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1. Introduction and preliminaries. Let X be an infinite-dimensional complex
Banach space and denote the set of bounded (compact) linear operators on X by B{X)
(K(X)). Let a{A) and aa{A) denote, respectively, the spectrum and approximate point
spectrum of an element A of B(X). Set

om{A)= H o(A + K),
KeK(X)

oea{A)= Pi aa(A + K),
KeK(X)

oeb{A)= Pi a(A + K),
AK = KA
KeK(X)

oab{A)= n aa(A + K).
AK = KA
KeK(X)

ocm{A) and oeb(A) are respectively Schechter's and Browder's essential spectrum of A
([16], [9]). oea(A) is a non-empty compact subset of the set of complex numbers C and it
is called the essential approximate point spectrum of A ([13], [14]). In this note we
characterize oab{A) and show that i f / is a function analytic in a neighborhood of o(A),
then oab(f(A)) = f(oab(A)). The relation between oa(A) and oab{A), that is exhibited in
this paper, resembles the relation between the o{A) and the aeh{A), and it is reasonable
to call oab(A) Browder's essential approximate point spectrum of A.

Throughout this paper N(A) and R(A) will denote respectively the null space and the
range space of A. Set a(A) = dim N(A) and P(A) = dim XIR{A). An operator A e B{X)
is called semi-Fredholm if R(A) is closed and at least one of a(A) and /3(A) is finite. For
such an operator A we define an index i(A) by i(A) = a(A) - fi(A). Let Q>+(X) denote
the set of semi-Fredholm operators with a(A) < °°, and <!>+(X) = {A e &+(X): i(A) =£ 0}.
Then oea(A) = {keC:A - A^ ®Z(X)} ([14, Theorem 3.1]). Let (Gn) be a sequence of
compact subsets of C. The limit superior, limsupGn, is the set of all A in C such that
every neighbourhood of A intersects infinitely many Gn. A mapping x defined on B(X)
whose values are compact subsets of C is said to be upper semi-continuous at A when if
An—>A then lim sup r(An) c r(A) ([11]). The polynomial hull E of a compact subset E of
the complex plane C is the complement of the unbounded component of C\E. Given a
compact subset E of the plane, a hole of £ is a component of E\E. If F is another
compact set such that dEcz F c E, it follows that dE czdF, E = F and E can be obtained
from F by filling in some holes of F. (Here and in what follows 3E denotes the boundary
of the set E [15].) Finally a{A), the ascent of A, is the smallest non-negative integer n
such that N(An) = N(An+l). If no such n exists, then a(A) = oo.
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2. Characterization of oah(A).

THEOREM 2.1. A ^ aab{A) if and only ifA-ke ®+(X) and a(A - A) < ».

Proo/. If A ^ afl604), there is a K e K(X) such that AK = KA and A ^ aa(,4 + /C).
In particular, ,4 + K - A e $7(^0 and a(v4 + K - A ) = 0. Adding the operator -K to
A + K-k, we see that ,4-Ae<I>7pO ([7, Theorem 5.26 of Chapter IV]) and
a(A - A) < a> ([3, Theorem 2]). To prove the converse suppose that A - Ao e 3>+(A") and
that a(A - Ao) < °°. If Ao ^ a(A), then Ao ^ crofe(y4) and the proof is complete. Suppose that
Ao e o(A). Then Ao is an isolated point of oa(A) ([10, Lemma 2.5]). Now 0< a(A - Ao) <
oo implies that Kato's number v(A — Ao:7) is finite ([6, Theorem 3]). Following Zemdnek's
method of removing jumping points ([18, Theorem 7.1]), while applying Kato's reduction
theorem ([6, Theorem 4]), we conclude that the space X decomposes into a direct sum of
two closed subspaces Xo and Xx. These subspaces are (A — A0)-invariant, hence
A -invariant, and have the following properties: (we quote only those relevant to our
problem). The space Xx is finite dimensional (and A - Ao is nilpotent on it). If Ao is the
restriction of A to Xo considered as an operator from XQ into itself then <x(A0 — A) is
constant on a neighbourhood of Ao, and hence it is 0. Let F be the finite rank operator
defined by F = I on Xu F = 0 on XQ. Hence, AF = FA, a(A + F - Ao) = 0 and
A + F-Aoe$+P0 ([7. Theorem 5.26 of Chapter IV]). Thus, k0£oa(A + F) and the
proof is complete.

