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Abstract. For an extension R — A of commutative Noetherian rings the behavior of the associated
morphism of topological spaces Spec A — Spec R is often measured by its behavior on each of
its fibers. Specifically, one studies the ‘splitting’ (or ‘branching’) and the ‘ramification’ that occurs
in each fiber. In the classical constructions of faithfully flat analytic extensions (e.g., completion
or Henselization) of excellent local rings the splitting and ramification properties are fairly well
understood; see EGA 1V [6, 18.10], Nagata [13, Sect. 37] or Raynaud [15, Ch. IX]. The strongest
results are usually achieved for fibers over a‘normal point’ of Spec R, that is, over p € Spec R such
that R/p isanormal domain [e.g., the property of anormal prime p inalocal ring to be‘ unibranched’,
i.e.,, the Henselization of R/p isa(normal) domain].

Mathematics Subject Classifications (1991): 13A50, 13B15, 13B40, 13C20, 13F15, 13J10.
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Introduction

Our attention in this article will be directed at module finite extensions of normal
local domains. Here the ramification behavior for the most part has been sorted
out (e.g., see Bourbaki [2, VI. 8] and Fossum [3, Ch. 1V]). Asaresult, our central
focus will concern the splitting behavior (or lack of it) of primeideals. As perhaps
suggested by the discussion in the previous paragraph, the best results will occur
in the case of normal prime ideals in the base ring. To be specific, let R — A
denote a modul e finite ring extension of excellent normal local domains for which
the induced extension of fraction fields is separable. The question we address
in Section 2 is: for p € Spec R under what circumstances can one expect a
unique P € Spec A to contract to p? As we demonstrate in Corollary 2.2 an
affirmative answer occurs surprisingly often for p normal and depends, in part, on
the requirement that p C m/,, for some positive integer v which itself depends
only on the extension R — A. Asacorollary (2.3) we extract for R regular akind
of weak ‘Bertini principle’ for prime ideals P of codimension one which contract
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to normal primes fR = p C mf%,; in particular, P = fA and so f represents an
irreducible hypersurfacein A.

In Section 1 we set the stage for (the theoretical) computation of the integer v,
described above, as a consequenceof studying the behavior of ‘norms’ of elements
in extensions of analytically normal rings for which a Galois group is present. The
crucial technique rests on the interplay of the ‘strong approximation property’ of
analytic local rings together with the Artin—Reese Lemma. The technique allows
us to conclude that ideals in the local ring A which contract deeply into m g, the
maximal ideal of R, must be predictably deepinsidethe maximal ideal m 4 of A.In
fact, we actually construct in atheoretical sense a ‘relative filtration index’ which
givesto some extent a measure of this phenomenon.

In Section 3 we consider a variant on Hironaka's Lemmawhich is basic to the
theory of flat families parametrized by anonsingular curve (see[7, p. 264]). After
a dlight adjustment in order to avoid one ‘bad’ case, we are able to show: if p is
aprimeideal of codimension one in the complete integral domain A with perfect
residue field such that A/p isnormal, p = tA + p® and p islocally principal in
codimension < 2, thenp = tA and A is normal. In turn this provides us with a
significant reduction in hypotheses for a result of Huneke [9, Prop. 2.3 (part (i))]
concerning complete intersections. Huneke's result provides sufficient conditions
on a prime p of codimension one in order that the local normal domain A be a
factorial complete intersection. The basic ingredients of our result (Theorem 3.7)
require only that A/p be a factorial complete intersection, p be locally principal
in codimension three and that p/p(?) be reflexive as an A /p-module (thus omitting
the Gorenstein hypothesis on A and the reflexive hypothesis on each p™ /p"+1).

0. Remarkson terminology and notation

Let R — A be a module finite extension of norma domains. When convenient
we use the notation ‘A/R’ to signify the same setup. Usually our extensions
will be generically separable, which means that the induced extension of fraction
fields is separable. If p € Spec R, then the fiber over p can be identified with
Spec (k(p) ®r A), which in our case is finite. A prime P € Spec A which
contractsto p (so P represents a point in the fiber over p) is said to split provided
|Spec(k(p)®r A)| > 1. Thesameprime P issaid to beunramified over R provided

(i) pAp = PAp and
(i) kB (p) — k4(P) isaseparablefield extension.

