INVERSE SEMIGROUPS AS EXTENSIONS OF SEMILATTICES

by LIAM O'CARROLL

(Received 20 October, 1973)

1. Introduction. Let S be an inverse semigroup with semilattice of idempotents E, and let ρ be a congruence on S. Then ρ is said to be *idempotent-determined* [2], or I.D. for short, if $(a, b) \in \rho$ and $a \in E$ imply that $b \in E$. If, further, ρ is a group congruence, then clearly ρ is the minimum group congruence on S, and in this case S is said to be *proper*[8]. Let $T = S/\rho$.

Let ρ be an I.D. congruence on S; the homomorphism ρ^{*} will also be called I.D.. Green [2] has given the structure of S in terms of T, E, and certain mappings. In the case where T is a group, that is when S is proper, two structure theorems for S have been given. One, due to the present author [5], bears some resemblance to Green's result. The other, due to McAlister [3], is extremely concrete and shows that S is isomorphic to a semigroup which involves T acting by order-automorphisms on a poset containing a copy of E as an order-ideal.

The present paper is concerned with carrying out McAlister's programme for the case where ρ is an arbitrary I.D. congruence, so that S is now an arbitrary inverse semigroup; with generalising the embedding theorems for proper inverse semigroups given in [5, 6]; and with expanding and slightly improving Green's result, using ideas from [5].

It will be found that S can be embedded in a certain way in an inverse semigroup L = L(S) arising from the action of T on a poset by partial order-isomorphisms whose domains and ranges are order-ideals. This embedding is surjective exactly in the case where T is a group, that is S is proper. Furthermore, L can be embedded in an inverse semigroup \overline{L} arising from a similar action of T on a semilattice. Thus S is embedded in \overline{L} , a fact which overlaps with some results due to Reilly [7].

It is also shown that S can be embedded in an inverse semigroup M, on which there is defined an I.D. congruence $\bar{\rho}$ extending ρ , such that each $\bar{\rho}$ -class has a maximum element under the natural partial order, and $T = M/\bar{\rho}$. This is then used to yield a slight improvement in Green's theory.

Finally, the *L*-semigroups definable over an inverse semigroup S are seen to form a category with initial and terminal object.

2. The embedding of S in L. The notation and terminology of Clifford and Preston [1] will be used, and the basic results on inverse semigroups contained therein assumed. Any order-theoretic statement made about an inverse semigroup refers to the natural partial order. The identity congruence will be denoted by i.

The first proposition generalises a result in [8] and is implicit in [2].

PROPOSITION 2.1. Let ρ be a congruence on S. Then ρ is I.D. if and only if $\rho \cap \mathcal{R} = i$.

Proof. Suppose that ρ is I.D. and let $(a, b) \in \rho \cap \mathcal{R}$. Now \mathcal{R} is a left congruence, so

that $(a^{-1}a, a^{-1}b) \in \rho \cap \mathcal{R}$. Hence $a^{-1}b \in E$, since ρ is I.D. Now $aa^{-1} = bb^{-1}$, and so $b = aa^{-1}b \leq a$; similarly, $b \leq a$. Hence $\rho \cap \mathcal{R} = i$.

Conversely, suppose that $\rho \cap \mathscr{R} = i$ and let $(e, x) \in \rho$ where $e = e^2$. Then $(e, xx^{-1}) \in \rho$, so that $(xx^{-1}, x) \in \rho \cap \mathscr{R}$. Hence $x = xx^{-1} \in E$, and therefore ρ is I.D.

For the remainder of the paper, ρ denotes an I.D. congruence on S. Following Proposition 2.1, S is coordinatised by the map $a \rightarrow (aa^{-1}, a\rho)$ (see [2]).

Let \mathscr{X} be a poset. A non-empty subset A of \mathscr{X} is called an *order-ideal* of \mathscr{X} if $b \in \mathscr{X}$ and $b \leq a \in A$ imply that $b \in A$; and A is called a *subsemilattice of* \mathscr{X} if given a, $b \in A$ their infimum in \mathscr{X} , denoted $a \wedge b$, exists and is in A.

Let K_x be the inverse subsemigroup of \mathscr{I}_x consisting of those $\alpha \in \mathscr{I}_x$ whose domain $\Delta \alpha$ and range $\nabla \alpha$ are order-ideals of \mathscr{X}^- , and where α is an order-isomorphism from $\Delta \alpha$ onto $\nabla \alpha$. We say that an inverse semigroup *T* acts suitably on \mathscr{X} if there exists a homomorphism $\phi: T \to K_x$. In this case, for $t \in T$, we write Δt for $\Delta(t\phi)$ and ∇t for $\nabla(t\phi)$. If $a \in \Delta t$, we let *T* act on the left and write *t*. *a* or *ta* for $(t\phi)$. *a*. All other mappings will act on the right, as usual.

Recall that in $\mathscr{I}_{\mathfrak{X}}$, and so in $K_{\mathfrak{X}}$, $\alpha \leq \beta$ if and only if (i) $\Delta \alpha \subseteq \Delta \beta$ and (ii) $\beta | \Delta \alpha = \alpha$.

