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1. Introduction. Let S be an inverse semigroup with semilattice of idempotents E, and
let p be a congruence on S. Then p is said to be idempotent-determined\TL\, or I.D. for short,
if {a, b)e p and a e E imply that be E. If, further, p is a group congruence, then clearly p
is the minimum group congruence on S, and in this case S is said to be/?ro/?er [8]. Let T = 5/p.

Let p be an I.D. congruence on S; the homomorphism p" will also be called I.D.. Green
[2] has given the structure of S in terms of T, E, and certain mappings. In the case where T
is a group, that is when S is proper, two structure theorems for S have been given. One, due
to the present author [5], bears some resemblance to Green's result. The other, due to
McAlister [3], is extremely concrete and shows that S is isomorphic to a semigroup which
involves T acting by order-automorphisms on a poset containing a copy of E as an order-ideal.

The present paper is concerned with carrying out McAlister's programme for the case
where p is an arbitrary I.D. congruence, so that S is now an arbitrary inverse semigroup;
with generalising the embedding theorems for proper inverse semigroups given in [5, 6];
and with expanding and slightly improving Green's result, using ideas from [5].

It will be found that S can be embedded in a certain way in an inverse semigroup L = L{S)
arising from the action of T on a poset by partial order-isomorphisms whose domains and
ranges are order-ideals. This embedding is surjective exactly in the case where T is a group,
that is S is proper. Furthermore, L can be embedded in an inverse semigroup L arising from
a similar action of T on a semilattice. Thus S is embedded in L, a fact which overlaps with
some results due to Reilly [7].

It is also shown that S can be embedded in an inverse semigroup M, on which there is
defined an I.D. congruence p extending p, such that each p-class has a maximum element
under the natural partial order, and T = M/p. This is then used to yield a slight improvement
in Green's theory.

Finally, the 1,-semigroups definable over an inverse semigroup S are seen to form a
category with initial and terminal object.

2. The embedding of S in L. The notation and terminology of Clifford and Preston [1]
will be used, and the basic results on inverse semigroups contained therein assumed. Any
order-theoretic statement made about an inverse semigroup refers to the natural partial order.
The identity congruence will be denoted by i.

The first proposition generalises a result in [8] and is implicit in [2].

PROPOSITION 2.1. Let pbea congruence on S. Then p is I.D. ifandonly if p n 5? = /.

Proof. Suppose that p is I.D. and let (a, b)ep n !%. Now 02 is a left congruence, so
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INVERSE SEMIGROUPS AS EXTENSIONS OF SEMILATTICES 13

that {a~1a,a~ib)epn3i. Hence a~1beE, since p is I.D. Now aa'1 — bb~l, and so
b = aa~1b f* a; similarly, b ^ a. Hence p r\0t = i.

Conversely, suppose that p n 8$ = i and let {e, x) e p where e = e2. Then (e, JOC"1) e p,
so that (xx~x, x)e p r> 3$. Hence x = xx~ 1 e E, and therefore p is I.D.

For the remainder of the paper, p denotes an I.D. congruence on S. Following Proposition
2.1, Sis coordinatised by the map a -* {aa'1, ap) (see[2]).

Let SC be a poset. A non-empty subset A of 9£ is called an order-ideal of 9C if b e 3C and
6 ^ a e A imply that be A; and /4 is called a subsemilattice of$C if given a, be A their infimum
in ST, denoted a A b, exists and is in A.

Let Kx be the inverse subsemigroup of £x consisting of those a e Jx whose domain Aa
and range Va are order-ideals of 3C~, and where a is an order-isomorphism from Aa onto Va.
We say that an inverse semigroup Tacts suitably on 3C if there exists a homomorphism 0 : T -*
Kx. In this case, for teT,v/e write At for A(/</>) and Vt for V(?<£). If a 6 At, we let T act on
the left and write t. aorta for (t<t>). a. All other mappings will act on the right, as usual.