COROLLARY 2.2. A e aa{A)\aab{A) if and only if A is an isolated point of oa{A), an
eigenvalue of A of finite multiplicity, a(A- k)<ix and R(A- A) is closed.

COROLLARY 2.3. Let A 6 oa{A) be an isolated point of oa{A) and let a(A - A) = °°.
Then A e oea{A)-

Proof. Let A be an isolated point of oa{A), a(A - A) = » and A ^ oea{A). Then
0< a(A - A) <oo, R(A- A) is closed and Kato's number v{A-X:l) is finite ([6,
Theorem 3]). Let us apply the operator F from the proof of Theorem 2.1. Then, by [3,
Theorem 2], a{A - A) < °°, which provides a contradiction. This completes the proof.

COROLLARY 2.4. oab{A) = aea{A) U {limit points of aa{A)}.

COROLLARY 2.5. Let A 6 B{X). Then
(i) oea(A)c °ab{A) <= oeb{A),

(ii) 3oeb(A) c doab(A) c 3oea(A),
(iii) aea{A) = aab{A) = aeb{A),
(iv) aflfc(>i) (aefc(/l)) can be obtained from oea(A) (oab(A)) by filling in some holes of

Oea(A) (0ab(A)).
(v) If oea(A) is connected, oab(A) is connected, and if aab{A) is connected, oeb(A) is

connected.

Proof. It is sufficient to prove (ii). Since doeb(A) c doem(A) ([15, Theorem l(b)])
and doem(A) c= doea(A) ([13, Theorem 1]), then doeb(A) a doab(A). Suppose Aoe
doab(A) and Ao ^ oea(A). Hence, 0 < a(A - Ao) < oo and R(A - Ao) is closed. Then there
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exists an e > 0 such that 0< |A0 — A| < e implies that R(A — A) is closed and a(A — A) is
constant ([7, p. 243]). Since Aoe daab{A), we have, by Theorem 2.1, that the constant is
0. Thus, Ao is an isolated point of oa(A), and again by Theorem 2.1 we have that
a(A - Ao) = oo. Hence, Ao e oea(A) (Corollary 2.3). This is a contradiction, and the proof
is complete.

The following example was used by Salinas ([15]) in another context. We use it to
show that in general aea{A) f oab{A).

EXAMPLE 2.6. Let H be a separable Hilbert space, and let V be a unilateral shift of
multiplicity one on H; also let N e B(H) be any quasinilpotent operator. Set A =
K© V*(BN. If we denote by D the closed unit disc in C we have oab(A) = D, while
aea{A) = 9DU {0}.

Proof. Salinas showed that oem(A) = dD U {0} and acb{A) = D. Hence, by ([13,
Theorem 2.1]) we have that oea(A) = 9DU {0}. Suppose 0 < |A| < 1 and A ^ aab{A). Then
a(/l-A)<oo (Theorem 2.1). Now X^aeb(A) ([16], [9, Theorem 1(4)]). This is a
contradiction, and the proof is complete.

From the proof of Theorem 2.1 and Corollary 2.3 we have the following
of a T. J. Laffey and T. T. West theorem ([8, Proposition 2]).

COROLLARY 2.7. Let A e 3>+(X). Then the following statements are equivalent:
(i) A = V + F, where a(V) = 0, F is finite rank and VF = FV;

(ii) there exists a finite rank projection P commuting with A such that a(A | N(P)) =
0;

(iii) there exists e > 0 such that a(A + A) = 0 for 0 < |A| < e;
(iv)