Of necessity we follow McAlister's theory; the argument is refined or the theory generalised at those points where the fact that T is no longer necessarily a group comes into play.

Proceeding as in [3], therefore, let $\{D_i | i \in I\}$ be the set of \mathcal{D} -classes of S and pick an idempotent $f_i \in D_i$ for each $i \in I$. Denote by H_i the \mathcal{H} -class containing f_i , and let $\overline{f}_i = f_i \rho^{\mathfrak{h}}$. Further, for each $i \in I$, pick representatives r_{iu} of the \mathcal{H} -classes contained in the \mathcal{R} -class of f_i with f_i the representative of its class; denote this set of representatives by E_i .

From now on we use r_{iu}, r_{iv}, \ldots to denote elements of E_i , and h_i, h'_i, \ldots to denote elements of H_i , for some $i \in I$.

Each element of S can be uniquely expressed in the form $r_{iu}^{-1}h_ir_{iv}$, and the idempotents of S are precisely the elements $r_{iu}^{-1}r_{iu}$; they are all distinct.

Let $k_{iu} = r_{iu}\rho^{\flat}$, $g_i = h_i\rho^{\flat}$ and $G_i = H_i\rho^{\flat}$. By Proposition 2.1, $G_i \approx H_i$ and for fixed *i* the elements k_{iu} are all distinct.

The following trivial result, and the one derived from it by applying ρ^{\dagger} , will be used below without comment.

LEMMA 2.2. Let $a = r_{iu}^{-1}h_i r_{iv}$. Then $aa^{-1} = r_{iu}^{-1}r_{iu}$, $a^{-1}a = r_{iv}^{-1}r_{iv}$, and $f_i r_{iu} = r_{iu}$. Finally, for each $i, j \in I$, let $B_{ij} = \{k_{ju} | r_{ju}^{-1} r_{ju} \le f_i\}$.

The next three technical lemmas which we quote are taken from [3], the second having been slightly adapted. Their proofs in [3] can be carried over without difficulty.

LEMMA 2.3. [3, Lemma 2.1.] $r_{iu}^{-1}r_{iu} \ge r_{jv}^{-1}r_{jv}$ if and only if $G_jk_{jv} = G_jk_{jw}k_{iu}$ for some $k_{jw} \in B_{ij}$.

LEMMA 2.4. [3, Lemma 2.2.] If $k_{iu}g_jk_{jv} \in G_i$ for some $k_{iu} \in B_{ji}$ and $k_{jv} \in B_{ij}$, then i = j and $k_{jv} = f_j$.

LEMMA 2.5. [3, Lemma 2.3.] If $k_{jv} \in B_{ij}$ and $k_{nw} \in B_{jn}$, then $G_n k_{nw} g_j k_{jv} = G_n k_{nu}$ for some $k_{nu} \in B_{in}$.

As in [3], therefore, it follows from Lemma 2.3 that the semilattice E is isomorphic to the set $\mathscr{Y} = \{(i, G_i k_{iu}) | i \in I, k_{iu} \in E_i \rho^{\flat}\}$, where $(i, G_i k_{iu}) \ge (j, G_j k_{jv})$ if and only if $G_j k_{jv} = G_j k_{jw} k_{iu}$ for some $k_{jw} \in B_{ij}$.

Let $\mathscr{X} = \{(i, G_i x) | i \in I, xx^{-1} = \overline{f}_i\}$ under the ordering $(i, G_i x) \ge (j, G_j y)$ if and only if $G_j y = G_j z x$ for some $z \in B_{ij}$. T acts on \mathscr{X} by partial transformations as follows:

$$\Delta t = \{(i, G_i x) \in \mathscr{X} \mid x^{-1} x \leq t^{-1} t\},\$$

and, for $(i, G_i x) \in \Delta t$, $t \cdot (i, G_i x) = (i, G_i x t^{-1})$.

LEMMA 2.6. \mathscr{X} is a poset, and \mathscr{Y} is a subsemilattice and order-ideal of \mathscr{X} . T acts suitably on \mathscr{X} and $\mathscr{X} = T\mathscr{Y}$. For each $t \in T$, $\mathscr{Y} \cap t(\mathscr{Y} \cap \Delta t) \neq \Box$.

Proof. Note that Lemmas 2.3, 2.4 and 2.5 hold. The argument given in [3] prior to Lemma 2.4 there, adapted slightly by noting that $f_j \in B_{jj}$ and $g_j = g_j f_j$, shows that \geq is a well-defined relation on \mathscr{X} . The relevant parts of the proof of [3, Lemma 2.4], with a similar small adaptation, show that \geq is reflexive, transitive and antisymmetric, and that \mathscr{Y} is a subsemilattice and order-ideal of \mathscr{X} .