Recall that in Jx, and so in Kx, a. ^ /fifandonlyif(i) Aa £ A/? and (ii) /?|Aa = a.
Of necessity we follow McAlister's theory; the argument is refined or the theory generalised

at those points where the fact that Tis no longer necessarily a group comes into play.
Proceeding as in [3], therefore, let {Dt\i e 1} be the set of ^-classes of S and pick an

idempotent/j e Dt for each ie I. Denote by Ht the ^f-class containing fh and let/ , = /(/?*.
Further, for each / e /, pick representatives riu of the ^f-classes contained in the ^-class of ft

with/j the representative of its class; denote this set of representatives by Et.
From now on we use riu, ritl,... to denote elements of E,, and hit h[,... to denote ele-

ments of//,, for some / e /.
Each element of S can be uniquely expressed in the form r^hf^, and the idempotents of

5 are precisely the elements r^Vi u; they are all distinct.
Let kiu = riup*, gt = A,p" and Gt = i/,p*. By Proposition 2.1, G( « Ht and for fixed i

the elements kiu are all distinct.
The following trivial result, and the one derived from it by applying p", will be used below

without comment.

LEMMA 2.2. Let a = r^u
lhlriv. Thenaa~y = r^riu,a~la = r^r^andf?^ = riu.

Finally, for each i,j e I, let Bu = {kJu\rj-u
 lr}u ^ / , } .

The next three technical lemmas which we quote are taken from [3], the second having
been slightly adapted. Their proofs in [3] can be carried over without difficulty.

LEMMA 2.3. [3, Lemma 2.1.] r~u
lriu ^ rJD

1rJo if and only if GjkJv = GjkJwkiufor some
kJw e Bu.

LEMMA 2.4. [3, Lemma 2.2.] !fkUlgjkjv e Gtfor some kiu e B}1 and kJv e Bip then i = /
andkJu = /,-.

LEMMA 2.5. [3, Lemma 2.3.] IfkJv e Bu andknv/ e BJn) then GnknwgjkjV = Gnkmfor some
Ku e Bin.

https://doi.org/10.1017/S0017089500002445 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002445


14 LIAM O'CARROLL

As in [3], therefore, it follows from Lemma 2.3 that the semilattice E is isomorphic to the
set 9 = {(/, Gtkiu)\i e /, kiu e EiP*}, where (/, Gtkiu) ^ (j, GjkJv) if and only if G ^ = GjkJwkiu

for some kJw e By.
Let X = {(/, Gix)\i e /, xx"1 = /,} under the ordering (i, Gfx) ^ (j, Gjy) if and only if

Gjy = Gjzx for some z e Bi}. T acts on #" by partial transformations as follows:

At = {

and,for (i, Gfx) e At, t.(i, Gtx) = (i,

LEMMA 2.6. 9C is a poset, and <& is a subsemilattice and order-ideal of $C. T acts suitably
onSCandSC = 7W. Foreac/i t eT,<& n t(<2/ n At) # D-

Proof. Note that Lemmas 2.3, 2.4 and 2.5 hold. The argument given in [3] prior to
Lemma 2.4 there, adapted slightly by noting that /,- e Bj} and gs = gjj, shows that ^ is a
well-defined relation on SC. The relevant parts of the proof of [3, Lemma 2.4], with a similar
small adaptation, show that ^ is reflexive, transitive and antisymmetric, and that 'W is a
subsemilattice and order-ideal of 3C.

Let (/, Gtx)eS:, where x~xx g t~1t; then (xt'^xt'1)'1 = xt~1tx~1 = xx'1 =/ ( .
Hence / . ( i , G | x ) e l Suppose further that (j,Gjy)e&, where (;, G^) ^ (i, G;x). Then
^ = 0jzx for some z e Btj, so that

.y"1^ = x~1z~lgj1gjzx ^ x - 1x ^ i~x(.

Hence (j, Gjy) e At, and therefore At is an order-ideal of 3C. Moreover t.(i, G,oc) ^ f .(7, G^y),
and/.(i, G^eAr1 since(x/"1)"1^"1 ^ ( r 1 ) " 1 / " 1 .