3. Spectral mapping theorem for oab(A).

THEOREM 3.1. If A is any operator and p is any polynomial, then

Proof. Let A ^p(oab(A)) and p{t) - k = c(t- A,). . . (t - An), c =f 0. Thus, p(A) - A
= c(A - A\). . . (A - kn), where A - A,e ®Z(X) and a(/4-A,)<°o for i = l,...,n
(Theorem 2.1). Then p(A) - A e * ; (X) ([17, Theorem 6.6, Theorem 3.5, Theorem 2.3 of
Chapter V]). Let us show that a(p(A) - A)<oo. By ([5, Proposition 38.7]) it is sufficient
to prove that p(A) - A is injective on the subspace U = (~T=i (p(A) - A)"(Ar). We shall
use the method of mathematical induction. This is true for n = 1. Suppose that this is true
for all polynomials of degree n - 1. Set p(A) - A = q(A)(A - A,) where q{t) is polynomial
of degree n-\. Let x e U and (p(A) - k)x = 0. Then {A - k{)(q(A)x) = 0 and q{A)x e
fX=\{A-k{)n{X). Hence, by ([5, Proposition 38.7]) q(A)x = 0. Since x e
CT=i (<l(A))"(X) and q{t) is a polynomial of degree n — \, we have that x = 0. Thus, we
see by Theorem 2.1 that A ^ oab(p{A)). This shows that oab{p{A)) czp{oab{A)). We now
turn to the proof of the opposite inclusion. Suppose that A ep(oab(A)) and A ^ oab{p(A)).
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Then p(A) - A e <&;(*) and a (p(A) - A) < °° (Theorem 2.1). By ([4, p. 20]) /I - A, e
3>+(X) for / = 1, . . . , n. Let A; e aa6(/4) and A =p(A;). Now, A is an isolated point of
afl(p(/4)) (Corollary 2.2) and by ([4]) A; is an isolated point of oa(A). Thus, A -A ,e
<&;(A") ([7, Theorem 5.22 of Chapter IV]), and by Corollary 2.3 we have a(A - Ay) <°°.
Again, by Theorem 2.1, we have that A;^aab(y4), which provides a contradiction. This
completes the proof.

To show that if / i s an analytic function defined on a neighbourhood of a{A), then
/(aofc(i4)) = aab(f{A)) we shall apply K. Oberai's method ([12]). First we shall prove two
following statements which are of particular interest.

THEOREM 3.2. Let AeB{X). Then the mapping A^>oab(A) is upper semi-
continuous.

Proof. Let An—*A. We have to show that lim sup oab(An) a oab(A). It is enough to
show that if 0$oab(A), then 0^1imsupafl6(/ln). Let 0^aab(A). Then 0 is an isolated
point of oa{A) and Ae&Z(X) (Theorem 2.1). By ([7, Theorem 5.22 of Chapter IV])
there exists an e > 0 and an integer nx such that An — A e ®+(X) for |A| < e and for n 3= /i,.
We may assume that a(A-k) = 0 for 0<|A|<£. Let n^nx. Hence, by ([7, p. 243])
a(An — A) are constant for all |A| < e except for an isolated set. Let 0<|Ao|<e. Set
50 = {AeC:|A| = |A0|} and m{A) = inf{||Ac||: ||x|| = 1}. Now, m(A-k)>0 for AeSo.
Since m(A - A) is a continuous function of A ([2, p. 19]) and 50 is compact, there exists
a ^o e So such that m(A - jii0) = ini{m(A - A): A e So}. Let n2 be an integer such that for
n^n-i we have \\An-A\\<m(A-fi0). Hence, for n^no = ma\(nu n2) and Ae50 we
have m(A-X)-\\A-An\\^m(An-k) ([2, Lemma 2.2]). Thus, m( / t n -A)>0 and
<x(An-k) = 0 for all |A|<e except for an isolated set and for n^n0. Therefore, for
n&n o we see that oab(An) n {A e C: |A| < e} is empty (Corollary 2.3 and Theorem 2.1).
Thus we have 0 ̂  lim sup oab(An), and the proof is complete.

THEOREM 3.3. Let A e B(X) and let f be an analytic function defined on a
neighbourhood of o{A). Then aJJ{A)) cf{pm(A)y

Proof. <&+(X) is an F-semigroup with index i ([4, p. 20]). Also

(3.1)

where oea(A) = {XeC:A -k^+(X)}, Fn = {A e o(A):A - Ae ®+(X), i(A-k) = n}.
Now suppose that [i £f(oea(A)). Then [i -/(A) has no zeros on aea{A) and in
particular has no zeros on oea(A). Applying ([4, Theorem 1]) we conclude that

where an is the number of isolated zeros of \i -/(A) on Fn counted according to their
multiplicities. From (3.1) it follows that an=0 for n 3= 1. Thus i(fi -f(A))^0, which
implies that n $ oea(f(A)). This completes the proof.
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THEOREM 3.4. Let AeB(X) and let f be an analytic function defined on a
neighbourhood of a(A). Then ^

Proof. Let (pn(0) be a sequence of polynomials converging uniformly to f(t) on a
neighbourhood of o(A). We have

f(oab{A)) = \impn(oab(A)) (by ([12, p. 370])

= lim oab{pn(A)) (by Theorem 3.1)

^ oab{f{A)) (by Theorem 3.2).