Let $(i, G_i x) \in \mathcal{X}$, where $x^{-1}x \leq t^{-1}t$; then $(xt^{-1})(xt^{-1})^{-1} = xt^{-1}tx^{-1} = xx^{-1} = f_i$. Hence $t.(i, G_i x) \in \mathcal{X}$. Suppose further that $(j, G_j y) \in \mathcal{X}$, where $(j, G_j y) \leq (i, G_i x)$. Then $y = g_j zx$ for some $z \in B_{ij}$, so that

$$y^{-1}y = x^{-1}z^{-1}g_j^{-1}g_jzx \le x^{-1}x \le t^{-1}t.$$

Hence $(j, G_j y) \in \Delta t$, and therefore Δt is an order-ideal of \mathscr{X} . Moreover $t \cdot (i, G_i x) \geq t \cdot (j, G_j y)$, and $t \cdot (i, G_i x) \in \Delta t^{-1}$ since $(xt^{-1})^{-1}xt^{-1} \leq (t^{-1})^{-1}t^{-1}$.

Hence $\nabla t \subseteq \Delta t^{-1}$. On the other hand if $(i, G_i z) \in \Delta t^{-1}$, then $zz^{-1} = \bar{f}_i$ and $z^{-1}z \leq tt^{-1}$. Let w = zt; then $ww^{-1} = ztt^{-1}z^{-1} = zz^{-1} = \bar{f}_i$, $w^{-1}w \leq t^{-1}t$, and $z = wt^{-1}$. Hence $(i, G_i w) \in \Delta t$ and $t \cdot (i, G_i w) = (i, G_i z), t^{-1}(i, G_i z) = (i, G_i w)$.

Thus $\nabla t = \Delta t^{-1}$ is an order-ideal, and t is a partial order-isomorphism with domain Δt and range ∇t , having inverse t^{-1} . If $s \in T$, it is easily shown that $\Delta(ts) = s^{-1}(\nabla s \cap \Delta t) = \Delta(t \circ s)$, and clearly therefore T acts suitably on \mathscr{X} .

Let $(i, G_i x) \in \mathscr{X}$. Then $(i, G_i \overline{f_i}) \in \mathscr{Y} \cap \Delta x^{-1}$, and $x^{-1} \cdot (i, G_i \overline{f_i}) = (i, G_i x)$. Thus $\mathscr{X} = T\mathscr{Y}$.

Let $t \in T$, where $t = k_{iu}^{-1}g_ik_{iv}$, say. Then $(i, G_ik_{iu}) \in \mathscr{Y} \cap t(\mathscr{Y} \cap \Delta t)$, since $t \cdot (i, G_ik_{iv}) = (i, G_ik_{iu})$.

Suppose now that we are given a poset \mathscr{X} containing a subsemilattice and order-ideal \mathscr{Y} , and an inverse semigroup T, which together have the properties listed in the statement of Lemma 2.6.

LEMMA 2.7. For each $t \in T$, $\mathscr{Y} \cap t(\mathscr{Y} \cap t^{-1}(\mathscr{Y} \cap \Delta t^{-1})) \neq \Box$.

Proof. By hypothesis there exists $a \in \mathcal{Y} \cap \Delta t^{-1}$ such that $b = t^{-1}a \in \mathcal{Y}$. Then $b \in \nabla t^{-1} = \Delta t$, and $tb = tt^{-1}a = a$. Hence $a \in \mathcal{Y} \cap t(\mathcal{Y} \cap t^{-1}(\mathcal{Y} \cap \Delta t^{-1}))$.

Define $L = L(T, \mathscr{X}, \mathscr{Y})$ to be

$$\{(a, t) \mid t \in T, a \in \mathscr{Y} \cap t(\mathscr{Y} \cap t^{-1}(\mathscr{Y} \cap \Delta t^{-1}))\}$$

under the multiplication

$$(a, t) (b, s) = (t(t^{-1}a \land b), ts).$$

By Lemma 2.7, for each $t \in T$ there exists $(a, t) \in L$.

Whenever T is a group, that is whenever S is proper and ρ is the minimum group congruence on S, then T acts on \mathscr{X} by order-automorphisms, and $L = P(T, \mathscr{X}, \mathscr{Y})$ as defined in [3].

LEMMA 2.8. Let $a \in \mathscr{X}$, $t \in T$. Then $(a, t) \in L$ if and only if (i) $a \in \mathscr{Y} \cap \Delta t^{-1}$ and (ii) $t^{-1}a \in \mathscr{Y}$.

Proof. This follows easily from the elementary observation that $a \in \nabla t$ if and only if $a \in \Delta t^{-1}$, and then $a = tt^{-1}a$.

COROLLARY 2.9. Suppose $(a, t) \in L$ and $s \ge t$. Then $(a, s) \in L$.

Proof. Since $s^{-1} \ge t^{-1}$, $\Delta t^{-1} \subseteq \Delta s^{-1}$ and $s^{-1}a = t^{-1}a$. The result now follows from Lemma 2.8.

THEOREM 2.10. L is an inverse semigroup. If $\pi_2 : L \to T$ is the second projection $(a, t) \mapsto t$, then π_2 is an I.D. surjective homomorphism.