In case the module finite extension A/R is generically Galois, that is, the
induced extension of fraction fields Kr — K 4 isnot only separable but in fact a
Galois extension, then more can be said concerning the splitting and ramification
of P in Spec A. Let G denote the Galois group of K 4/Kpr. Then G actson A so
that AY = R. The splitting group H for P isdefinedas H = {0 € G|o(P) = P}
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while the splitting ring B = A" . Key properties associated with the extensions
R— B— Aae

(i) R/p — B/P'isbirationa where P = PN B.
(i) P’ isunramified over R.
(iii) P isthe unique prime in Spec A which contracts to P’. (See [13, pp. 158,
159]).

We remark that only finitely many such splitting rings are available as inter-
mediate normal domains since they are in one-to-one correspondence with the
subgroups H of G. In addition, our assumption of generic separability for the
extension A/R alows us to gain the advantages of a generically Galois extension
by simply embedding A/R as an intermediate extension in a generically Galois
extension S/R, where K g/ K, represents the Galois closure of K 4/Kg. In case
R isloca and Henselian, then of course both A and .S will be local also. With
regard to obtaining extensions A/ R within this context for which R is an analytic
regular local ring, it suffices (when confronted with prime characteristic) that A be
alocal analytic k-algebra, where k is a perfect field (see Scheja—Storch [16] for
details).

For other unexplained terminology and notation we refer the reader to Mat-
sumura’'s book [12].

1. Strong approximation, Artin—Reese Lemma and the relative filtration
index

Let (R, m) bealocal ring and let R denote the free R-module of rank N > 0. In
thetradition of [14, 17] thering R is said to satisfy the strong approximation prop-
erty, if for any positive integer N and polynomials f1,..., fy in R[X1,..., Xn],
thereexistsafunction s: N — N (natural numbers), with s(n) > n for eachn, such
that: for every z = (z1,...,zn) € RN satisfying f;(z1,...,zx) = Omodms™)
for each i, thereis #' € RN satisfying 2’ = xmodm™ and f;(z},...,z'y) = 0,
fori = 1,...,t. The class of strong approximation rings is the same as the class
of rings which satisfy Artin-approximation and includes the class of complete
local rings as well as local analytic k-algebras where k is a perfect field (see [14,
pp. 146, 148]).

Our use of strong approximation in ring extensions R — A will be to recover
containment in ideal powersin A (e.g., I C mﬁ,) from knowledge of ‘similar’
containments for contractions of theseidealsin R (e.g., IN R C m%u))_ Our first
lemmais the key to our success in this endeavor. We remark that a module finite
extension of a strong approximation ring is again a strong approximation ring (see
[17,4.2]).

LEMMA 1.1. Let S/R be a generically Galois extension of local normal
domainswhich are strong approximationrings. Let f (X1,...,Xg) = X1--- X4 €
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S[X1,...,Xg4], whered = [S: R]. Further, let s: N — N be the strong approxi-
mation function for f. For each/ € Nthereisav = s(¢) € N suchthat, ifa € S
and if its norm satisfies

n(a) = H o(a) € mh,

oceG

thena € mé

Proof. Let G = {o1,...,04} denotetheGaloisgroupfor S/R,i.e., S = R.We
first note that n(a) = f(o1(a),...,04(a)). Next we consider the possibility that
a ¢ m¥%. Then each coordinate of the vector v = (o1(a), ..., 04(a)) isnotin m&.
However, the coordinates of v represent asolution to f(X) = Omodm/;, since of
coursem’, C m¥. By the strong approximation property therearea; € S suchthat
a; = o;(a) modmf and such that f(ay,...,aq) = ay...aq = 0in S. However,
each a; # 0since a; = o;(a) modmY and since o;(a) ¢ m¥% for each i. The fact
that S is adomain coupled with the equation f(a1,...,aq) = a1 ...aq = 0yields
acontradiction.

COROLLARY 1.2. (Notation asin 1.1): Supposethat J isanideal in .S such that
JN R C m%. ThenJ C m&.