Hence V* £ Af-1. On the other hand if (/, Gtz) e At'1, then zz"1 = / , and z~lz ^ tt"1.
Let w = zt; then w " 1 = ztt~xz~1 = zz"1 = / i ; w-1w ^ f"1/, and z — wt~x. Hence
(1, G,w) e Arand t.(i, GiW) = (i, Gp),r% Gtz) = (1, G,w).

Thus V/ = Af-1 is an order-ideal, and t is a partial order-isomorphism with domain At
and range Vt, having inverse t'1. If se T, it is easily shown that A(ts) = s~1(Vs n A<) =
A(? o s), and clearly therefore Tacts suitably on X.

Let (1, Gtx) e SC. Then (i, Gjt) e <W n Ax"1, and x"1.(/, Gj1,) = (i, Gfx). Thus ^ =

Let / e T, where / = k^gjc^, say. Then (/, GJc^ e<& nt(<& n A?), since r.(i, GfA:iu) =

Suppose now that we are given a poset 3C containing a subsemilattice and order-ideal <&,
and an inverse semigroup T, which together have the properties listed in the statement of
Lemma 2.6.

LEMMA 2.7. For each teT,<& c\t{®J nr\<S/ n Arx)) ^ Q

Proo/. By hypothesis there exists a e ^ n A f 1 such that b = t~1ae<&. Then 6e
V r x = Ar,and tb = «"Ja = a. Hencea e<& nt(<& n rl(<& n Ar1)).
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INVERSE SEMIGROUPS AS EXTENSIONS OF SEMILATTICES 15

Define L = L(T, %, <&) to be

{(a, t)\teT,ae&nt(&n r\& n At'1))}

under the multiplication

(a,t){b,s)=(t(r1aAb),ts).

By Lemma 2.7, for each t e r there exists (a, t) e L.
Whenever T is a group, that is whenever S is proper and p is the minimum group con-

gruence on S, then Tacts on <S£ by order-automorphisms, and!, = P(T, 9C, <&) as defined in[3].

LEMMA 2.8. Let aeSC,teT. Then (a, t)eL if and only if (i) a e <& n At'1 and
(ii) rxae<&.

Proof. This follows easily from the elementary observation that a e Vt if and only if
ae A?"1, and then a = tt~la.

COROLLARY 2.9. Suppose (a, t)eL ands ^ t. Then (a, s) e L.

Proof. Since s'1 ^ r"1, Ar"1 £ As"1 and j ^ a = t~1a. The result now follows from
Lemma 2.8.

THEOREM 2.10. L is an inverse semigroup. Ifn2: L-*T'is the secondprojection (a, i)y+t,
then n2 is an I.D. surjective homomorphism.

Proof. Let (a, t), (b, s)eL. By Lemma 2.8, t~1ae<& so that t~xa A b exists and is
in <&. Since V/"1 and As"1 are order-ideals and f'aeVf""1, f^a A beVt'1 nAs'1.
Hence r(f-1a A b)eAs~1t~1 = A(ta)"1. Moreover ^ " ^ a A b) ̂  « - 1 a = flef, so that
/(r1** Ab)e<2J. F u r t h e r , J " ^ " 1 ^ " ^ A i ) = i " 1 ^ " ^ A i ) | s'^eW, by Lemma 2.8.
By Lemma 2.8 again, therefore,

(a,t)(b,s)=.(t(t-1a Ab),ts)eL,

and L is closed under multiplication.
Let (c, r) e L. It is easily seen that

(a,t)l(b,s)(c,r)-]=l(a,t)(b,s)-](c,r)

if and only if

t(t~1a A s(s-1fe A c)) = ^ ( s " 1 ^ " ^ A b) A c);

that is, if and only if

r J a A sis-'b A c) = s C s - ^ r ^ A b) A C); (1)
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16 LIAM O'CARROLL

that is, if and only if

S-^r^ A S^fe A c)) = S-1^^ A b) A C. (2)

Now the left hand side of (2) ^ s~1(t~1a A SS'1^ = ,y~1(*~1a A b); and further, the
left hand side of (2) g r ' ^ ' i A c) = f ' i A c ^ c. Hence the left hand side of (2) g
the right hand side of (2). Applying j on the left, we deduce that the left hand side of (l) ^
the right hand side of (l).