Proof. Let (a, t), $(b, s) \in L$. By Lemma 2.8, $t^{-1}a \in \mathcal{Y}$ so that $t^{-1}a \wedge b$ exists and is in \mathcal{Y} . Since ∇t^{-1} and Δs^{-1} are order-ideals and $t^{-1}a \in \nabla t^{-1}$, $t^{-1}a \wedge b \in \nabla t^{-1} \cap \Delta s^{-1}$. Hence $t(t^{-1}a \wedge b) \in \Delta s^{-1}t^{-1} = \Delta(ts)^{-1}$. Moreover $t(t^{-1}a \wedge b) \leq tt^{-1}a = a \in \mathcal{Y}$, so that $t(t^{-1}a \wedge b) \in \mathcal{Y}$. Further, $s^{-1}t^{-1}t(t^{-1}a \wedge b) = s^{-1}(t^{-1}a \wedge b) \leq s^{-1}b \in \mathcal{Y}$, by Lemma 2.8. By Lemma 2.8 again, therefore,

$$(a, t)(b, s) = (t(t^{-1}a \land b), ts) \in L,$$

and L is closed under multiplication.

Let $(c, r) \in L$. It is easily seen that

$$(a, t) [(b, s)(c, r)] = [(a, t)(b, s)] (c, r)$$

if and only if

$$t(t^{-1}a \wedge s(s^{-1}b \wedge c)) = ts(s^{-1}(t^{-1}a \wedge b) \wedge c);$$

that is, if and only if

$$t^{-1}a \wedge s(s^{-1}b \wedge c) = s(s^{-1}(t^{-1}a \wedge b) \wedge c);$$
(1)

that is, if and only if

$$s^{-1}(t^{-1}a \wedge s(s^{-1}b \wedge c)) = s^{-1}(t^{-1}a \wedge b) \wedge c.$$
⁽²⁾

Now the left hand side of $(2) \leq s^{-1}(t^{-1}a \wedge ss^{-1}b) = s^{-1}(t^{-1}a \wedge b)$; and further, the left hand side of $(2) \leq s^{-1}s(s^{-1}b \wedge c) = s^{-1}b \wedge c \leq c$. Hence the left hand side of $(2) \leq$ the right hand side of (2). Applying s on the left, we deduce that the left hand side of (1) \leq the right hand side of (1).

On the other hand, the right hand side of $(1) \leq s(s^{-1}b \wedge c)$; and further, the right hand side of $(1) \leq ss^{-1}(t^{-1}a \wedge b) = t^{-1}a \wedge b \leq t^{-1}a$. Hence the right hand side of $(1) \leq$ the left hand side of (1). Equality follows, so that the multiplication is associative.

It is easily seen that the set of idempotents \mathscr{E} of L is given by $\mathscr{E} = \{(a, t) | t = t^2\}$ and that the elements of \mathscr{E} commute. In fact, if (a, t) and $(b, s) \in \mathscr{E}$, then

$$(a, t)(b, s) = (a \land b, ts).$$

Some routine checking then shows that L is an inverse semigroup with $(a, t) \in L$ having inverse $(t^{-1}a, t^{-1})$. Note that $(a, t)(a, t)^{-1} = (a, tt^{-1})$, so that if $(a, t)\mathcal{R}(b, s)$ then a = b. Clearly π_2 is a surjective homomorphism, and if further $(a, t)\pi_2 = (b, s)\pi_2$, then t = s. Hence π_2 is I.D., by Proposition 2.1.

REMARK. Let (a, t), $(b, s) \in \mathscr{E}$; then their product $(a \land b, ts) \in \mathscr{E}$. Since $ts \leq t$, it follows from Corollary 2.9 and Theorem 2.10 that $(a \land b, t) \in \mathscr{E}$.

Define the projection $\pi_1 : \mathscr{E} \to \mathscr{Y}$ by $(a, t)\pi_1 = a$. Then π_1 is a homomorphism with range $\{a \in \mathscr{Y} | a \in \Delta r \text{ for some } r \in T\}$. If $t \neq s$, then we may assume that ts < t, and $(a \land b, t)\pi_1 = (a \land b, ts)\pi_1$.

Hence π_1 is injective if and only if T has exactly one idempotent, that is if and only if T is a group. In this case, T acts by order-automorphisms on \mathscr{X} and π_1 is surjective.

We now have the main theorem of this section, which describes how S is embedded in the corresponding L.

As before, let S be an inverse semigroup with semilattice of idempotents E, and let ρ be an I.D. congruence on S. Suppose that \mathscr{X}, \mathscr{Y} and T are as defined prior to Lemma 2.6. Let L = L(S), where $L(S) = L(T, \mathscr{X}, \mathscr{Y})$, and define the map $\psi : S \to L$ as follows:

$$(r_{iu}^{-1} h_i r_{iv})\psi = ((i, G_i k_{iu}), k_{iu}^{-1} g_i k_{iv}).$$

THEOREM 2.11. ψ is an injective homomorphism such that $\psi \pi_2 = \rho^4$. For each $a \in \mathcal{Y}$ there exists $(a, t) \in L$ with the following property:

$$(a, s) \in L \text{ and } s \leq t \text{ imply that } s = t$$
: (3)

and $S\psi$ is the set of all such (a, t). Moreover, given $a \in \mathcal{V}$, then $(a, s) \in L$ if and only if there exists $(a, t) \in S\psi$ with $t \leq s$.

