{x_{m}} w^{r_{y 1}+\ldots+r_{y_{m}}} \\
& =\sigma\left(x_{1} \ldots x_{n}\right) \sigma\left(y_{1} \ldots y_{m}\right)
\end{aligned}
$$

which gives $\sigma(u v)=(\sigma u)(\sigma v)$ for all $u, v \in X^{*}$. Therefore $\sigma$ is an endomorphism.

The following examples illustrate the nature of some of the transformations studied.
Example 5.7. Let $|X|>1$ and fix $a \in X^{+}$. For every $w \in X^{*}$, let $\sigma w=a^{\varepsilon w}$ where $\varepsilon w$ was defined in Section 2. For any $w \in X^{*}$ and $n \geqslant 1$, we obtain

$$
\sigma w^{n}=a^{\varepsilon w^{n}}=a^{n(\varepsilon w)}=\left(a^{\varepsilon w}\right)^{n}=(\sigma w)^{n} .
$$

For any $x, y \in X, x \neq y$, we further get

$$
\sigma(x y)=a \neq a^{2}=(\sigma x)(\sigma y)
$$

and $\sigma$ is not an endomorphism. Hence Proposition 5.7 is not valid under the hypothesis that $\sigma w^{n}=(\sigma w)^{n}$ for all $w \in X^{*}$ and all $n \geqslant 1$ instead of $\sigma$ being a generalized endomorphism.

Example 5.8. Let $X=\{a, b\}$ and define $\sigma$ by:

$$
\begin{array}{ll}
\sigma w=w \text { if } w \notin(a b)^{*} & \left(w \in X^{*}\right), \\
\sigma(a b)^{n}=(b a)^{n} & (n \geqslant 1) .
\end{array}
$$

For $m, n \geqslant 1$, we get $\sigma w^{n}=(\sigma w)^{n}$ trivially if $w \notin(a b)^{*}$ and

$$
\sigma\left((a b)^{m}\right)^{n}=\sigma(a b)^{m n}=(b a)^{m n}=\left((b a)^{m}\right)^{n}=\left(\sigma(a b)^{m}\right)^{n}
$$

Therefore $\sigma w^{n}=(\sigma w)^{n}$ for all $w \in X^{*}, n \geqslant 1$.
Next let $u, v \in X^{*}$. Then for $x \in X$,

$$
(\sigma(u v))_{x}=(u v)_{x}=u_{x}+v_{x}=(\sigma u)_{x}+(\sigma v)_{x}
$$

which implies that $\overline{\sigma(u v)}=\overline{\sigma u}+\overline{\sigma v}$ and $\sigma$ is a generalized endomorphism. However,

$$
\sigma(a b)=b a=(\sigma b)(\sigma a)
$$

and $\sigma$ is not an endomorphism. This shows that $\mathscr{E}$ is properly contained in $i_{\mathscr{F}_{\left(X^{*}\right)}(\mathfrak{M})}$.
6. A dense embedding. Let $I$ be an ideal of a semigroup $S$. We say that $S$ is an ideal extension of $I$. If the equality relation on $S$ is the only congruence on $S$ whose restriction to $I$ is the equality on $I$, then $S$ is a dense (ideal) extension of $I$. If, in addition, $S$ is, under inclusion, a maximal dense extension of $I$, then $I$ is a densely embedded ideal of $I$.

An isomorphism $\phi$ of a semigroup $S$ into a semigroup $T$ is a dense embedding if $S \phi$ is a densely embedded ideal of its idealizer in $T$.

Our aim here is to prove that the mapping $\theta$ in Theorem 3.1, considered as an isomorphism of $S$ into $\mathscr{T}\left(X^{*}\right)$, is a dense embedding. In order to achieve this goal, we will make use of the following useful tool.

