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1. Introduction

In the representation theory of finite groups, the minimal idempotents of the group
algebra play a central role. In this case the minimal idempotents determine irreducible
modules over the group algebra, which in turn are in direct correspondence with the
irreducible matrix representations of the group; see Chapter IV of the book of C. Curtis
and I. Reiner (2). Many of the same ideas generalise to the situation where the group is
compact. In addition, minimal idempotents are involved in some important parts of the
theory of Hilbert algebras; see M. RieffePs paper (20).

For an arbitrary locally compact (LC) group G there has been no exposition concerning
the role that minimal idempotents of V(G) or of C*(G) (the group C*-algebraof G)play
in the representation theory of G. In fact, it turns out that minimal idempotents of these
algebras are intimately related to important (but special) facets of the representation
theory of G: square integrable representations, integral representations, and isolated
points of G, the dual of G.

In this paper we explore the part that minimal idempotents play in the representation
theory of a general LC group. A minimal idempotent of C*(G) determines an irreducible
(strongly continuous unitary) representation of G. The equivalence class of this represen-
tation is an isolated point in G. At least when G is cr-compact, the converse is also true, an
isolated point of G corresponds to an irreducible representation of G determined by a
minimal idempotent of C*(G) [Proposition 2]. When G is unimodular and the minimal
idempotent involved is in the reduced C*-algebra of G, C%G), then the corresponding
irreducible representation is square integrable [Proposition 2]. If the minimal idempotent
involved is in V(G), then the corresponding representation is integrable [Theorem 1]. A
simple corollary of this last result is that the equivalence class of an integrable representa-
tion of G is open in G [Corollary 2]. This provides an elementary proof of the answer to an
old question of J. Dixmier (4), previously answered by P. S. Wang in (15). As a further
application of these ideas, using techniques involving minimal idempotents we prove that
certain LC groups (nilpotent Lie groups, Hermitian /N-groups) have the property that
every irreducible square integrable representation is an integrable represntation
[Theorem 3].

Notation and terminology: An A*-algebra is a Banach *-algebra which has a faithful
^representation on Hilbert space (13, pp. 186-189). The algebra L](G) or any C*-
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algebra are examples of A*-algebras. Let A be an A*-algebra. An idempotent e e A
is minimal if Ae is a minimal left ideal of A. This is equivalent to the property that for
every / e A, there exists a scalar A such that efe — Ae. We usually deal with idempotents e
which both minimal and self-adjoint, e = e*. Such idempotents determine irreducible
^representations of A [§2].

A representation of A (or G) will always mean a ""-representation of A (a strongly
continuous unitary representation of G) on Hilbert space. Representations are often
denoted by a pair {IT, H) where IT is the map on A (or G), and H is the representation
space.

C*(G) is the group C*-algebra of G(3, p. 270). There is a one-to-one correspondence
between representations of G, LX(G), and C*(G). We use the same Greek letter to denote
the corresponding representation of all three. Let p be the left regular representation of G
(or L\G), orC*(G)) on L2(G). Then C*P(G) denotes the completion of L\G) in the
operator norm

5 | | 2 = l } , / e L\G).

Let Irr (G) (Irr (A)) be the collection of all irreducible representations of G(A). The
notation ~ denotes unitary equivalence of representations. Let G(A) be the set of all
equivalence classes of Irr(G) (Irr (A)) endowed with the Fell-topology (3, Definition,
p. 60). As usual G is identified with C*(G) and Gr with C%G) .

2. Minimal idempotents and representation theory

Throughout this section A is an A*-algebra, and Jl(A) is the set of all self-adjoint
minimal idempotents of A. An idempotent e e M{A) determines an irreducible
•"-representation of A as described in C. Rickart's book (13, pp. 261-262). We proceed to
briefly describe the construction of this representation and some of its basic properties. For
every / e A there exists a complex number A/ such that efe = \fe. Let ae be the linear
functional on A defined by ae(f) — A/. Then <xe is a positive functional, and ae determines
an inner product on the minimal left ideal Ae by the rule

(fe, ge) = ae(eg*fe) (g, f e A).

Now define a ^representation 8e of A on this inner product space by letting

8e{f)(ge) = fge {f, g e A).