Proof. The last paragraph of the proof of Lemma 2.6 shows that ψ indeed maps into L. The argument given prior to [3, Lemma 2.5] shows that ψ is injective, and clearly $\psi \pi_2 = \rho^4$. Let

$$p = r_{iu}^{-1} h_i r_{iv}, q = r_{jx}^{-1} h_j r_{jy}$$

be elements of S. Following the first part of the proof of [3, Lemma 2.5],

$$r_{iv}^{-1} r_{iv} r_{jx}^{-1} r_{jx} = r_{nw}^{-1} r_{nw}$$
, for some $r_{nw} \in E_n$,

where

$$r_{nw}r_{iv}^{-1}h_i^{-1}r_{iu} = h_n r_{nz} \text{ for some } r_{nz} \in E_n, h_n \in H_n.$$

Further,

$$pq = r_{nz}^{-1} h'_n r_{nc} \quad \text{for some} \quad r_{nc} \in E_n, \ h'_n \in H_n.$$

Thus $(n, G_n k_{nz})$ is the first coordinate of $(pq)\psi$, and

$$(n, G_n k_{nz}) = (n, G_n k_{nw} k_{iv}^{-1} g_i^{-1} k_{iu}).$$

Now

$$k_{nw}^{-1} k_{nw} \leq k_{iv}^{-1} k_{iv} = (k_{iu}^{-1} g_i k_{iv})^{-1} (k_{iu}^{-1} g_i k_{iv}),$$

so that

$$(n, G_n k_{nz}) = k_{iu}^{-1} g_i k_{iv} \cdot (n, G_n k_{nw}) = p \rho^{\natural} \cdot \{(i, G_i k_{iv}) \land (j, G_j k_{jx})\}.$$

As seen in the last paragraph of the proof of Lemma 2.6, $(i, G_i k_{iv}) = (p \rho^{k})^{-1} (i, G_i k_{iu})$, and it follows that $(pq)\psi$ and $p\psi \cdot q\psi$ have the same first coordinate. Their second coordinates are also equal, so that ψ is a homomorphism.

Given $a = (i, G_i k_{iu}) \in \mathscr{Y}$ therefore, take $g_i \in G_i$ and $k_{iv} \in E_i \rho^{\mathfrak{g}}$. Letting $t = k_{iu}^{-1} g_i k_{iv}$, it follows that $(a, t) \in S \psi$. On the other hand, by Lemma 2.8, $((i, G_i k_{iu}), t) \in L$ if and only if $k_{iu}^{-1} k_{iu} \leq tt^{-1}$ and $t^{-1}(i, G_i k_{iu}) = (i, G_i k_{iw})$ for some $k_{iw} \in E_i \rho^{\mathfrak{g}}$. The latter conditions hold if and only if $k_{iu}^{-1} k_{iu} \leq tt^{-1}$ and $k_{iu}t = g'_i k_{iw}$, for some $g'_i \in G_i$.

Let $m = k_{iu}^{-1}g'_ik_{iw}$; then $((i, G_ik_{iu}), m) \in S\psi$. If $m \leq t$, then $m = mm^{-1}t = k_{iu}^{-1}k_{iu}t$, so that

$$g'_i k_{iw} = k_{iu} m = k_{iu} t$$
; also $k_{iu}^{-1} k_{iu} = mm^{-1} \leq tt^{-1}$.

Conversely, if $k_{iu}t = g'_i k_{iw}$ then $mm^{-1}t = k_{iu}^{-1}k_{iu}t = k_{iu}^{-1}g'_i k_{iw} = m$, so that $m \leq t$.

Suppose now that $((i, G_i k_{iu}), m') \in S \psi$, where $m' \leq m$. Then $m' = m'm'^{-1}m = k_{iu}^{-1}k_{iu}m = m$. Since to any $(a, t) \in L$ there corresponds $(a, s) \in S \psi$ with $s \leq t$, this suffices to complete the proof.

в

COROLLARY 2.12. ψ is surjective if and only if S is proper and ρ is the minimum group congruence on S.

Proof. Suppose that ψ is surjective, and let $t, s \in T$ with $t \leq s$. As noted prior to Lemma 2.8, $(a, t) \in L$ for some $a \in \mathscr{G}$. By Corollary 2.9, $(a, s) \in L$. Since $L = S\psi$ by hypothesis, it follows from Theorem 2.11 that t = s. Hence each element of T is maximal in T, so that T is a group. As noted in §1, this implies that S is proper and that ρ is necessarily the minimum group congruence on S.

The converse has been proved in [3].

Not every semigroup $L(T, \mathcal{X}, \mathcal{Y})$ is of the form L(S) for some inverse semigroup S. However one can give necessary and sufficient conditions that this should be so.

Finally we note that [3, Theorem 2.7] has an obvious generalisation which we will not state here.

3. Two other embedding theorems. We now generalise two embedding theorems for proper inverse semigroups (see [5, 6]).

Let \mathscr{X}, \mathscr{Y} and T have the properties listed in the statement of Lemma 2.6, and let $L = L(T, \mathscr{X}, \mathscr{Y})$.

