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Abstract We prove that if two transcendental meromorphic functions share all limit values from a set
of positive linear measure on a rectifiable Jordan arc, then they share all limit values.
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1. Introduction and results

If f : C → Ĉ is a transcendental meromorphic function then, by the Casorati–Weierstrass
theorem for every a ∈ Ĉ, there exist sequences zn → ∞ such that f(zn) → a. In [7] we
introduced the notion of shared limit values for meromorphic functions f and g in the
plane: f and g share the limit value a ∈ Ĉ if, for all sequences, zn → ∞ the expression

f(zn) → a ⇐⇒ g(zn) → a

holds. Suppose that f and g share all limit values contained in a set L ⊂ Ĉ. We consider
the following question: which assumptions on L imply that f and g share all limit values
in Ĉ? A set L with this property will be called a limit uniqueness set. In [7, Theorem
8.4] we proved the following theorem.

Theorem 1.1. Every open set is a limit uniqueness set.

In this paper we will prove the following.

Theorem 1.2. Every set of positive linear measure on a rectifiable Jordan arc is a
limit uniqueness set.

For the definition and properties of linear measure we refer the reader to [4, Chapter
6] and to [1]. We note here merely that, for rectifiable Jordan arcs, length and linear
measure are the same.

It is easy to show that every continuum has positive linear measure and it follows
from the basic results in geometric measure theory that every continuum of finite linear
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measure can be decomposed as the union of countably many rectifiable Jordan arcs and a
set of linear measure zero (see [1, Theorem 3.14]). At least one of these rectifiable Jordan
arcs satisfies the assumptions of Theorem 1.2, which gives the following corollary.

Corollary 1.3. Every continuum of finite linear measure is a limit uniqueness set.

In the language of geometric measure theory, a regular 1-set is a set of finite positive
linear measure with a regular behaviour concerning certain density properties (see [1,
Chapter 2]). Each regular 1-set is contained in the union of countably many rectifiable
Jordan arcs and a set of linear measure zero [1, Theorem 3.25]. Thus, the next result
follows immediately from Theorem 1.2.

Corollary 1.4. Every regular 1-set is a limit uniqueness set.

If the assumption of rectifiability is dropped, we require the whole arc to consist of
shared limit values. Simple modifications of the proof of Theorem 1.2 show the following
(see the remarks at the end of the paper).

Theorem 1.5. Every Jordan arc is a limit uniqueness set.

2. Preliminaries for the proof of Theorem 1.2

First we state a simple technical lemma, which is proved by a standard compactness
argument. As usual we denote by Dr the set of all z ∈ C with |z| < r.

Lemma 2.1. Let f, g : C → Ĉ be meromorphic functions that share the limit values
from a compact set M ⊂ C. Then f − g → 0 uniformly on f−1(M), i.e. for every ε > 0
there exists r > 0 such that |f − g| < ε on f−1(M) \ Dr.

If ϕ is bounded and analytic in the unit disc D, i.e. if ϕ ∈ H∞(D), then by Fatou’s
theorem [9, Theorem IV.8] the radial boundary function ϕ∗ exists almost everywhere
(a.e.) on the boundary T of the unit disc and is integrable. Furthermore, by the Riesz
uniqueness theorem [9, Theorem IV.9], ϕ∗ = 0 at most on a set of measure zero unless
ϕ ≡ 0. The following is a Möbius invariant statement of these facts. Here Gc denotes the
complement of G.

Lemma 2.2. Let G ⊂ Ĉ be a domain such that Gc contains an inner point and let
ϕ : D → G be meromorphic. Then the radial boundary function ϕ∗ exists a.e. on T, is
measurable and ϕ∗ = c ∈ Ĉ at most on a set of measure zero for any constant c ∈ Ĉ

unless ϕ ≡ c.