Denote the completion of the inner product space by He. Then 8e extends to an irreducible
*-representation of A on He. We denote this extension also by Se, and refer to (8e, He) as
the irreducible ""-representation of A determined by e. Note that 8e(e) is a projection of
rank one on He, Thus 8e(A) contains a non-zero operator with finite dimensional range, so
that 8eis FDS (finite dimensionally spanned; see (17, p . 231)).

Let (TT, H) be a ^representation of A, and assume that TT-^^O. Fix £ e H with
7r(e;jf=£and||f || = 1. Let K be the closure of TT(A)£ in H. Define U: Ae^>K by

( / e A).

https://doi.org/10.1017/S0013091500003114 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003114


THE ROLE OF MINIMAL IDEMPOTENTS 231

Then for all fe e Ae

= {fe,fe).
Then [/extends to a unitary map of He onto K, and it is easy to check that this extension
intertwines (5CT He) with the restriction of TT to K. We summarise these remarks as a
proposition.

Proposition 1. Assume e e M(A). If {TT, H) is a *-representation of A such that
•n(e) =j= 0, then 8e, the irreducible *-representation of A determined by e, is unitarily equivalent
to an irreducible subrepresentation of TT. In particular, if IT is irreducible, then TT~ 8^.

Let A be a C*-algebra. If v e Irr (A), then {TJ-} denotes the equivalence class of TT in
A. Fix e e M(A). If TJ- 6 Irr (A), then by Proposition 1, 7r=j=5e if and only if ir(e) = 0.
Therefore

e e D{ker {TT): TT e Irr(A),7r4= Se}.

Thus ker (8e) does not contain this intersection. This means in terms of the Fell-topology
that {8e} is not in the closure of

{{77} e A;{

or equivalently, that {8e} is open in A. Conversely, assume that A is separable (or more
generally, that every irreducible *-representation of A is separable). Suppose that {TT} is
open in A. Set

M=n{ker(r);{r}e A\{TT}}.

Since {TT} is open, M is nonzero. Then M is a closed ideal of A with Mflker (TT) = {0}.
Using (3, Prop. 2.10.4) this implies that Mconsists of one element (the equivalence class of
the representation n restricted to M). By (16, Lemma 1.3) M is isomorphic to the algebra
of completely continuous operators on some Hilbert space H. Let e e M correspond via
this isomorphism to a self-adjoint projection on //of rank one. Then it is straightforward
to verify that e € M(A). Also since 7r(e)=j=0, Proposition 1 implies that v~ 8e.

Now we translate the results above into the context of the representation theory of
group algebras, taking A = C*(G) or A = C%G). In these cases A is identified with G (the
dual of G) and Gr (the reduced dual of G), respectively.

Proposition 2. Let G be a LC group. Then

(1) if e e M{C*{G)), then {8e} is open in G;
(2) when G is a-compact, if {IT} is open in G, then there exists e e M(C*{G)) such that

ir=8e;
(3) ife e M(C%(G)), then {8e} is open in G,; in this case, provided that G is unimodular,

8e is square integrable, and thus, {8e} is also closed in G (3, Prop. 18.4.1);
(4) when G is a-compact, if{rr} is open in Gn then there exists e e M(C%G)) such that

7 7 = 8e.

The main part of the proof of Proposition 2 is contained in the remarks above. Note in
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this regard that every irreducible representation of a cr-compact group is separable. This
fact and other pertinent results can be found in (1). Now we verify the statement in (3) that
for e e M(C*P{G)), 8e is square integrable. Let p be the identity representation of C*P(G)
on L2(G). Then p(e) =f= 0, so by Proposition 1 8e is unitarily equivalent to a subrepresenta-
tion of p. It follows that the corresponding group representation of G is unitarily
equivalent to some subrepresentation of the left regular representation of G on L2(G).

Combining (3) and (4), we get the following result (compare with (4, Proposition 3)).

Corollary 1. Let Gbe a a-compact unimodular LC group, //{TT-} is open in Gn then TT

is square integrable.

Remarks. Does the converse of Corollary 1 hold, that is, if TT is square integrable,
then is {TT} open in Gr?This is an open question of J. Dixmier(4). Partial results have been
obtained by T. Sund (14) and R. Lipsman (7).