Define $\overline{\mathcal{X}}$ to be the set of (non-empty) order-ideals A of \mathcal{X} such that $A \subseteq t(\mathcal{Y} \cap \Delta t)$ for some $t \in T$. For each $a \in \mathcal{X}$, let $\overline{a} = \{b \in \mathcal{X} | b \leq a\}$.

LEMMA 3.1. (\bar{x}, \cap) is a semilattice on which T acts suitably. The map $j: a \mapsto \bar{a}$ is an order-isomorphic embedding of \mathcal{X} in $\bar{\mathcal{X}}$ which preserves the action of T, and $\bar{\mathcal{X}}$ is a conditional V-completion for \mathcal{X}_j .

Proof. Let $s, t \in T$. It is clear that $\mathcal{Y} \cap \Delta t$ is a non-empty order-ideal and subsemilattice of \mathcal{X} .

Since ∇t is an order-ideal of \mathscr{X} and since t is an order-isomorphism on Δt , it follows that $t(\mathscr{Y} \cap \Delta t)$ is a subsemilattice and order-ideal of \mathscr{X} . Moreover, $\mathscr{Y} \cap t(\mathscr{Y} \cap \Delta t) \neq \Box$.

Let $a \in A \in \overline{\mathcal{X}}$ where $A \subseteq t(\mathcal{Y} \cap \Delta t)$, and $b \in B \in \overline{\mathcal{X}}$, where $B \subseteq s(\mathcal{Y} \cap \Delta s)$. Let $c \in \mathcal{Y} \cap t(\mathcal{Y} \cap \Delta t)$, $d \in \mathcal{Y} \cap s(\mathcal{Y} \cap \Delta s)$. Then $a \wedge c$ exists in \mathcal{X} and lies in $\mathcal{Y} \cap t(\mathcal{Y} \cap \Delta t)$; similarly $b \wedge d$ exists in \mathcal{X} and lies in $\mathcal{Y} \cap s(\mathcal{Y} \cap \Delta s)$. Hence $e = (a \wedge c) \wedge (b \wedge d)$ exists in \mathcal{X} and lies in \mathcal{Y} . Since e is a common lower bound of a and b, $e \in A \cap B$. Thus $A \cap B \neq \Box$, and it easily follows that $A \cap B \in \overline{\mathcal{X}}$.

For each $t \in T$, let $\overline{\Delta}t = \{A \in \overline{\mathcal{X}} | A \subseteq \Delta t\}$; for example, $t^{-1}(\mathcal{Y} \cap \Delta t^{-1}) \in \overline{\Delta}t$. Clearly $\overline{\Delta}t$ is an order-ideal of $\overline{\mathcal{X}}$. For each $A \in \overline{\Delta}t$, define tA to be the set $\{ta | a \in A\}$. Then tA is an order-ideal of \mathcal{X} and if $r \in T$ is such that $A \subseteq r(\mathcal{Y} \cap \Delta r)$, then $tA \subseteq tr(\mathcal{Y} \cap \Delta(tr))$. Hence $tA \in \overline{\mathcal{X}}$, and $tA \subseteq \overline{\Delta}t^{-1}$. On the other hand, if $B \in \overline{\Delta}t^{-1}$, then $t^{-1}B \in \overline{\Delta}t$ and $tt^{-1}B = B$. Clearly, therefore, t is an order-isomorphism with domain $\overline{\Delta}t$ and range $\overline{\nabla}t = \overline{\Delta}t^{-1}$. Given $A \in \overline{\mathcal{X}}$ and $s \in T$, $A \in \overline{\Delta}(ts)$ if and only if $A \subseteq \Delta(ts)$; that is, if and only if $A \subseteq \Delta s$ and $sA \subseteq \Delta s^{-1} \cap \Delta t$. It easily follows that T acts suitably on $\overline{\mathcal{X}}$.

Let $a \in \mathscr{X} = T\mathscr{Y}$. Then a = sb for some $s \in T$ and $b \in \mathscr{Y} \cap \Delta s$. Hence \bar{a} is an orderideal of \mathscr{X} such that $\bar{a} \subseteq s(\mathscr{Y} \cap \Delta s)$. Let $t \in T$. Then $a \in \Delta t$ if and only if $\bar{a} \in \bar{\Delta}t$, and in this case $\bar{ta} = t \cdot \bar{a}$.

The rest of the result follows from the proof of [6, Lemma 1.2].

Following Lemma 3.1, let $A \in \overline{\mathcal{X}}$, where $A \subseteq t(\mathcal{Y} \cap \Delta t)$ say. Then $A \in \overline{\nabla}t$, so that A = tB for some $B \in \overline{\Delta}t$. Hence $\overline{\mathcal{X}} = T\overline{\mathcal{X}}$, and it follows from Lemmas 2.6 and 3.1 that we can form $\overline{L} = L(T, \overline{\mathcal{X}}, \overline{\mathcal{X}})$.