On the other hand, the right hand side of (l) ^ s(s~ib A C); and further, the right hand
side of (1) ^ ss'^t' 1a A b) = t~la A b S t~ 1a. Hence the right hand side of (l) g the left
hand side of (l). Equality follows, so that the multiplication is associative.

It is easily seen that the set of idempotents & of L is given by S = {(a, t)\t = t2} and that
the elements of S commute. In fact, if (a, t) and (b, s) e S, then

(a, t) {b, s) = (a A b, ts).

Some routine checking then shows that L is an inverse semigroup with (a, t) e L having
inverse (/" 1a, t'1). Note that (a, t)(a, t)'1 = (a, tt'1), so that if (a, t)%(b, s) then a =b.
Clearly n2 is a surjective homomorphism, and if further (a, t)n2 = {b, s)n2, then t = s.
Hence n2 is I.D., by Proposition 2.1.

REMARK. Let (a, t), (b,s)e£; then their product (a A b,ts)eS. Since ts ^ /, it
follows from Corollary 2.9 and Theorem 2.10 that [a A b, t) e S.

Define the projection •nl:&-*(& by (a, t)nt = a. Then n1 is a homomorphism with
range {a e <&\a e A/- for some r e 71}. If f ^ 5, then we may assume that ts < t, and
(a A b, r )^ = (a A b, ta)?^.

Hence % is injective if and only if T has exactly one idempotent, that is if and only if
Tis a group. In this case, Tacts by order-automorphisms on $C and Ttj is surjective.

We now have the main theorem of this section, which describes how S is embedded in the
corresponding L.

As before, let S be an inverse semigroup with semilattice of idempotents E, and let p be
an I.D. congruence on >!?. Suppose that $C, <& and T are as defined prior to Lemma 2.6. Let
L = L(S), where 1(5) = L(T, 9£, <&), and define the map \j/: S -»• L as follows:

(rL1 ^ r , , )^ = ((i, G, feiu), fcr1 ̂  fc,,,).

THEOREM 2.11. ij/ is an injective homomorphism such that \j/n2 = p". For each ae<&
there exists (a, t)sL with the following property:

(a, s)e L and s ^ t imply that s = t: (3)

and S\j/ is the set of all such (a, t). Moreover, given ae<2/, then (a, s)eL if and only if there
exists (a, t) e S\j/ with t g s.
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Proof. The last paragraph of the proof of Lemma 2.6 shows that t// indeed maps into
L. The argument given prior to [3, Lemma 2.5] shows that \f/ is injective, and clearly ^rt2 = p*.

Let

p = rr1 hiriv, q = rj* hjrjy

be elements of S. Following the first part of the proof of [3, Lemma 2.5],

»£l riv rj*1 rjx = rnV rttW, for some rnw e £„,

where

rnw rTv
 l Kl riu = hn rnz for some rnz e En, hn e Hn.

Further,

PQ = r~2
y h'n rnc for some rnc e En, h'n e Hn.

Thus (w, Gnknz) is the first coordinate o{(pq)tj/, and

(n, Gnkm) = (n, G^^kr1 gjl kiu).

Now

^nw ^nw = kio kiv = (kiu gi fcj0) (kiu gt kiv),

so that

(n, Gnknz) = Ku
lgikiv.{n, Gnknw) = pp\{(i, Gskiv) A (J, Gjkjx)}.

As seen in the last paragraph of the proof of Lemma 2.6, (i, Giklv) = (pp*)~l(i, Gtkiu),
and it follows that (pqty andp\j/ .qij/ have the same first coordinate. Their second coordinates
are also equal, so that ^ is a homomorphism.

Given a = (i, Giki^e<& therefore, take gteGi and kioeEip\ Letting t = k^gfi,,,,
it follows that (a, /) e Si//. On the other hand, by Lemma 2.8, ((/, Gtkiu), t)eLif and only if
K^b-iu = H1 an<l t~l(i> Gtkiu) = (/, Gtkiw) for some kiw e Etp\ The latter conditions hold
ifandonlyiffc^1^ ^ tt~* and kiut = ^J^forsome^'jeGi.