It can happen that {TT} is open in G, but TT is not square integrable. Examples are
provided by noncompact groups with property (T) (16, §2). In this case the one dimen-
sional identity representation of G is open in G (by definition of property (T)), but this
representation is not square integrable (G being noncompact).

3. Integrable representations

In this section we establish a basic connection between integrable representations of G
and irreducible representations of L\G) determined by self-adjoint minimal idempotents
of LX{G). Specifically we prove the following result.

Theorem 1. Let G be a unimodular LC group. FOTTT e Irr (L'(G)), the following are
equivalent:

(1) 7T is an integrable representation;
(2) TT is determined by some minimal idempotent in M{LX(G));
(3) IT isFDSand Ann (ker (TT-)) ? {0}, where Ann (ker (TT-)) = {/ e L\G): f* g = 0 for all

g e ker (77-)}.
We use Dixmier's notion of integrable representation (3, Definition 14.5.2). It is

understood that an integrable representation is irreducible.
Before beginning the proof of Theorem 1, we note an interesting corollary of it.

Corollary 2. Let G be a unimodular LC group. If TT & Irr (Ll(G)) is integrable, then
{TT} is open in G.

The corollary follows immediately from Theorem 1 and Proposition 2 (1). It provides
an answer to a question of J. Dixmier (4). This question has also been answered by S. P.
Wang in (15) using very different methods.

We prove Theorem 1 by establishing a sequence of lemmas. Throughout G is a LC
unimodular group.

We use the notation

9x(y) = g(xy) where x, y e G and g e L2(G).
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Lemma 1. Let n be an integrable representation of G Then v is determined by some
e e M{L\G)).

Proof. Since ir is integrable, TT is square integrable, and we may assume that re is an
irreducible subrepresentation of p (3, Lemma 14.1.1). Accordingly, let Mbe the corres-
ponding minimal left invariant subspace of Ll(G). Then

Tr(x)g = gx-' e M for all g e M and all x e G.

Fix ^ e M ^ 0, such that

We prove that some scalar multiple of <j> is in M{Ll{G)). Note that if / e Ll(G) and TJ e M
then/* 17 e M (in fact, 7T(/)TJ = /*T7).

For a n y / e L\G),

= (7T(X"1)T;, £) (where 17 = / * £ € M)

= (TT(X)£7,).

For T, TJ e M we use the notation

<k>7,(x) = (77-(x)T,T7) (x e G).

In this notation we have shown that for any / e Ll(G),

f*<!> = <t>(,v where V = f * £
By (3, p. 278) there exists a number d77>0 such that for any / e Ll(G) and 77 as above

It follows that <t> is a scalar multiple of some element in e e ^(L'(G)). Therefore also
e e M(L\G)).

Now p restricted to J= L2(G)*4> is an irreducible subrepresentation of p. Since
p(e)(./)^{0}, by Proposition 1 this representation is determined by e. Computing the
positive definite function (p(x)<£, </>) we have

£ <£)= J

for some nonzero scalar A. Therefore p restricted to / is equivalent to TT by (3, Theorem
13.4.5). Thus TT is determined by e.
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Lemma 2. Assume that e e M(LX(G)). Then the representation determined by e is
integrable.

Proof. Note that e e L'flL2 since for some g e L2(G),

e = e*g#e 6 L2(G).

Now let J = L2( G) * e. Then J is a minimal closed left invariant subspace of L2( G) (because
e e M(lJ(G))). Furthermore p restricted to J is integrable since

(p(x)e, e) = Je(jc *y)e(y)dy

= e(x) e L\Cf).

Since e*J^{Q}, the representation determined by e is equivalent to the integrable
representation p restricted to /.

Lemma 3. Let A be an A*-algebra. Assume (rr, H) e Irr(A). Then IT is determined
by some idempotent in M(A) if and only if -n is FDS and Ann (ker (TT)) ̂  {0}.