THEOREM 3.2. The map $k: (a, t) \mapsto (\overline{a}, t)$ is an injective homomorphism from L into L.

Proof. Let $(a, t) \in L$. By Lemma 2.8, $a \in \mathcal{Y} \cap \Delta t^{-1}$ and $t^{-1}a \in \mathcal{Y}$. Hence $\overline{a} \in \overline{\mathcal{X}} \cap \overline{\Delta} t^{-1}$ and $t^{-1}.\overline{a} \in \overline{\mathcal{X}}$. Thus k maps into \overline{L} and clearly it is injective.

Let $(b, s) \in L$. Then

$$\overline{t(t^{-1}a \wedge b)} = t \cdot \overline{(t^{-1}a \wedge b)} = t(\overline{t^{-1}a} \cap \overline{b}) = t(t^{-1} \cdot \overline{a} \cap \overline{b}),$$

and it follows that k is a homomorphism.

By Theorems 2.11 and 3.2, any inverse semigroup S can be embedded in an $L(T, \mathcal{X}, \mathcal{Y})$ and so in $L(T, \overline{\mathcal{X}}, \overline{\mathcal{X}})$. For results of a similar nature, see [7, Propositions 1.4 and 3.6].

Now let S be an inverse semigroup with semilattice of idempotents E, let ρ be an I.D. congruence on S, and let $T = S/\rho$. Then $\alpha = \rho^{*}$ is an isotone homomorphism onto T. In this case, following [4, Theorem 3], $j: s \mapsto Es$ is an embedding of S into the semigroup

 $M = \{ EX | \text{there exists } s' \in S \text{ such that } \Box \neq X \subseteq s' \rho \},\$

where the operation on M is set multiplication, and $\beta: EX \mapsto s'\rho$ is a homomorphism from M onto T with $\alpha = j\beta$. Moreover, M is a partially ordered semigroup under inclusion and if $\bar{\rho} = \beta \circ \beta^{-1}$, then each $\bar{\rho}$ -class has a maximum element.

Recall that EW = WE for any non-empty subset W of S.

THEOREM 3.3. *M* is an inverse semigroup, and inclusion is the natural partial order on *M*. Moreover, $\bar{\rho}$ is I.D..

Proof. If $Y \subseteq S$, let $Y^{-1} = \{y^{-1} | y \in Y\}$. In [9], Schein showed that

$$C = \{ EX | \Box \neq X \subseteq S; XX^{-1}, X^{-1}X \subseteq E \}$$

is an inverse semigroup under set multiplication, with $Y \in C$ having inverse Y^{-1} (see the Note following Theorem 1 in [5]).

If $Y \in M$ then $Y^{-1} \in M$, and it follows that M is an inverse subsemigroup of C.

Suppose $F = EX \in M$, where $\Box \neq X \subseteq s\rho$ for some $s \in S$. If $F = F^2$, then $EX = EX^2$. Applying $\rho^{\mathfrak{h}}$, we deduce that $E\rho^{\mathfrak{h}} \cdot s\rho^{\mathfrak{h}} = E\rho^{\mathfrak{h}} \cdot s^2\rho^{\mathfrak{h}}$. Hence $s\rho^{\mathfrak{h}} = s^2\rho^{\mathfrak{h}}$, so that $s\rho \subseteq E$ since ρ is I.D.. Therefore $F \subseteq E$.

Let $Y, Z \in M$, where $Y = YY^{-1}Z$. By the preceding paragraph $YY^{-1} \subseteq E$, and EZ = Z. Hence $Y \subseteq Z$.

Conversely, if $Y \subseteq Z$, then $Y = YY^{-1}Y \subseteq YY^{-1}Z$, while $Y^{-1}Z \subseteq Z^{-1}Z \subseteq E$; hence $YY^{-1}Z \subseteq Y$. It follows that inclusion is the natural partial order.

If $s \in S$, then E.sp is the maximum element in its $\bar{\rho}$ -class, and $(E.s\rho)\bar{\rho} = \{EW \mid \Box \neq W \subseteq s\rho\}$. Suppose some EW in $(E.s\rho)\bar{\rho}$ is idempotent. Then, as shown above, $W \subseteq E$ and so $s\rho \subseteq E$, since ρ is I.D.. Hence $\bar{\rho}$ is I.D..

Green [2] has shown that there exists a maximum I.D. congruence on an inverse semigroup. Clearly ρ is the maximum I.D. congruence on S if and only if $\bar{\rho}$ is the maximum I.D. congruence on M. As in [5], Sj is the set of V-irreducible elements of M.

Let $a \in S$. In M, $aj = Ea \subseteq E . a\rho$. Since inclusion is the natural partial order on M, by Theorem 3.3, $Ea = Ea . a^{-1}E . a\rho = Eaa^{-1} . a\rho$.

The coordinatisation $a \mapsto (aa^{-1}, a\rho)$ of S can be replaced by $a \mapsto (Eaa^{-1}, a\rho)$, and as seen above the latter has an interpretation in terms of set multiplication.

Let M(E) be the set of non-empty order-ideals of E under set multiplication. As seen in [5], M(E) is a semilattice in which E is embedded by the map $e \mapsto Ee$.