Proof. Let a € J. Thenn(a) € J N R C mY which givesthat a € m&.

Once again we consider a generically Galois extension S/R (see Sect. O for
a definition) as above and consider one of the finitely many intermediate normal
subrings B; so B = S* for some subgroup H of the Galois group G. Regarding
the containment B C S as a containment of R modules there is a positive integer
x > 0 such that

(m%S) N B = m% " (m%,SB)

for £ > k. The minimum such « is referred to as being the Artin—-Reese number
for B C S with respect to the ideal mp. Actually for most rings in our context
we could replace the R-ideal mpi by any R-ideal I and find a bound x which
works for all of the containments simultaneoudly, i.e., x depends only on the R-
modulecontainment B C S. For detailsand more on the subject one should consult
Huneke' s article [10] on ‘uniform bounds'.

THEOREM 1.3. Let S/ R beagenerically Galoisextension of strong approximation

rings and let x denote the maximum of the Artin—Reese numbers for the finitely

many intermediate normal subrings. Given a natural number ¢ choose £ such that

mb C mit S If Jisanideal of S suchthat J N R C mY%, wherev = s(¢), and if

B isan intermediate normal subring, then for j = J N B onehasj C m%, B.
Proof. From Corollary 1.2 we havethat J C m. Therefore

j=JNBCmsNBCmiE'SNB and

(m%tS) N B = mb(m/pSB) C mhyB.
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In future sections we will refer to the positive integer ¢ which occurs in the
setup of Theorem 1.3 as the relative filtration index of order ¢ and we denote it by
¢, = ¢,(S/R). Thisindex, which depends upon the extension R — S, refersto the

factthat anideal J in S of whichthe contractionto R satisfies J N R C mj%“) must
have the property that J N B C m!, B for each of the finitely many intermediate
normal subrings B (including S itself). Thus, this relative index to some extent
measures the control one has over the ‘order of vanishing’ of the contracted ideal
at mp versusthe order of vanishing that occursat mg B, for each intermediate B.
Finally, one could pursue this same path with respect to other R-idealsbut we have
no need of this here.

2. How thereélativefiltration index affects the splitting of primes

Let R — S be a homomorphism of commutative Noetherian rings and let P €
Spec S have*contraction’ p € Spec R. Thenthe splitting of P (thiswould becalled
‘branching’ of P with respect to the morphism Spec S — Spec R in the parlance
of algebraic geometry) is measured by the ‘size’ of the fiber over p. Within our
context this fiber is always finite. Our next result provides a criterion that insures
this cardinality must be one, that is, insuresthat P is the unique primein S which
contractsto p.

THEOREM 2.1. Let S/R be a generically Galois extension of excellent normal
local domains. Thenthereisa positive integer v such that, if P € Spec S contracts
toanormal primep = PN Randif p C m’,, then P isfixed by the Galois group
of S/R and henceis the unique prime in Spec .S which contractsto p.

Proof. We first pass to the induced extension of completions R < S with
respect to the maximal ideal topologies. The extension S/R is also a generically
Galois extension of normal local domains since the rings are excellent. Moreover
the completion of the prime ideal p in Spec R remains a prime ideal in R since
R/p isan excellent normal local domain. It sufficesto show that thereis a positive
integer v such that, if Q € Spec S has contractionp = Q N R andif p C m", then
Q isthe unique primeideal in Spec S which contractsto p (for then the contraction
of @ to S will give P = ) N S as the unique prime in Spec S with contraction
p = PN R). Thuswemay actually assumethat R — S isan extension of complete
local domains from the outset.