Let $S$ be a semigroup. A transformation $\lambda$ (respectively $\rho$ ) written on the left (respectively right) is a left (respectively right) translation of $S$ if $\lambda(x y)=(\lambda x) y$ (respectively $(x y) \rho=x(y \rho)$ ) for all $x, y \in S$; the two translations are linked if $(x \rho) y=$ $x(\lambda y)$ for all $x, y \in S$ in which case $(\lambda, p)$ is a bitranslation. The set $\Omega(S)$ of all bitranslations of $S$ under the componentwise multiplication is the translational hull of $S$.

For any $a \in S$, let $\lambda_{a} x=a x$ and $x \rho_{a}=x a$ for all $x \in S$. Then $\pi_{a}=\left(\lambda_{a}, \rho_{a}\right)$ is an inner bitranslation of $S$. The mapping $\pi: a \rightarrow \pi_{a}(a \in S)$ is the canonical homomorphism of $S$ into $\Omega(S)$ with image $\Pi(S)$. Finally, $S$ is weakly reductive if $\pi$ is one-to-one, that is, for any $a, b \in S, a x=b x$ and $x a=x b$ for all $x \in S$ implies that $a=b$. The proof of the above stated goal is based on the following well-known

Result 6.1. If a semigroup $S$ is weakly reductive, then $\Pi(S)$ is a densely embedded ideal of $\Omega(S)$.

Since in this case $\pi$ is an isomorphism of $S$ onto $\Pi(S)$, the proof will be effected by constructing an isomorphism of the idealizer of $S \phi$ onto $\Omega(S)$ which maps $S \phi$ onto $\Pi(S)$. For a complete discussion concerning these concepts, consult [4, Chapter II].

As the first part of our program, we prove
Lemma 6.2. The semigroup $S$ is weakly reductive.
Proof. Let $(p, n, q),(z, m, r)$ be nonzero elements of $S$ and assume that

$$
\begin{aligned}
& (u, k, x)(p, n, q)=(u, k, x)(z, m, r) \\
& (p, n, q)(u, k, x)=(z, m, r)(u, k, x)
\end{aligned}
$$

for all $(u, k, x) \in S$. We can choose $x \in \mathscr{2}$ such that $x \cdot \bar{p} \neq 0$ which gives $k(x, \bar{p}) n=$ $k(x . \bar{z}) m \neq 0$ and $q=r$. Also, we can find $u \in \mathscr{P}$ such that $q \cdot \bar{u} \neq 0$ which implies that $p=z$ and $n(q \cdot \bar{u}) k=m(r \cdot \bar{u}) k \neq 0$. But $q=r$ then gives $n=m$. Therefore $(p, n, q)=$ ( $z, m, r$ ), as required.

For any set $Y$, denote by $\mathscr{F}(Y)$ (respectively $\mathscr{F}^{\prime}(Y)$ ) the semigroup of all partial transformations on the set $Y$ written and composed as left (respectively right) operators. For $\phi \in \mathscr{F}(Y) \cup \mathscr{F}^{\prime}(Y)$, denote by $\mathbf{d} \phi$ the domain of $\phi$.

The following lemma gives a description of left and right translations of the semigroup $S$.

Lemma 6.3. (i) For $\alpha \in \mathscr{F}(\mathscr{P})$ and $\phi: \mathrm{d} \alpha \rightarrow \mathbb{N}^{+}$, the function $\lambda$ defined by

$$
\lambda(p, n, q)=\left\{\begin{array}{ll}
(\alpha p,(\phi p) n, q) & \text { if } p \in \mathbf{d} \alpha \\
0 & \text { otherwise }
\end{array}\right\}, \quad \lambda 0=0
$$

is a left translation of $S$. Conversely, every left translation of $S$ has this form.
(ii) For $\beta \in \mathscr{F}^{\prime}(2)$ and $\psi: \mathbf{d} \beta \rightarrow \mathbb{N}^{+}$, the function $\rho$ defined by