Proof. The "only if" part of the assertion is trivial. We prove the other direction. To
this end assume that -n is FDS and Ann (ker (TT))^{0}. By (17, Prop. 4.2.1.5 (iii)) there
exists a subspace H0OHsuch that ir(A) acts algebraically irreducibly on Ho. Then the
argument in (13, p. 65) shows that v(A) contains self-adjoint minimal idempotents. Let
K = ker (TT) and M = Ann (K). The set TT(M+ K) is a nonzero ideal of TT(A), and therefore
TT(M+ K) must contain some F e M(TT(A)). Choose /=f* e M+ K such that ir(f) = F.
Then / has a unique decomposition

f=e+h where e e M and h e K.

We have f2 = e2 + h2 and f2 - / e K. Therefore

-h2) e K

Thus e = e2, and a similar argument shows e = e*.
If g e A, then there exists a scalar A such that Fir(g)F= XF. Therefore fgf—kf e K,

and
- Ae = (fgf- A/) + (A/i - hgh) e K.

Thus e#e = Ae. Finally, note that ir{e) ^ 0, so </iaf ir is determined by c.
Taken together, Lemmas 1, 2 and 3 prove Theorem 1.

4. Conditions that imply that a square integrable representation is integrable

In (4) J. Dixmier gives an example of a square integrable representation which is not
integrable. Nevertheless, there are large classes of unimodular LC groups with the
property that every irreducible square integrable representation is integrable. The aim of
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this section is to establish this for JN-groups G which are either hermitian (G e [HER]) or
have polynomial growth (G e [PG]) and for almost connected nilpotent groups. One
main ingredient in the proof is the work of T. Sund in (14). Another is the next proposition.

We need some additional notation. Let A be an A*-algebra. We denote the spectrum
in A of / e A by sp (/; A). The algebra A is called hermitian if for every f = f* e A,
sp (/; A) is real (a group G is hermitian if LX(G) is hermitian). Now assume that A is an
A*-algebra. Then A has a largest C*-norm y. We denote by A the completion of A with
respect to y (in particular, L (G) is C*(G)). Also, we use the following fact which we state
without proof.

Lemma 4. Let A be a hermitian A*-algebra. Then

sp(/;A) = sp(/;A) for all f=f*eA.

Proposition 3. Let A be a hermitian A*-algebra. If e e M(A), then there exists
f 6 M(A) such that the restriction to A of the representation of A determined by e is
determined by f.

Proof. Let e e M(A). By definition, Ae with the appropriate inner product is a dense
subspace of the representation space of the representation of A determined by e. Then to
prove the proposition it suffices by Proposition 1 to find / e M{ A) such that fAe^ {0}. This
we proceed to do.

Now let

Bk={z e C;\z-k\<\}, fc = 0,l .

Using the upper semi-continuity of the spectrum and Lemma 4, we can choose g = g* e A
with y(#-e)<5andsp (g; A)CB0UBl. Let Mbe a maximal commutative *-subalgebra
containing g. Using the analytic functional calculus (with the analytic function which is 1 on
B\ and 0 on Bo), choose f e M with

/sO on (gy\B0) and f=l on (gT\Bx).

Then /is a self-adjoint idempotent in M By Lemma 4 and (13, Lemma (4.8.1)) we have for
all h = h* e M

= sup{\\\:\ e sp (h; A)} = sup{| A |: A e sp(/t;M)}.

It follows that y(g-f)^l, and thus y(e—f}<2- Define projection operators Eand Fon
the Banach space A by

E{g) = ege and F{g) = fgf (g e A).

Then for all g e A,

y((E-F)g)=y(ege-fgf)

Therefore the norm of E—F as an operator on A is less than one. It follows by (6,

https://doi.org/10.1017/S0013091500003114 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500003114


236 B. A. BARNES

Corollary 2.6, p. 200) that the dimension of the range of Fis the same as the dimension of
the range of E which is one. Thus / e M{A). If fAe = {0}, then

This completes the proof.
Let G e [PG] (note: any nilpotent group is [PG] by (10, p. 71)). Assume in addition

that G is compactly generated. Then T. Pytlik has shown that there is a polynomial weight
«(*) on G such that L^( G), the corresponding convolution algebra of integrable functions
with respect to a>(x)dx, is a hermitian Banach *-algebra (11, Corollary 7). Let ra and ym

denote the spectral radius and largest C*-norm on Ll(G), respectively. Let rand y be the
corresponding functions on L}{G).