Under the assumption of completeness of S/R we have available the strong
approximation property. Therefore, let £ = ¢1(S/R), the filtration index of Theo-
rem 1.3, and put v = s(¢) where s: N — N is the strong approximation function
of Lemma 1.1. Next let B denote the intermediate normal subring of S/R which
corresponds to the splitting group for the prime ideal P in Spec S which con-
tractsto p. Let p’ = P N B. We recall from our discussion in Section 0 that the
induced extension R/p — B/p’ isbirational. However, the normality of R/p gives
that this induced ring homomorphism R/p < B/p’ isin fact an isomorphism.
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This observation further yields that B = R + p’ (as R-modules). At this point
we recall from our definition of the relative filtration index and Theorem 1.3 that
PNB = p' C mgrB. Thisgivesthecontainments B = R+p' C R+mrB C B. 1t
followsthat B = R+ mpgrB fromwhichit followsthat B = R after an application
of Nakayama's Lemma. However, the only reconciliation possible in a case where
the splitting ring B = R is that the splitting group H must be the entire Galois
group, i.e., the prime P is fixed by the action of the Galois group of S/R.

COROLLARY 2.2. Let A/ R be a modulefinite extension of excellent local normal
domains which is generically separable. Then there is a positive integer v such
that, if P € Spec A contracts to a normal primep = PR C mf%, then P isthe
unique prime in Spec A which contractsto p.

Proof. Since A/ R is module finite and generically separable, the extension can
be embedded (or enlarged) to a generically Galois extension S/R. Choose v asin
Theorem 2.1 for S/R. If P € Spec A has contraction p = PR C mYp, let Q €
Spec S suchthat () N R = P. From Theorem 2.1 the prime @ will be fixed by the
Galoisgroup of S/R; thus P = ) N A isalso unique.

Inthefollowing we give atypical application of Theorem 2.1 and Corollary 2.2.
Let A be anormal local analytic algebra over a perfect field &£ or a complete local
normal domain (with perfect residue field if A is of equal characteristic p > 0).
Then A is a module finite extension of a regular local ring R such that A/R is
generically separable (see discussion in Section 0 and specifically Scheja—Storch
[16]). From Corollary 2.2 we obtain the existence of apositive integer v so that, if
P € Spec A contractsto anormal prime p C m?%, then P is the unique primein
Spec A which contractsto p i.e., v/pA = P. From this setup we deduce a rather
weak theorem of ‘Bertini type’. We remind the reader that the ramified primesin a
modul e finite extension (in our context) of codimension one are finite in number.

THEOREM 2.3. Let A be alocal normal domain that is a module finite extension
of an excellent regular local ring R and suppose that the extension is generically
separable (see preceding discussion for existence of these). Then thereisa positive
integer v such that, if P € SpecA is unramified of codimension one and if
PN R = fRisanormal primeinmY, then P = fA.

Proof. From Corollary 2.2, it follows that P is the unique prime in Spec A
which contracts to the principal primep = fR € Spec R. Therefore P = /f A.
However, f surely generates P locally in codimension one on Spec A. Since A is
normal it followsthat P = f A.

In order to illustrate part of the point of Theorem 2.3, let C denote the field of
complex numbersand let R = C[[ X}, ..., X,]] wheren > 3. Supposethat A/R
represents a module finite extension of R in which A is normal. Then, for some
positiveinteger v dependingon A/ R, the polynomials Ay X§ + Ao X5+ - -+ X, X£
in R must represent principal primesin A for £ > v and A1X2... A, # 0(); € C).

We end this section by further analyzing the proof of Theorem 2.1 in the case
of prime ideals of codimension one. To thisend let P denote aprimeideal in .S of
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codimension one. Keeping with the notation of Theorem 2.1, we assumethat S/ R
is a generically Galois extension; in addition, we assume that R is regular local
here (asin 2.3). Let B denote the splitting ring of P with respect to the Galois
group for the extension S/R. Letp’ = BN P andtR = RN P bethe contractions
of P to B and R, respectively. A crucial point in the proof of Theorem 2.1 is that
B = R+’ sincetheextension R/tR — B/y’ ishirational and thus equal in case
R/tRisnorma. LetT = B/(R+y'). Then0 — R/tR — B/p' - T — Ois
an exact sequence of R-modules and htg(annT) > 2. Moreover, because R/tR
is Cohen—-Macaulay one seesthat R/¢tR — B/p' isan isomorphism if and only if
this map is an isomorphism in codimension one (over R/tR) — or what amounts
to the same thing — if and only if the R-module T has no associated primes of
codimension two. Looking at this remark from the point of view of the R-short
exact sequence0 — R+p’ — B — T — 0onefurther observesthat the preceding
statements are equivalent to the property that R + p’ — B isan R-isomorphismin
codimension two which is equivalent to the statement