$$
(p, n, q) \rho=\left\{\begin{array}{ll}
(p, n(q \psi), q \beta) & \text { if } q \in \mathbf{d} \beta \\
0 & \text { otherwise }
\end{array}\right\}, \quad 0 \rho=0
$$

is a right translation of $S$. Conversely, every right translation of $S$ has this form.
(iii) With the above notation, $\lambda$ and $\rho$ are linked if and only if for any $p \in \mathscr{P}$ and $q \in \mathscr{Q}$,

$$
p \in \mathbf{d} \alpha, q \cdot \overline{\alpha p} \neq 0 \Leftrightarrow q \in \mathbf{d} \beta, q \beta \cdot \bar{p} \neq 0
$$

and if one side holds, then

$$
(q \cdot \overline{\alpha p})(\phi p)=(q \psi)(q \beta \cdot \bar{p})
$$

Proof. The proofs in [4, V.3] remain valid in any Rees matrix semigroup over a semigroup with a zero adjoined. The above is an application of this remark to the semigroup $S=\mathcal{M}^{0}\left(\mathscr{P}, \mathbb{N}^{+}, \mathscr{Q} ;(q \cdot \bar{p})\right)$.

Theorem 6.4. Let $\mathscr{I}=i_{\mathscr{G}\left(X^{*}\right)}(\mathfrak{M})$ and define a mapping $\chi$ by

$$
\chi: \sigma \rightarrow(\lambda, \rho) \quad(\sigma \in \mathscr{I})
$$

where

$$
\sigma \theta_{s}=\theta_{\lambda s}, \theta_{s} \sigma=\theta_{s \rho} \quad(s \in S)
$$

Then $\chi$ is an isomorphism of $\mathscr{I}$ onto $\Omega(S)$ and the following diagram commutes:


Proof. First note that $\chi$ is well-defined since $\sigma \in \mathscr{I}$ so that $\sigma \mathfrak{M}, \mathfrak{M} \sigma \subseteq \mathfrak{M}$ and by Lemma $6.2, \theta_{\lambda s}$ and $\theta_{s p}$ uniquely determine $\lambda s$ and $s \rho$, respectively. Further, for any $s, t \in S$, we have

$$
\theta_{(\lambda s) t}=\theta_{\lambda s} \theta_{t}=\left(\sigma \theta_{s}\right) \theta_{t}=\sigma\left(\theta_{s} \theta_{t}\right)=\sigma \theta_{s t}=\theta_{\lambda(s t)}
$$

so that $(\lambda s) t=\lambda(s t)$ and analogously $s(t \rho)=(s t) \rho$ and $(s \rho) t=s(\lambda t)$. Consequently $(\lambda, \rho) \in \Omega(S)$ and hence $\chi$ maps $\mathscr{F}$ into $\Omega(S)$.

Let $\sigma, \tau \in \mathscr{I}$ and $\sigma \chi=(\lambda, \rho), \tau \chi=(\alpha, \beta)$. Then for any $s \in S$, we have

$$
\sigma \tau \theta_{s}=\sigma \theta_{\alpha s}=\theta_{\lambda \alpha s}, \quad \theta_{s} \sigma \tau=\theta_{s \rho} \tau=\theta_{s \rho \beta}
$$

whence

$$
(\sigma \tau) \chi=(\lambda \alpha, \beta \rho)=(\lambda, \rho)(\alpha, \beta)=(\sigma \chi)(\tau \chi)
$$

and $\chi$ is a homomorphism.
Before proving that $\chi$ is one-to-one, we make the following observation. For any $s=(p, n, q) \in S$ and $w \in X^{*}$, we get

$$
\begin{aligned}
\sigma \theta_{s} w & =\sigma p^{n(q \cdot \bar{w})}=(\sigma p)^{n(q \cdot \bar{w})}=[\pi(\sigma p)]^{[\varepsilon(\sigma p) \mid n(q \cdot \bar{w})} \\
& =\theta_{(\pi(\sigma p),[\varepsilon(\sigma p)] n, q)} w,
\end{aligned}
$$

which implies

$$
\sigma \theta_{(p, n, q)}= \begin{cases}\theta_{(\pi(\sigma p),[\varepsilon(\sigma p)) n, q)} & \text { if } \sigma p \neq 1  \tag{10}\\ \zeta & \text { otherwise }\end{cases}
$$