Let $H = E . a\rho$. It follows from Theorem 3.3 that $\phi_{a\rho} : F \mapsto HFH^{-1}$ is an endomorphism of M(E). If $b \in S$, then $Eab(ab)^{-1} = Eaa^{-1} \wedge (Ebb^{-1})\phi_{a\rho}$.

Hence in Green's theory [2, third section] we can replace the endomorphism $\phi(e, t)$ of E by the endomorphism ϕ_t of M(E), where the latter depends on only one parameter. However, it is extremely doubtful if a corresponding reaxiomatisation would present any real gain.

The above considerations generalise part of the theory of [5].

4. The category of *L*-semigroups over an inverse semigroup. In this final section we show that the *L*-semigroups definable over an inverse semigroup *S* form a category with initial and terminal object. Since the details are entirely straightforward, they are omitted.

Suppose ρ_1 and ρ_2 are I.D. congruences on S such that $\rho_1 \subseteq \rho_2$. For i = 1, 2, given the I.D. congruence ρ_i let $\mathscr{X}_i, \mathscr{Y}_i$ and T_i be as defined prior to Lemma 2.6; put $L_i = L(T_i, \mathscr{X}_i, \mathscr{Y}_i)$ and let $\psi_i : S \to L_i$ be the corresponding embedding.

There is induced a unique homomorphism $\eta: T_1 \to T_2$ such that $\rho_1^{\natural} \eta = \rho_2^{\natural}$. In turn η defines a map $\mu: \mathscr{X}_1 \to \mathscr{X}_2$ as follows: for $(i, G_i x) \in \mathscr{X}_1$, $(i, G_i x) \mu = (i, (G_i x) \eta)$. Then μ has the following properties:

(i) μ is isotone, $\mathscr{Y}_1 \mu \subseteq \mathscr{Y}_2$ and $\mu | \mathscr{Y}_1$ is a semilattice homomorphism; and

(ii) for each $t \in T_1$ and $a \in \Delta t$, $(\Delta t)\mu \subseteq \Delta(t\eta)$ and $(ta)\mu = t\eta . a\mu$.

The maps η and μ define a map $\alpha: L_1 \rightarrow L_2$ by

$$, t)\alpha = (a\mu, t\eta),$$

and α is a homomorphism such that $\psi_1 \alpha = \psi_2$.

The semigroups L_1 together with the homomorphisms α form the objects and morphisms, respectively, of a category, which we call the category of *L*-semigroups over *S*. It has an initial object L_0 corresponding to the minimum I.D. congruence *i*, and a terminal object L_{∞} corresponding to the maximum I.D. congruence τ (see[2]).

We note that in L_0 , T = S and we can take $\mathscr{X} = \mathscr{Y} = E$, where E is the semilattice of idempotents of S. For $t \in S$, $\Delta t = \{e \in E | e \leq t^{-1}t\}$ and for $e \in \Delta t$, $t \cdot e = tet^{-1}$. Then $L_0 = \{(e, t) | e \leq tt^{-1}\}$, where in L_0 , $(e, t)(f, s) = (etft^{-1}, ts)$.

On the other hand, suppose, for i = 1, 2, we are given a poset \mathscr{X}_i having a subsemilattice and order-ideal \mathscr{Y}_i and an inverse semigroup T_i having the properties listed in the statement of Lemma 2.6 and let $L_i = L(T_i, \mathscr{X}_i, \mathscr{Y}_i)$. Let $\eta: T_1 \to T_2$ be a homomorphism and $\mu: \mathscr{X}_1 \to \mathscr{X}_2$ a map satisfying the properties (i) and (ii) above. Then the map $\alpha: L_1 \to L_2$ defined by $(a, t) \alpha = (a\mu, t\eta)$ is a homomorphism. For an analogous characterisation of homomorphisms between P-semigroups, see [3].

REFERENCES

1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vols. I and II, Math. Surveys of the American Math. Soc. 7 (Providence, R.I., 1961 and 1967).

2. D. G. Green, Extensions of a semilattice by an inverse semigroup, Bull. Austral. Math. Soc. 9 (1973), 21-31.

3. D. B. McAlister, Groups, semilattices and inverse semigroups II, Trans. Amer. Math. Soc.; to appear.

4. L. O'Carroll, A class of congruences on a posemigroup, Semigroup Forum 3 (1971), 173-179.

5. L. O'Carroll, Reduced inverse and partially ordered semigroups, J. London Math. Soc. (2), 9 (1974), 293-301.

6. L. O'Carroll, Embedding theorems for proper inverse semigroups, J. of Algebra; submitted.

7. N. R. Reilly, Inverse semigroups of partial transformations and θ -classes, Pac. J. Math. 41 (1972), 215-235.

8. T. Saito, Proper ordered inverse semigroups, Pac. J. Math. 15 (1965), 649-666.

9. B. M. Schein, Completions, translational hulls, and ideal extensions of inverse semigroups, Czech. Math. J. 23 (98) (1973), 575-610.

THE MATHEMATICAL INSTITUTE EDINBURGH EH1 1HZ