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A General Formula of Polynomial Interpolation.

By A. C. AITKEN.

(Received 2nd March 1929. Bead 3rd May 1929.)

§ 1. ENUNCIATION AND PEOOF.

The operations1 of differentiation, ordinary and central
differencing, divided differencing, and forming linear combinations
of the results of these, have in common the distributive, associative
and commutative properties, and the further property that when
performed on a general polynomial of the nth degree they produce
a polynomial of the n — 1th degree, while when performed on a con-
stant they yield zero.

Consider n explicitly denned operators 01( B2, 83, ... 6n, possessing
all of these properties, except possibly the commutative with each
other. The question of any numerical factor in 9r may be settled
without loss of generality by assuming 8r x = 1, and we further
assume that the effect of the inverse operation 8r -

1 on a polynomial
is determinate except for an arbitrary added constant. In accord-
ance with non-commutative algebra we shall have

(Or 0r-i • • • fll)"1 = V 1 Or1 • • • Or-2 O^

The problem now proposed is this: f(x) is a polynomial of the
nih degree, and we are given the numerical values of

fix), ej(x), etdj(x), eaeu-1....01f{x),

for x = 0, or alternatively for x = a. I t is required to determine f(x)
from these values. If hj convention we write, e.g. the value of
d2 6X f (x) for x = a as 92 61f(a), then the formula required is

f(x) =/(0) + x ej(o) + e^x. e2 ej(o) + (e2 ej-^x. e3 et

where the polynomials O^1 x, (6261)^
1 x, . . . . have their arbitrariness

removed by the conditions that (dr6r-\ • • • • ®\)~xx is such that

1 Gf. Dr J. F. Steffensen's Interpolation (Baltimore, 1927), pp. 178, 184.

https://doi.org/10.1017/S0013091500013596 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500013596


200

8r -1 x, (8rQr-i)'1 x, . . . . (9r-8r^1 . . . . 01)~
1x v a n i s h s i m u l t a n e o u s l y

for a; = 0. (la)

PROOF. Suppose that the theorem (1) is true for the polynomial
81f(x) as obtained from 81f(0), 6261f(0), .. .., that is, suppose

e1f(x) = ej(o) + x62

+ (0,02)-1s.Ms

Operating on this with d^1, since 8x~
l 1= x. and

we have

Putting x = 0 and using conditions (la) we see that C =/(0). Hence
the validity of the theorem for j(x) depends on its validity for
61f(x), which similarly, under conditions (la), may be proved to
depend on its validity for 8i81f{x), and so on. But it is obviously
true for 9U 8n- x . . . . ^ j / (x), for since this is a constant, we must have

dHdtl-1....e1f(x) = 8 H 8 n . 1 . . . . 8 1 f ( 0 ) .

Hence, step by step, the theorem is true generally.

A useful alternative form of the theorem is

/(*) =/(o) + (x - a) 6J(a) + V 1 (* - a) 828,f(a)

+ (8281)-i(x-a)8382dJ(a)+ . . . . , (2)

the polynomial coefficients being in this case deteimined by the

conditions that (8r8r-1.. . .8J-1 (x — a) is such that

8 r - * { x - a ) , ( M . - i ) 1 ( * - « ) , • ••• ( 8 r 0 r - 1 . . . . 8 1 ) - 1 ( x - a )

vanish simultaneously for x — a. (2a)

§ 2. APPLICATION'S OF THE FORMULA.

(i) Let #! = 02 = . . . . = 8,, = D, the operation of differentiating
with respect to x. Then D~1x = z2/2! , D~ 2x = x3/ 3!, etc., so that
formula (1) is the Maclaurin expansion, (2) the Taylor expansion
of /(*).
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(ii) Let 61 = e2= = 9,t = A, where A </> (x) = </> (x + 1) — <f> (x).

Then, by the properties of factorial polynomials,

A " 1 * = x ( x - l ) / 2 ! , A ~ 2 x = x ( x — l ) { x — 2 ) / 3 \ , e t c . ,

so that (1) becomes the Gregory-Newton formula of interpolation.