Now assume that for $\sigma, \tau \in \mathscr{I}$, we have $\sigma \theta_{s}=\tau \theta_{s}$ for all $s \in S$. In view of (10), we conclude that

$$
\sigma p=1 \Leftrightarrow \tau p=1 \quad(p \in \mathscr{P})
$$

and otherwise $\theta_{(\pi(\sigma p),[\varepsilon(\sigma \rho)] n, q)}=\theta_{(\pi(\tau p),[\varepsilon(\tau p)] n, q)}$, which yields

$$
\sigma p=[\pi(\sigma p)]^{\varepsilon(\sigma p)}=[\pi(\tau p)]^{\varepsilon(\tau p)}=\tau p
$$

This evidently implies that $\sigma w=\tau w$ for all $w \in X^{*}$, whence $\sigma=\tau$. Therefore $\chi$ is one-to-one.

In order to show that $\chi$ is onto, we let $(\lambda, \rho) \in \Omega(S)$. By Lemma 6.3, to $(\lambda, \rho)$ is associated a quadruple ( $\alpha, \phi, \psi, \beta$ ). We thus may define the following two functions. For $w \in X^{+}$, say $w=p^{m}$ where $p \in \mathscr{P}$, let

$$
\sigma w=\left\{\begin{array}{ll}
(\alpha p)^{(\phi p) m} & \text { if } p \in \mathbf{d} \alpha \\
1 & \text { otherwise }
\end{array}\right\}, \quad \sigma 1=1
$$

For $r \in \mathbb{N}^{X}, r \neq 0$, say $r=n q$ where $q \in \mathscr{Q}$, let

$$
r \tau=\left\{\begin{array}{ll}
(q \psi) n(q \beta) & \text { if } q \in \mathbf{d} \beta \\
1 & \text { otherwise }
\end{array}\right\}, \quad 0 \tau=0
$$

With this notation, we have for $k \geqslant 1$,

$$
\sigma w^{k}=\sigma p^{m k}=\left\{\begin{array}{ll}
(\alpha p)^{(\phi p) m k} & \text { if } p \in \mathbf{d} \alpha \\
1 & \text { otherwise }
\end{array}\right\}=\left(\sigma p^{m}\right)^{k}=(\sigma w)^{k}
$$

which proves that $\sigma \in l_{\mathscr{T}_{\left(X^{*}\right)}(\mathfrak{M})}$ by Proposition 4.1. Furthermore,

$$
\begin{gathered}
r \cdot \overline{\sigma w}= \begin{cases}n q \cdot(\phi p) m \overline{\alpha p} & \text { if } p \in \mathbf{d} \alpha, \\
0 & \text { otherwise }\end{cases} \\
r \tau \cdot \bar{w}= \begin{cases}(q \psi) m(q \beta) \cdot m \bar{p} & \text { if } q \in \mathbf{d} \beta \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

The conditions on the quadruple ( $\alpha, \phi, \psi, \beta$ ) in Lemma 6.3(iii) imply that $r . \overline{\sigma w}=r \tau . \bar{w}$. Since this holds trivially for $r=0$ or $w=1$, we conclude that $\sigma$ and $\tau$ are adjoints. By