By ω we denote harmonic measure. For its definition and properties we refer the
reader to [2,4,5,9]. It is well known that analytic maps increase harmonic measure [5,
Theorem 4.3.8]. The statements of this principle of harmonic measure usually require
that the analytic map is continuous on the measured part of the boundary. In the unit
disc radial limits are sufficient for an estimate that fits for our purposes. As usual we
call a domain such that each boundary point (including ∞) is a regular point for the
Dirichlet problem (see, for example, [9]) a regular domain.
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Lemma 2.3. Let G ⊂ C be a regular domain such that Gc contains an inner point
and let ϕ : D → G be holomorphic. Let A ⊂ ∂G be a Borel set and let B := (ϕ∗)−1(A).
Then ω(z, B, D) � ω(ϕ(z), A, G) for all z ∈ D.

Proof. Let F be a compact set in ∂G\A and let V be open on T with T\B ⊂ V and
consider the bounded harmonic function Ω(z) := ω(ϕ(z), F, G)−ω(z, V, D) on D. For z →
eiθ ∈ V radially we have ω(z, V, D) → 1. Also for almost every eiθ ∈ V c ⊂ B it follows that
the radial limit ϕ∗(eiθ) ∈ A exists and therefore ω(ϕ(z), F, G) → 0 as z → eiθ radially.
We conclude that Ω∗ � 0 a.e. on T. It is now follows from the Poisson formula and
Fatou’s theorem [9, Chapter IV] that Ω(z) � 0 for all z ∈ D and hence ω(ϕ(z), F, G) �
ω(z, V, D) on D. From the measure-theoretic properties of harmonic measure we obtain
ω(ϕ(z), ∂G \ A, G) � ω(z, T \ B, D). Taking complements, the claim follows. �

The next statement is a variant of a convergence theorem for bounded analytic func-
tions. We refer the reader to [3]. Here µ denotes normalized Lebesque measure on T and
‖ · ‖∞ is the sup-norm on H∞(D). In contrast to more usual theorems, e.g. Vitali’s theo-
rem on the convergence of normal sequences, it is assumed that the sequence of functions
converges on the boundary.

Lemma 2.4. Let ϕn : D → C be a sequence in H∞(D) with ‖ϕn‖∞ � K for all n.
Suppose for every n there exists Bn ⊂ T measurable with µ(Bn) > c > 0, where c is
independent of n, and such that Sn := supz∈Bn

|ϕ∗
n(z)| converges to 0. Then ϕn converges

to 0 in D locally uniformly.

Proof. Exactly as in the first inequality on p. 86 of [3], we obtain from Jensen’s
formula for |z| � r:

log |ϕn(z)| � 1 + r

1 − r
log K + c

1 − r

1 + r
log Sn.

It follows that log |ϕn(z)| → −∞ uniformly in |z| � r. �

If ϕ ∈ H∞(D) with |ϕ∗| = 1 a.e. on T, then ϕ is called an inner function. It is well
known that for inner functions ϕ with ϕ(0) = 0 the radial boundary function ϕ∗ : T → T

is measure preserving. A surprisingly short proof of this can be found in [6]. In fact, the
proof given there yields a more general statement (see [6, Theorem 1.3 and Remark 1.4]).

Lemma 2.5. Let ϕ be an inner function and let A ⊂ T be measurable. Then

µ((ϕ∗)−1(A)) = ω(ϕ(0), A, D).

3. Proof of Theorem 1.2

Let Γ be the rectifiable Jordan arc and denote by M the set of positive linear measure
Λ(M) on Γ that consists of shared limit values of f and g. From the basic properties
of linear measure [4, Proposition 6.3] it follows that by decreasing M slightly we can
assume that M is closed and still has positive linear measure c := Λ(M). From the
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density properties of linear measure [1, Corollary 2.5] it follows that we can choose two
points a1, a2 in M , distinct from the endpoints, and small discs Dε(ai) around the ai

such that 0 < Λ(M ∩ Dε(ai)) < 1
3c. Now Γ ∩ Dε(ai) consists of at most countably many

components Γ i
k and for ε small enough each of these is a cross-cut of Dε(ai). For i = 1, 2

choose one of these cross-cuts, say Γ1 and Γ2, that contain a part of M of positive
linear measure. Then Dε(ai) \ Γi for i = 1, 2 are four Jordan domains G1, . . . , G4 with
rectifiable boundary, each boundary containing a part of M of positive linear measure.
By decreasing ε if needed, we can assume that the linear measure of the part of M which
lies on the boundaries of the Gi, which is less than 2

3c + 4πε, is strictly less than c.
Hence, there exists a point b ∈ M outside the closures of the Gi. Now we apply a Möbius
transformation to f , g and the considered sets such that b is mapped to ∞, so that ∞ is
a shared limit value.