R4y’ isreflexiveasan R-module. (%)

Statement (x) hasyet another interpretation. We consider the R-exact sequence
05R-5SRapy L R+p =0 (+%)

wherei(1) = (—t,t) and j(r,7) = r + 7. Now (*) holds if and only if the short
exact sequence (x) splitsin codimension two. This of course has implications as
to how the element ¢ sitsin p’ when the latter is viewed as an R-module. Noting
that R @ p’ isafree R-module in codimension two, one observesthat (—t, t) will
generate afree R-summand of R & p’ in codimension two if and only if the order
ideal of ¢ inp’ (asan R-module) hasgrade at |east three. Thismay be deduced from
the splitting (in codimension < 2) of the bottom row in the commutative diagram

@) - R - p

¢ wherel — ¢t € p’

R—— B
showing that the element ¢ belongsto the order ideal O,/ (¢) in codim < 2. Therefore,
aprime ideal P of height two in Spec R will contain O, (¢) if and only if P D

(0, (¢),t), that is, if and only if the order ideal of (—t¢,t) in R & p’ is contained in
P. Thuswe have found athird equivalent statement, namely,

grade;0,/(t) > 3 (% * %)

https://doi.org/10.1023/A:1000291107747 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000291107747

258 PHILLIP GRIFFITH
Returning to the original prime P € Spec S onefurther observesthat the condition
grade, Op(t) > 3 (% * *%)

implies (x*x) and hencealso implies (xx) and (). In this setup as described above
(andin[13, p. 159]) onehasthat P = v/’ A; soif P isunramified over R, then one
has P = p' @ p A locally in codimension two. It follows that (x * *) and (x * *x)
are equivalent in case P is unramified. We summarize these observations in the
following statement.

THEOREM 2.4. Let R be an excellent regular local ring and let A/ R be a gener-
ically Galois extension in which A is local and normal. Let P € Spec A have
codimensiononeand let P N R = tR. Then thereis a positive integer v such that,
if P isunramified, gradez0p(t) > 3andift € m?%, then P = tA.

The results which have just been presented exhibit a tendency for primes P
which contract to normal primes in a generically Galois extension A/R of local
normal domains to have ‘stability’ in the sense of being nonsplit. Of course thisis
not always the case. In particular, the situation may occur in which aprime P €
Spec A contracts to anormal primep € Spec R for which P is‘maximally split’
(i.e., the splitting group for P consists of the identity). For example, if

E[[X,Y,Z, W]

A= (XY — ZW)

= k[[:p,y,z,w]], R = k‘[[I,y,tH,

where char £ # 2 and ¢t = 1/2(z — w), then A/R is a quadratic, generically
Gdois extension in which P = (x, z) € Spec A contractsto p = xzR. The prime
P is ‘maximally split’ with Q@ = (z,w) being the other prime in the fiber over
2 R. Moreover, as the proof of Theorem 2.1 predicts, A = R + P (as R-modules)
and k[[y,t]] = R/xzR = A/P (see Example 3.1 for more on the ring A). The
occurrence of a codimension one prime ideal P in alocal normal domain A with
A/ P acomplete intersection is the central topic in the forthcoming section.

3. Avariant on Hironaka’'sL emma

In this section we consider the situation in which A is an excellent local domain
and p € Spec A is a normal prime ideal with the property that p/p® = A/p
as A/p-modules. This situation arises in its simplest form when A/p is factorial
(= UFD) and p/p® is reflexive as an A/p-module. Also it occurs within the
framework of Hironaka's Lemma as weillustrate below.

Before getting into the essential details of this section, we make some obser-
vations concerning two classical examples. These observations will have a direct
impact on our upcoming strategy for determining appropriate circumstances under
which aprime ideal p must be principal.