It remains to prove that $\sigma \chi=(\lambda, \rho)$. Let $s=(p, n, q) \in S$ and $w \in X^{*}$. On the left we get

$$
\begin{aligned}
\sigma \theta w & =\sigma\left(p^{n(q \cdot \bar{w})}\right)=(\sigma p)^{n(q \cdot \bar{w})}=\theta_{(\pi(\sigma p),[\varepsilon(\sigma p)] n, q)} w \\
& =\theta_{(\alpha p,(\phi p) n, q)} w=\theta_{\lambda(p, n, q)} w=\theta_{\lambda s} w
\end{aligned}
$$

and thus $\sigma \theta_{s}=\theta_{\lambda s}$; this holds trivially if $s=0$. On the right, we obtain

$$
\begin{aligned}
\theta_{s} \sigma w & =\theta_{s} \sigma(\pi w)^{\varepsilon w}=\theta_{s} \begin{cases}{[\alpha(\pi w)]^{[(\phi(\pi w)](\varepsilon w)}} & \text { if } \pi w \in \mathbf{d} \alpha, \\
1 & \text { otherwise }\end{cases} \\
& = \begin{cases}p^{n(q \cdot \overline{\alpha(\pi w)][\phi(\pi w)](\varepsilon w)}} \begin{array}{ll}
\text { if } \pi w \in \mathbf{d} \alpha,
\end{array} \\
& = \begin{cases}p^{n(q \beta \cdot \overline{\pi w)}(q \psi)(\varepsilon w)} & \text { if } q \in \mathbf{d} \beta, \\
1 & \text { otherwise }\end{cases} \\
& = \begin{cases}\theta_{(p, n(q \psi), q \beta)}(\pi w)^{\varepsilon w} & \text { if } q \in \mathbf{d} \beta, \\
1 & \text { otherwise }\end{cases} \\
& =\theta_{(p, n, q) \rho} w=\theta_{s \rho} w\end{cases}
\end{aligned}
$$

and thus $\theta_{s} \sigma=\theta_{s p}$; this holds trivially for $s=0$. Consequently $\sigma \chi=(\lambda, \rho)$.
Therefore $\chi$ is an isomorphism of $\mathscr{\Phi}$ onto $\Omega(S)$. It remains to show that $\theta$ followed by $\chi$ equals $\pi$, that is $\theta_{s} \chi=\pi_{s}$ for every $s \in S$. Indeed, let $s, t \in S$. Then

$$
\theta_{s} \theta_{t}=\theta_{s t}=\theta_{\lambda_{s}}, \quad \theta_{t} \theta_{s}=\theta_{t s}=\theta_{t \rho_{s}}
$$

and hence $\theta_{s} \chi=\left(\lambda_{s}, \rho_{s}\right)=\pi_{s}$, as required.
We can finally deduce the desired result.
Corollary 6.5. The mapping

$$
\theta: s \rightarrow \theta_{s} \quad(s \in S)
$$

is a dense embedding of $S$ into $\mathscr{T}\left(X^{*}\right)$.
Proof. By Lemma 6.2, $S$ is weakly reductive. Hence by Result $6.1, \Pi(S)$ is a densely embedded ideal of $\Omega(S)$. According to Theorem 6.4, $\chi$ is an isomorphism of $\mathscr{I}=$ $i_{\mathscr{G}\left(X^{*}\right)}(\mathfrak{P})$ onto $\Omega(S)$ which maps $\mathfrak{M}$ onto $\Pi(S)$. Therefore $\mathfrak{M}$ is a densely embedded ideal of $\mathscr{I}$ and hence $\theta$ is a dense embedding of $S$ into $\mathscr{T}\left(X^{*}\right)$.

## REFERENCES

1. J. Fountain and M. Petrich, Completely 0 -simple semigroups of quotients, J. Algebra 101 (1986), 365-402.
2. G. T. Herman and G. Rozenberg, Developmental systems and languages (North Holland, 1975).
3. M. Petrich, Translational hull in semigroups and rings, Semigroup Forum 1 (1970), 283-360.
4. M. Petrich, Introduction to semigroups (Merrill, 1973).

Department of Mathematics and Statistics
Simon Fraser University
Burnaby, British Columbia
Canada V5A 1S6