Let m = A:,"1^'^; then ((/, Giklu), m) e Si/'. If m ^ /, then w = mm~1t = Ku
lklut, so

that

<7,'fc,w = kium = kiut; also Ku
lkiu = mm'1 ^ tf1!

Conversely,iffclut = 0Jfciwthen mm~1t = kf^k^t = fe;"1 gJfcIW = m, sothatw ^ ?.
Suppose now that ((i,Gtkiu),m')e Sij/, where m' g m. Then m' = m'm'~1m =

k7u
lkium = m. Since to any (a, t)eL there corresponds (a,s)eSil/ with s ^ ?, this

suffices to complete the proof.
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18 LI AM O'CARROLL

COROLLARY 2.12. \j/ is surjective if and only if S is proper and p is the minimum group
congruence on S.

Proof. Suppose that i/r is surjective, and let ( , j £ Jwith t ^ s. As noted prior to Lemma
2.8, (a, t)eL for some ae<&. By Corollary 2.9, (a, s) e L. Since L = S\J/ by hypothesis, it
follows from Theorem 2.11 that t = s. Hence each element of 7" is maximal in T, so that T
is a group. As noted in §1, this implies that S is proper and that p is necessarily the minimum
group congruence on S.

The converse has been proved in [3].
Not every semigroup L(T, SC, <&) is of the form L(S) for some inverse semigroup S.

However one can give necessary and sufficient conditions that this should be so.
Finally we note that [3, Theorem 2.7] has an obvious generalisation which we will not

state here.

3. Two Other embedding theorems. We now generalise two embedding theorems for
proper inverse semigroups (see [5, 6]).

Let SC, <W and T have the properties listed in the statement of Lemma 2.6, and let L =
L(T, SC, <&).

Define SC to be the set of (non-empty) order-ideals A of SC such that A £ t($J n At) for
some / e T. For each a e SC, let 5 = {b e 3C\b g a).

LEMMA 3.1. {S£, n ) is a semilattice on which T acts suitably. The map j : at-*a is an
order-isomorphic embedding of SC in SC which preserves the action of T, and §C is a conditional
\'-completion for 9Cj.

Proof. Let s,teT. It is clear that 'W n At is a non-empty order-ideal and subsemi-
latticeof#\

Since V/ is an order-ideal of 3C and since t is an order-isomorphism on At, it follows that
t(<8/ n At) is a subsemilattice and order-ideal of 9C. Moreover, <& n t(%/ n At) i= • •

Let a e A 6 3E where A £ t(<& n At), and b e B e &, where B £ s(<3/ n AJ) . Let c e
<3J r\t(<& n At), de<& ns^ n As). Then a A C exists in % and lies in <& n t{®f n At); similarly
b A d exists in SC and lies in <& n s ^ n As). Hence e = (a A c) A (b A d) exists in #"
and lies in '&. Since e is a common lower bound of a and b, eeA n B. Thus A r\ B ^ • ,
and it easily follows that A n Be2£.

For each f e T, let & = {^ e %~\A £ A?}; for example, C\y n A r J ) e A>. Clearly
Ar is an order-ideal of SC. For each A e A/, define M to be the set \ta\a e A}. Then f.4 is an
order-ideal of SC and if r e T is such that A £ r ( ^ n Ar), then M £ r/-(<^ n A(fr)). Hence
( A e f , and tA £ A r 1 . On the other hand, if Be At'1, then t~1BeAt and r r ' . B = B.
Clearly, therefore, t is an order-isomorphism with domain Et and range Vt = At'1. Given
A e SC and seT, Ae E(ts) if and only if A £ A(/j); that is, if and only if A £ Ay and sA £
Ay ~ i n At. It easily follows that T acts suitably on 5 \
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INVERSE SEMIGROUPS AS EXTENSIONS OF SEMILATTICES 19

Let a e 3C = T&. Then a = sb for some seT and be<& n As. Hence a is an order-
ideal of 3C such that a s j ( ^ n As). Let / 6 T. Then a 6 A* if and only if a e At, and in
this case la = f.a.