To prove the converse suppose that A e oab(J{A)).
Case I. A e oea(f(A)). By Theorem 3.3 A ef(oea(A)). Thus, we have A ef(oab(A)).
Case II. A ^ oea(f(A)). In this case A is a limit point of oa(f(A)) (Corollary 2.4), and

there exists a sequence (An) c oa(f(A)) such that An—»A. Now, there exists a sequence
(fin) e oa(A) such that/(fin) = An—»A ([4]). Then (nn) contains a convergent subsequence
and we may assume that lim fin = n e oa{A). Then l=f(fi)ef(oab(A)). This completes
the proof of the theorem.

4. A perturbation theorem.

THEOREM 4.1. Let A e B{X) and let N e B(X) be a quasinilpotent operator commut-
ing with A. Then oab(A + N) = oab(A).

Proof. It is enough to show that if 0 ̂  oab{A), then 0 ̂  oab{A + N). Let 0 ^ oab{A). If
0^oa(A), then 0^oa(A + N) ([1, p. 320]). Hence, we have that 0 ̂  oab(A + N). If
0eoa(A), then 0 is an isolated point of oa(A) (Corollary 2.2), and therefore 0 is an
isolated point oa(A + N) ([1, p. 320]). Since 0 ̂  oab{A), we see that 0 i oea(A + N) ([19,
Theorem 7]). This implies that 0 ^ oab(A + N) (Corollary 2.3), and the proof is complete.

ACKNOWLEDGEMENT. I am grateful to Dr. J. Zemanek for his interest in this paper
and for a useful remark in connection with the proof of Theorem 2.1.

REFERENCES

1. M. D. Choi and C. Davis, The spectral mapping theorem for joint approximate point
spectrum, Bull. Amer. Math. Soc. 80 (1974), 317-321.

2. H. A. Gindler and A. E. Taylor, The minimum modulus of a linear operator and its use in
spectral theory, Studia Math. 22 (1962), 15-41.

3. S. Grabiner, Ascent, descent, and compact perturbations, Proc. Amer. Math. Soc, 71
(1978), 79-80.

4. B. Gramsh and D. Lay, Spectral mapping theorems for essential spectra, Math. Ann., 192
(1971), 17-32.

5. H. G. Heuser, Functional analysis (Wiley-Interscience, 1982).
6. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear

operators, / . Analyse Math., 6 (1958), 261-322.
7. T. Kato, Perturbation theory for linear operators (Springer-Verlag, 1976).

https://doi.org/10.1017/S0017089500006509 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006509


198 VLADIMIR RAKOCEVI6

8. T. J. Laffey and T. T. West, Fredholm commutators, Proc. Roy. Irish Acad. Sect. A, 82
(1982), 129-140.

9. D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math.
Soc, 74 (1968), 246-248.

10. D. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann., 184 (1970),
197-214.

11. K. K. Oberai, On the Weyl spectrum, Illinois J. Math., 18 (1974), 208-212.
12. K. K. Oberai, Spectral mapping theorem for essential spectra, Rev. Roumaine Math. Pures

Appl, 25 (1980), 365-373.
13. V. Rakocevic, On one subset of M. Schechter's essential spectrum, Mat. Vesnik, 5 (1981),

389-391.
14. V. Rakocevic, On the essential approximate point spectrum II, Mat. Vesnik, 36 (1984),

89-97.
15. N. Salinas, Operators with essentially disconnected spectrum, Ada Sci. Math. (Szeged), 33

(1972), 193-205.
16. M. Schechter, On the essential spectrum of an arbitrary operator I, J. Math. Anal. Appl.,

13 (1966), 205-215.
17. M. Schechter, Principles of functional analysis (Academic Press, Student edition, 1973).
18. J. Zemanek, Geometric characteristic of semi-Fredholm operators and their asymptotic

behaviour, Institute of Mathematics, Polish Academy of Sciences, preprint 290 (1983).
19. J. Buoni, R. Harte and T. Wickstead, Upper and lower Fredholm spectra, Proc. Amer.

Math. Soc, 66 (1977), 309-314.

UNIVERSITY OF NISH

FACULTY OF PHILOSOPHY

DEPARTMENT OF MATHEMATICS

CLRILA AND METODIJA 2

18000 NISH
YUGOSLAVIA

https://doi.org/10.1017/S0017089500006509 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006509