EXAMPLE 3.1. Let £ denote afield which is not of characteristic 2.
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(@ LetA=Fk[X,Y,X, W]]/(XY — ZW) and let lower caseletters denote the
cosetsof X, Y, Z and W, respectively. Theidea p = (z,z) isaprimeided in A
of codimensionone suchthat A/p = k[[Y, W]] isregular local. However, it iswell
known that p? = p(® = (22, z2, 2%) (see[4, 8]) and that p/p(? is a two-generated
ideal in A/p; therefore p/p( isnot reflexive.

Thus, in reference to our aforementioned strategy, we shall often impose the
reflexive condition on p/p® (e.g., see 3.4 and 3.7).

(b) Let A = k[[X,Y,Z]]/(Z? — XY) and let p = (z,2). Asin (a) the prime
ideal p hasthe property that A/p = k[[Y]] isregular. Moreover, p/p(? is principal
and generated by the coset of Z. Thus A is a 2-dimensional normal local domain
and p isanonprincipal prime ideal of codimension 1 such that p/p(? = A/p. The
hypothesisin our main result of this section (see Theorem 3.4) avoidsthissituation.

LEMMA 3.2. Let A be alocal domain which is a strong approximation ring and
supposethat A isa module finite and generically separable extension of a regular
local ring R. Let p be a prime ideal of A of codimension one. For any positive
integer ¢ we have theideal containment p(™ C m,p for n >> 0.

Proof. Let B denotetheintegral closure of A. Since A isalocal strong approx-
imation ring and since B is finite over A, then B isalocal strong approximation
ring aswell. Let ¢ € Spec B besuchthat p = A Ngq. Then p(™ C ¢(™ for each
n. Of course the extension B/ R may be embedded into a generically Galois (and
module finite) extension S/R. Moreover, there is a codimension one prime ideal
g € Spec S suchthat N B =gq.

Now invoking Theorem 1.3 aswell asthe discussionwhichimmediately follows
that theorem, one sees that the relative filtration index, ¢ = ¢;(S/R), of order ¢ for
S/R givesthat ¢™ C mt,Bforn > 0,since¢™ NR = Rf", whereN R = Rf,
andsinceeventualy Rf™ C mY% wherev = s(¢). Thusp™ C mb Bnpforn > 0.
By choosing ¢ large enough to accommodate the Artin—-Reese number « for the
R-module containment p C B with respect to the m r-adic filtration, one obtains
the containments

p™ CmbBNp Cml (mEBNy)

that is, p™) C m!;*p, for n >> 0. By choosing the initial ¢ appropriately large as
compared with the fixed integer x we can assurethat ¢ — x can be made aslarge as
any prescribed positive integer. Of course, if p™ C m!, "p, then p(™ C m’| “p.

Remark 3.3. The hypothesesin atypical version of Hironaka's Lemma can be
stated as follows:. Let A be alocal excellent domain and £ be an element in A so
that

(i) tiscontained in aunique minimal prime p;
(if) ¢ generatesp locally at A,;
(iii) A/pisanormal domain,
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thenp = At and A isanormal domain. In our version we present here, we omit
condition (i) entirely at the cost of strengthening condition (ii) to require that p be
principal locally in codimension two and that p be generated by ‘¢ modulo p(?.
Moreover, if oneiswilling to grant the validity of Hironaka sLemmafor dimension
< 2, then the two versions become equivalent.

THEOREM 3.4. Let (A, m4, k) be a complete local domain with perfect residue
field k. Suppose that p is a prime ideal in A of codimension 1 such that A/p is
a normal domain and such that p/p® = A/p as A/p-modules. If p is locally
principal in codimension 2, then p is principal and A isnormal.

Proof. We may suppose that dim A > 3 and that A is a module finite and
generically separable extension of a complete regular local ring R. Also note that
p/p® = A/p givesthat p = tA + p(® and that ¢ generatesp on the locus of primes
@ suchthat p C @ and pg isaprincipal ideal.

Sincep = tA + p® and since A/p is normal, we obtain a short exact sequence

0—p/p@ = A/p@ - Afp— 0.

It follows that A/p(? satisfies the Serre condition S, (as aring) since both A /p-
modules on either end do (as A/p-modules). By means of induction we intend to
arguethat p = tA + p(™ and that A/p(™ is S, (asamodule over itself) for n > 0.
We consider the induction step A/p(™+1).