It is easy to see that the unbounded components of at least one of two preimages
Pi := f−1(Gi) all have an unbounded boundary component. The same holds, of course,
for preimages of g, so that we find at least one in three of the Gi such that each unbounded
component of f−1(Gi) and g−1(Gi) has an unbounded boundary component. We will
denote this Pi and the related image domain Gi with boundary Ji simply by P , G and
J . We may now summarize this first step of the proof as follows. We can assume without
loss of generality that the set of shared limit values M has positive linear measure, is
compact and lies on a rectifiable Jordan curve J in C with inner domain G. Furthermore,
the unbounded components of the preimages of G with respect to f and g all have an
unbounded boundary component and ∞ is a shared limit value of f and g.

Let zn → ∞ be a sequence with f(zn) → a ∈ G. We will prove g(zn) → a, so that
Theorem 1.1 shows the assertion.

For large n it follows that zn ∈ P and we denote by Pn the component of P that
contains zn. Furthermore, let ϕn : D → Pn be a universal cover map, such that ϕn(0) =
zn. We can apply Lemma 2.2, and hence the boundary function ϕ∗

n exists a.e. on T and
ϕ∗

n = ∞ at most on a set of measure zero. The basic properties of covering maps show
that radial limits of ϕn lie in the boundary of Pn, so that ϕ∗

n maps a set of full measure
to the finite boundary of Pn.

Next let ψ : G → D be a conformal map with ψ(a) = 0. By the Carathéodory theorem
[4, Theorem 2.6], ψ has a homeomorphic boundary function ψ∗ : J → T and since J is
rectifiable it follows from the Riesz–Privalov theorem [4, Theorem 6.8] that A := ψ∗(M)
is a set of positive measure on T.

Now consider the map Fn := ψ ◦ f ◦ ϕn : D → D. From the properties of ψ, f

and ϕn we conclude that the boundary function F ∗
n exists a.e. on T with values in T,

i.e. Fn is an inner function. By Lemma 2.5, the sets Bn := (F ∗
n)−1(A) ⊂ T satisfy

µ(Bn) = ω(ψ ◦ f(zn), A, D) → ω(0, A, D) = µ(A) > 0.
The next step is to prove that the boundary functions Φ∗

n of the sequence Φn :=
(f − g) ◦ ϕn : D → C converge to 0 uniformly on B̃n := Bn \ En with µ(En) → 0. For
this we consider two cases.

In the first case we assume that in each component of P there lie at most finitely
many zn. This implies that the domains Pn tend to ∞ and therefore that f − g is
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uniformly bounded on Pn for large n. Assume to the contrary that there is a sequence
wn → ∞ in Pn such that (f − g)(wn) → ∞. Since f is bounded on P , it follows that
g(wn) → ∞, which contradicts the fact that ∞ is a shared limit value. Lemma 2.2 shows
that Φ∗

n is defined a.e. on T for large n. Furthermore, Lemma 2.1 shows that Φ∗
n converges

uniformly to 0 on B̃n := Bn \ En, where, according to Lemma 2.2, the En can be chosen
such that µ(En) = 0.