(iii) Let the given values be

Then 91 = A, 9291 = A2E~\ 93 92 91 = A3E~\ 9i939291 = A* E~2,
and we have at once a set of factorials satisfying conditions (la),

9 1 ~ l x = x ( x - l ) / 2 ! , ( 9 2 9 1 ) ~ 1 x = ( x + 1 ) x (x - 1 ) / 3 ! ,

( 9 a 9 2 9 1 ) - 1 x = { x + l ) x ( x - l ) ( z - 2 ) / 4 ! ,

These are the well known coefficients in the Newton-Gauss formula of
interpolation, which uses the particular differences here specified.

At this point a remark may be made, of general application to
interpolation by finite differences. Almost all of the formulae in
common use involve differences of ascending order which are also
adjacent, that is, attained each from the preceding by a single down-
ward or upward oblique step in the table of differences. Now the
operation corresponding to such a step is A or AE^1, and so to a
succession of such steps is ArE~s, with r^>s . But A~rEsx is the
fac tor ia l (x + s) (x + s — 1).. .. (x + s — r) / (r + l)\, w h i c h for r ^> s

contains a; as a factor and so vanishes for x = 0. It follows that the
conditions (la) will be satisfied in whatever order we perform the
inverse operations. We may indeed completely reverse the
order, in which case a study of any two consecutive terms, say
9.i-

191
1x.93929J{0) and 9^^ 92-^ 9^ x . 04 93 929J{0), shows that

the new operator 93 affecting / (0) in the first term is answered by its
inverse 03~l affecting the polynomial coefficient in the second term.
On this fact, and on the properties of factorials under the operations
A"1, -^"^-E, those rules depend which have been given1 for attaching
the proper coefficients to differences lying in a prescribed route across
a table.

1 e.g. by W. F. Sheppard in the article on Interpolation, Encye. Brit., 11th
Edition, 1910, Vol. XIV., p. 710,
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When the successive differences used do not proceed by adjacent
oblique steps but by wide skips, the factorial polynomials obtained
by the inverse operations do not contain x as a factor but must be
affected by an added constant in order to vanish with x. The
general formula (1) enables us, however, to write down readily the
proper coefficients, provided we attend strictly to the order of inverse
operations.

Example. Given /(0) = 1, A/(2) = 25, A2/(3) = 26, A3/(l) = 6,
find the cubic f(x).

Here 61 = AE2, 62 = -^E, and we have at once, by means of
factorials and (la),

(A E2) - 1 x = {x - 2) {x - 3) / 2 ! - 3 = (x2 - 5x) / 2 ,

( A E 2 ) - 1 ( A E ) ~ l x = U E 2 ) - 1 [{x - l){x - 2 ) / 2 ! - 1]

= (x - 3) (x - 4) (x - 5) / 3! - 10 - x

= (a;3 - 12a;2 + 41a;)/ 6.

Hence f(x) = l + 25a; + ]3 {x2 — 5x) + xs — 12a;2 + 41a;

= X3 + X2 + X + 1-

(iv) Let 6r (/> (x) —• [<j) (x) — <f> («r )] / (a; — ar), t ha t is, the opera-

tion of divided differencing. Then S1f (ao),62dif{ao), . . . . are

identical with the successive divided differences usually denoted by

/ ( a 0 , ax), f(a0, alt a2), . . . . Also the operations 8U 6291, . . . . per-

formed on (f> (x) = (x — aQ) (x — at) . . . . (x — an) are equivalent to

ordinary division by (x — aa), (x — a:) (x — a2), . . . . and so conversely

the set of polynomials appropriate to formula (2) and satisfying

conditions (2a) is

V 1 (x—ao) = (x—ao) (x—aj), (6261)-
1(x-a0) = (x-a()) (x-a^ {x-a2)

Hence we have

/(») =/(«o) + ix — «o)/(«o. ai) + (x — «o) (x — ai)f(ao> ai» as) +

which is Newton's divided difference formula of interpolation.
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(v) Let 9l = 92= . . . . = \ (D + A) = Q, that is, the operation of
forming the mean of a first derivative and a first difference. The
inverse operations of formula (1) readily give the polynomials

Q-H = (x2 - \x) I 2 ! , Q-*x = (z3-2,x2 + lz)/3l,

and so

}{X) =/(0) + xQf(0) + X^f^ Q2f(0) + x±ILl

Numerous other operations of a similar kind might be exemplified
in this way, both new ones and linear combinations (with non-zero
sum of coefficients) of the previous ones, with their appropriate
formulae of interpolation, but the above examples and remarks will
be sufficient to indicate the nature and wide application of the
general formula.
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