Viewing the short exact sequence

@+p+y) A 4
p(n-i-l) p(n—l—l) (t, p(n—i-l))

O - — 0, (**)

we observe that the first term is isomorphic to A/p(™ since Ass(A4/p™) = {p}
and since pA, = (t). Thus the first term is an S,-module over A/p(™+1) by our
induction hypothesis. Now consider P € Ass(p/(t,p*V)). Thenp C P and
htP > 3 since p islocally principa in codimension 2. Therefore localizing (x)
a P gives a 3 term sequence of depths (beginning from the left) > 2,> 1,0,
respectively. But this shows that the term (p/ (¢, p* 1)) p must be zero. It follows
that the Ass(p/ (¢, p"+1))) = ¢ and that p = tA + p(+1). Moreover, we obtain a
short exact sequence

0—p/ptD 5 A/p™+t) 5 A/p -0

in which the terms p/p(»*D = A/p(™ and A/p satisfy the S,-condition as
A/p(™+tD)-modules. Hence so does A/p("*+D satisfy the S,-condition. This com-
pletes the required induction argument.

In order to complete our argument we simply appeal to Lemma 3.2 in regard
to the module finite and generically separable extension A/ R which was noted at
the beginning of our proof. The result of Lemma 3.2 that p(™) C m 4p, for n > 0,
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in conjunction with the fact that p = tA + p(™), for n > 0, yieldsthat p = At via
Nakayama's Lemma. It follows that A isnormal since A/tA isnormal.

We note that one may delete the completeness portion of the hypothesisif one
iswilling to concede the normality of A.

COROLLARY 3.5. Let A bean excellent local normal domain with perfect residue
field and suppose that p is a normal prime ideal of codimension 1 such that
p/p@ = A/p. If pislocally principal in codimension 2 then p is principal.

Proof. Since A isexcellent and normal with perfect residuefield, the completion
A of Aisanormal local domain which isamodulefinite and generically separable
extension of a complete regular local ring R. We are now in a position to apply
Theorem 3.4.

In our final remarks of the section we indicate how Theorem 3.4 and Corollary
3.5 provide certain criteriafor alocal normal domain to be acomplete intersection.
We start with the following result.

THEOREM 3.6. Let A be an excellent local normal domain with perfect residue
field. Supposethat p isanormal primeof A suchthat A/p isacompleteintersection.
If p/p(2> isreflexiveasan A /p-module and if p islocally principal in codimension
4, thenp isprincipal and A isa complete intersection.

Proof. Our hypotheseson p and p/p(® guaranteethat p/p? islocally principal
on Spec A/p in codimension < 3. By Grothendieck’s Theorem [5] the module
p/p@ isprincipal. Theresult of Corollary 3.5 allows usto concludethat p itself is
principal.

Our final theorem on this matter is a generalization of a result of Huneke [9,
Prop. 2.3]. To be specific, we are able to delete the * Gorenstein’ hypothesis on the
ring in question. Further, we replace the reflexivity on the modules ‘p” /p™ % by
the weaker requirement that the single module p/p® be reflexive. The price for
getting away with these milder conditions is that we ask the residue field to be
perfect.

THEOREM 3.7. Let A be an excellent normal local domain with perfect residue
field and suppose that p is a normal primeideal of codimension 1 such that p/p(?
isreflexiveasan A /p-module. If A/p isa factorial complete intersection and if A
isfactorial in codimension 3, then A isa factorial complete intersection.

Proof. From Corollary 3.5 we determine that p is principal and from Lipman’s
result [11] we get that A is necessarily factorial.

NOTED ADDED IN PROOF

The material in Section 3 of our paper appears as an application of the main result
(Th. 1.3) of Section 1. However, the crucial Lemma 3.2 is actually true in greater
generality as a consequence of Chevally’s eliminates the need for the assumption
of ‘generic separability’ inthe statement of Lemma3.2. Asaresult of the‘ Chevally
version’ of Lemma 3.2 one may omit the hypothesis of ‘perfect residue field' in
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3.4-3.7. The author is indebted to his colleague Sankar Dutta for this simplifying
observation.
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