The rest of the result follows from the proof of [6, Lemma 1.2].
Following Lemma 3.1, let A eSt, where A s f(<gf n Af) say. Then A e W, so that

A = tB for some 5 e At. Hence ̂  = T3C, and it follows from Lemmas 2.6 and 3.1 that we
can form I = £(7; f, 3s).

THEOREM 3.2. The map k: (a, t) t-> (a, /) w an infective homomorphismfrom L into L.

Proof. Let(a,t)eL. By Lemma 2.8, ae'W n At'1 and t~1ae<&. Hencea e<% n Sf"1

and t'1 .a e$T. Thus A: maps into £ and clearly it is injective.
Let (6, s)eL. Then

r(t"'fl A b) = f-(r'fl A f>) = f(rxa nJ) = ((f'-ani),

and it follows that & is a homomorphism.
By Theorems 2.11 and 3.2, any inverse semigroup S can be embedded in an L(T, 3C, <&)

and so in L(T, 2t, St). For results ofa similar nature, see [7, Propositions 1.4 and 3.6].
Now let S be an inverse semigroup with semilattice of idempotents E, let p be an I.D.

congruence on 5, and let T = S/p. Then a = p" is an isotone homomorphism onto T. In
this case, following [4, Theorem 3],./: s H+ ES is an embedding of S into the semigroup

M = {£T|there exists s' e 5such that • # X £ s'p),

where the operation on M is set multiplication, and P: EX\-* s'p is a homomorphism from
M onto T with a = jfi. Moreover, M is a partially ordered semigroup under inclusion and if
p = ft o p~ 1

t then each p-class has a maximum element.
Recall that EW = WEtot any non-empty subset WofS.

THEOREM 3.3. M is an inverse semigroup, and inclusion is the natural partial order on M.
Moreover, pis I.D..

Proof. If Y c S, let Y~1 = {y~11j e Y]. In [9], Schein showed that

is an inverse semigroup under set multiplication, with Ye C having inverse Y~l (see the
Note following Theorem 1 in [5]).

If Ye Mthen Y~l e M, and it follows that Mis an inverse subsemigroup of C.
Suppose F = EXeM, where • # X s 5/9 for some J e S. If f = F2, then £ Z = EX2.

Applying p", we deduce that Ep".sp]l = Ep*.s2p*. Hence sp" = j2p", so that sp £ 2? since
pisI.D.. Thereforefc£

Let Y,ZeM, where 7 = F y ' Z . By the preceding paragraph YY'1 £ E, and £Z=
Z. Hence 7 E Z .

https://doi.org/10.1017/S0017089500002445 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002445


20 LIAM O'CARROLL

Conversely, if Y £ Z, then Y = YY'1 Y s ZZ^Z, while Y~lZ £ Z " ^ £ £; hence
y y ' Z £ y. It follows that inclusion is the natural partial order.

If seS, then E.sp is the maximum element in its p-class, and (E.sp)p~ = {EW\ • # W£ .yp}.
Suppose some EW in (E.sp)p is idempotent. Then, as shown above, FP £ £ and so
sp £ £, since p is I.D.. Hence p is I.D..

Green [2] has shown that there exists a maximum I.D. congruence on an inverse semi-
group. Clearly p is the maximum I.D. congruence on S if and only if p is the maximum I.D.
congruence on M. As in [5], Sj is the set of V-irreducible elements of M.

Let a e S. In M, aj = Ea £ E.ap. Since inclusion is the natural partial order on M, by
Theorem3.3,Ea = Ea.cT^E.ap - Eaa'1 .ap.

The coordinatisation ai-> (aa'1, ap) of 5 can be replaced by a\->(Eaa~1,ap), and as
seen above the latter has an interpretation in terms of set multiplication.

Let M(E) be the set of non-empty order-ideals of E under set multiplication. As seen in
[5], M{E) is a semilattice in which E is embedded by the map e I-* Ee.