In the second case we can assume that all zn lie in one unbounded component P ′

of P . Since ∞ is a shared limit value, it follows from the arguments of the first case that
g has at most finitely many poles in P ′. If g has poles in P ′, we consider g̃ := R · g

instead of g with a rational function R with R(∞) = 1 and such that g̃ has no poles
in P ′. Note that this does not affect the asymptotic behaviour of g. Thus, we can assume
that g is bounded on P ′, so that Φn is holomorphic and Φ∗

n exists a.e. on T. Since
∂P ′ contains an unbounded component, ∞ is a regular point for the Dirichlet problem
in P ′ [9, Theorem I.11]. (All finite points of ∂P ′ are also contained in continua of ∂P ′ so
that P ′ is a regular domain on the sphere.) Hence, for any bounded Borel subset C of ∂P ′

we have ω(zn, C, P ′) → 0 for n → ∞. It follows that, for large n, bounded parts of M ′ :=
∂P ′ ∩ f−1(M) can be neglected in the following sense: there exists a sequence rn → ∞
such that ω(zn, D̄rn

∩M ′, P ′) → 0. We set En := (ϕ∗
n)−1(D̄rn

∩ M ′). Then, by Lemma 2.3,
we get µ(En) = ω(0, En, D) � ω(ϕn(0), D̄rn ∩M ′, P ′) = ω(zn, D̄rn ∩ M ′, P ′) → 0 and Φ∗

n

converges to 0 uniformly on B̃n := Bn \ En by Lemma 2.1.
For large n we have µ(B̃n) > 1

2µ(A) and it follows from Lemma 2.4 that Φn converges
to 0 locally uniformly in D. In particular, Φn(0) = (f−g)(zn) → 0, so that f(zn) → a ∈ G

implies g(zn) → a. In the first part of the proof we have arranged the situation such that
it is symmetric with respect to f and g. Hence, the same argument shows that, for every
zn → ∞, g(zn) → a ∈ G implies f(zn) → a. Theorem 1.1 thus proves Theorem 1.2.

4. Remarks

Inspection of the above proof shows that it is important for our method that M is
mapped by ψ to a set of positive measure on T. In Theorem 1.2 this is ensured by
the Riesz–Privalov theorem. If the assumption of rectifiability is dropped, there seems
to be no substitute for this argument: there exist quasi-discs Q such that the boundary
homeomorphism of any conformal map ψ : Q → D maps the boundary of Q minus a set of
linear measure zero to a set of measure zero on T (combine Proposition 4.12, Proposition
6.22 and Corollary 6.26 from [4]). But of course the boundary homeomorphism of a
Jordan domain maps open arcs to open sets on T, which are of positive measure. This
justifies Theorem 1.5. (The construction of a suitable domain G is even simpler if the
whole arc consists of shared limit values.)

Note that a continuum of infinite linear measure need not contain a continuum of finite
linear measure. For example, the von Koch curve [1, § 8.3] is a Jordan arc of infinite linear
measure that contains no subarc of finite length. (It is easy to check that subcontinua
of Jordan arcs are subarcs.) This means that our method, in general, does not cover
continua of infinite linear measure, so that we cannot delete the assumption of finite
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linear measure in Corollary 1.3. (Of course, the von Koch curve is a limit uniqueness set
by Theorem 1.5.)

The classes of sets which are considered in our results are well-known examples of
sets that are not removable for bounded analytic functions (see, for example, [8] and the
references therein). Therefore, it is natural to require a connection between removability
and limit uniqueness sets. We believe that there is no such connection. Any subset of Ĉ

with at least five elements should be a limit uniqueness set.
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3. A. Ostrowski, Über die Bedeutung der Jensenschen Formel für einige Fragen der kom-

plexen Funktionentheorie, Acta Sci. Math. (Szeged) 1 (1923), 80–87.
4. C. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathema-

tischen Wissenschaften, Volume 299 (Springer, 1992).
5. T. Ransford, Potential theory in the complex plane, London Mathematical Society Stu-

dent Texts, Volume 28 (Cambridge University Press,1995).
6. W. Rudin, New constructions of functions holomorphic in the unit ball of C

n, CBMS
Regional Conference Series in Mathematics, Volume 63 (American Mathematical Society,
Providence, RI, 1986).

7. A. Sauer, Meromorphic functions with shared limit values, Annales Acad. Sci. Fenn.
Math. 27 (2002), 183–204.
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