Lemma 5. For all f e Ll,(G), ylo(f)= y(f). Thus the completion of Ll,(G) with respect
to yM is identified with C*(G).

Proof. Consider the three equalities

(1) \\.P(D\\= yif) ^ f = f*eL\G);
(2) !•„(/) = || p(/)| | for f=feL\G);
(3) ySf) = rSff)m for feLKG).

The equality in (1) follows from the fact that G is amenable (10, p. 75) and (5, p. 63); (2) is
(11, Theorem 6); and (3) follows from the result that Ll,(G) is hermitian and (9, Theorem,
p. 523). Combining (1), (2) and (3) we have

yjf) = y(f) for all f = f*eLl(G).

This extends to all / e L],(G) since

Remark. Lemma 5 implies that the ^representations of V(G) are essentially the
same as those of the Beurling algebra Ll(G). Of course it is automatic that a (cyclic,
irreducible) "^representation of V{G) determines a (cyclic, irreducible) *-representation
of Ll(G) by restriction. But also if (IT, H) is a "^representation of Ll(G), then by Lemma 5

y<o(f)^TT(f) (feLl(G)).

Then -n lifts to a ^representation of L\G) by continuity.

Theorem 2. Let G be a unimodular, cr-compact, LCgroup. Assume that either

(i) G e [HER], or
(ii) G is compactly generated and G e [PG].

Then the following are equivalent for IT e Irr (G):

(1) {TT} is open in G;
(2) IT is integrable;
(3) 7T is determined by some f e M{LX(G)).
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Proof. By Theorem 1, (2) and (3) are equivalent for any unimodular group. Also (3)
implies (1) by Proposition 2.

Now assume that G is cr-compact and G e [HER]. If {TT} is open in G, then IT is
determined by some idempotent e e Jt(C*( G)) by Proposition 2. But then by Proposition
3 TT is determined by some idempotent / e M(L}(G)). This completes the proof in this
case.

When (ii) holds, then Lemma 5 implies that C*{G) and Lx
a{G) (using the notation of

Proposition 3) are completely identified. Therefore, arguing as above, we have that when
{77} is open in G, then TT restricted to Ll

a{G) is determined by some / 6 M(Ll(G)). Since
/ e M{L\G)) as well, the result follows.

Concerning Theorem 2, it seems to be an open question whether (ii) implies (i). J.
Ludwig has proved in (19) that if G is connected and G e [PG], then G is hermitian. On
the other hand there is an example of a (r-compact group G e [PG] such that G ^ [HER];
see (18).

Assume that TT is a unitary representation of a unimodular LC group G. Assume that K
is a compact normal subgroup of G contained in the kernel of TT. Define TT on G/K by

TT(XK) = TT(X) (X e G).

It is easy to check using Weil's formula (12, p. 70) that TT is square integrable (integrable)
on G if and only if TT is square integrable (integrable) on G/K.

Theorem 3. Let G be a LC group which is in addition at least one of the following:

(i) a compactly generated nilpotent Lie group;
(ii) a compactly generated almost connected nilpotent group;

(iii) a a-compact hermitian IN-group;
(iv) an almost connected IN-group.

Then for TT e Irr (G) the following are equivalent:
(1) TT is square integrable;
(2) TT is integrable;
(3) {TT} is open in G.

Proof. As we noted earlier, any nilpotent group is in [PG] (10, p. 71). Also, an almost
connected IN-group is hermitian (10, p. 68). Thus in each case (i)-(iv) G is either compactly
generated and in [PG] or G is hermitian. Therefore a direct application of Theorem 2
yields the equivalence of (2) and (3). T. Sund proves in (14) that if G is either an IN-group
or a nilpotent Lie group, then every square integrable irreducible representation TT of G
has {TT} open in G. This proves the result in all cases except (ii).

To prove this last case, assume that G is an almost connected nilpotent group and
TT 6 Irr (G) is square integrable. By (8, p. 517) there exists a compact normal subgroup K
of G such that /CCker(Tr) and G/K is a nilpotent Lie group. Applying the remarks
preceding the theorem, the representation 77 on sG/K determined by IT is square
integrable, and thus integrable by a previous argument. Therefore TT is integrable.
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