Let H = E.ap. It follows from Theorem 3.3 that <f>ap: Fi-» HFH~l is an endomorphism
o f M ( £ ) . If b e S , then Eabiab)-1 = E a a ' 1 ( ) ^ ^

Hence in Green's theory [2, third section] we can replace the endomorphism <j)(e, t) of E
by the endomorphism 4>t of M(E), where the latter depends on only one parameter. However,
it is extremely doubtful if a corresponding reaxiomatisation would present any real gain.

The above considerations generalise part of the theory of [5].

4. The category of L-semigroups over an inverse semigroup. In this final section we show
that the L-semigroups definable over an inverse semigroup S form a category with initial and
terminal object. Since the details are entirely straightforward, they are omitted.

Suppose pt and p2 are I.D. congruences on S such that pt £ p2. For i = 1, 2, given the
I.D. congruence pt let SCh ^ and T, be as defined prior to Lemma 2.6; put Lt = L(Tt, &t, <&)
and let i/^: S -> Lt be the corresponding embedding.

There is induced a unique homomorphism rj: 7\ -* T2 such that p\r\ = p\. In turn i\
defines a map n:SCl-*3C2d& follows: for (/, Gfx)e3CU (i, GiX)n = (/,(G(X)JJ). Then /i has
the following properties:

(i) \i is isotone, ty^ £ <&2 and n\'&l is a semilattice homomorphism; and
(ii) for each t e 7\ and a e At, (At)fi £ A(/f/) and (ta)ix = tr\ .a\i.

The maps r\ and \i define a map a: Ly -> L2 by

and a is a homomorphism such that \j/1 a, = ^2.
The semigroups Lt together with the homomorphisms a form the objects and morphisms,

respectively, of a category, which we call the category of £-semigroups over S. It has an
initial object LQ corresponding to the minimum I.D. congruence i, and a terminal object
L x corresponding to the maximum I.D. congruence x (see [2]).
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We note that in Lo, T = S and we can take S£ = <& = E, where E is the semilattice of
idempotents of S. For teS, At = {eeE\e ^ f"1*} and for eeAt, t.e = tet'K Then
Lo = {(e, t)\e S tr1}, where inL0, (e, t)(f, s) = (etft~\ ts).

On the other hand, suppose, for i = 1, 2, we are given a poset 3CX having a subsemilattice
and order-ideal <Sft and an inverse semigroup Tt having the properties listed in the statement
of Lemma 2.6 and let Lt = L(Tt, 9£{, <&,). Let r\: 7\ -> T2 be a homomorphism and ^ : ^ ->
5T2 a map satisfying the properties (i) and (ii) above. Then the map cc:L1-*L2 defined by
(a, t) a = (an, tr\) is a homomorphism. For an analogous characterisation of homomorphisms
between/"-semigroups, see [3].

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vols. I and II, Math.
Surveys of the American Math. Soc. 7 (Providence, R.I., 1961 and 1967).

2. D. G. Green, Extensions of a semilattice by an inverse semigroup, Bull. Austral. Math. Soc. 9
(1973), 21-31.

3. D. B. McAlister, Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc.; to
appear.

4. L. O'Carroll, A class of congruences on a posemigroup, Semigroup Forum 3 (1971), 173-179.
5. L. O'Carroll, Reduced inverse and partially ordered semigroups, / . London Math. Soc. (I),

9 (1974), 293-301.
6. L. O'Carroll, Embedding theorems for proper inverse semigroups, / . of Algebra; submitted.
7. N. R. Reilly, Inverse semigroups of partial transformations and 0-classes, Pac. J. Math. 41

(1972), 215-235.
8. T. Saito, Proper ordered inverse semigroups, Pac. J. Math. 15 (1965), 649-̂ 666.
9. B. M. Schein, Completions, translational hulls, and ideal extensions of inverse semigroups,

Czech. Math. J. 23 (98) (1973), 575-610.

THE MATHEMATICAL INSTITUTE

EDINBURGH EH1 1HZ

https://doi.org/10.1017/S0017089500002445 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002445

