1. Introduction and preliminaries. Let X be an infinite-dimensional complex Banach space and denote the set of bounded (compact) linear operators on X by $B(X)$ ($K(X)$). Let $\sigma(A)$ and $\sigma_a(A)$ denote, respectively, the spectrum and approximate point spectrum of an element A of $B(X)$. Set

$$
\sigma_{em}(A) = \bigcap_{K \in K(X)} \sigma(A + K),
$$

$$
\sigma_{ea}(A) = \bigcap_{K \in K(X)} \sigma_a(A + K),
$$

$$
\sigma_{eb}(A) = \bigcap_{AK = KA \in K(X)} \sigma(A + K),
$$

$$
\sigma_{ab}(A) = \bigcap_{AK = KA \in K(X)} \sigma_a(A + K).
$$

$\sigma_{em}(A)$ and $\sigma_{eb}(A)$ are respectively Schechter’s and Browder’s essential spectrum of A ([16], [9]). $\sigma_{ea}(A)$ is a non-empty compact subset of the set of complex numbers \mathbb{C} and it is called the essential approximate point spectrum of A ([13], [14]). In this note we characterize $\sigma_{ab}(A)$ and show that if f is a function analytic in a neighborhood of $\sigma(A)$, then $\sigma_{ab}(f(A)) = f(\sigma_{ab}(A))$. The relation between $\sigma_a(A)$ and $\sigma_{ab}(A)$, that is exhibited in this paper, resembles the relation between the $\sigma(A)$ and the $\sigma_{eh}(A)$, and it is reasonable to call $\sigma_{ab}(A)$ Browder’s essential approximate point spectrum of A.

Throughout this paper $N(A)$ and $R(A)$ will denote respectively the null space and the range space of A. Set $\alpha(A) = \dim N(A)$ and $\beta(A) = \dim X/R(A)$. An operator $A \in B(X)$ is called semi-Fredholm if $R(A)$ is closed and at least one of $\alpha(A)$ and $\beta(A)$ is finite. For such an operator A we define an index $i(A)$ by $i(A) = \alpha(A) - \beta(A)$. Let $\Phi_+(X)$ denote the set of semi-Fredholm operators with $\alpha(A) < \infty$, and $\Phi_+(X) = \{ A \in \Phi_+(X) : i(A) \leq 0 \}$. Then $\sigma_{ea}(A) = \{ \lambda \in \mathbb{C} : A - \lambda \notin \Phi_+(X) \}$ ([14, Theorem 3.1]). Let (G_n) be a sequence of compact subsets of \mathbb{C}. The limit superior, $\limsup G_n$, is the set of all A in \mathbb{C} such that every neighbourhood of A intersects infinitely many G_n.

A mapping τ defined on $B(X)$ whose values are compact subsets of \mathbb{C} is said to be upper semi-continuous at A when if $A_n \to A$ then $\limsup \tau(A_n) \subseteq \tau(A)$ ([11]). The polynomial hull \hat{E} of a compact subset E of the complex plane \mathbb{C} is the complement of the unbounded component of $\mathbb{C}\setminus E$. Given a compact subset E of the plane, a hole of E is a component of $\hat{E}\setminus E$. If F is another compact set such that $\partial E \subset F \subset E$, it follows that $\partial E \subset \partial F$, $\hat{E} = \hat{F}$ and E can be obtained from F by filling in some holes of F. (Here and in what follows ∂E denotes the boundary of the set E [15].) Finally $a(A)$, the ascent of A, is the smallest non-negative integer n such that $N(A^n) = N(A^{n+1})$. If no such n exists, then $a(A) = \infty$.

2. Characterization of $\sigma_{ab}(A)$.

Theorem 2.1. $\lambda \notin \sigma_{ab}(A)$ if and only if $A - \lambda \in \Phi_{+}^{-}(X)$ and $a(A - \lambda) < \infty$.

Proof. If $\lambda \notin \sigma_{ab}(A)$, there is a $K \in K(X)$ such that $AK = KA$ and $\lambda \notin \sigma_{k}(A + K)$. In particular, $A + K - \lambda \in \Phi_{+}^{-}(X)$ and $a(A + K - \lambda) = 0$. Adding the operator $-K$ to $A + K - \lambda$, we see that $A - \lambda \in \Phi_{-}^{-}(X)$ ([7, Theorem 5.26 of Chapter IV]) and $a(A - \lambda) < \infty$ ([3, Theorem 2]). To prove the converse suppose that $A - \lambda_0 \in \Phi_{-}^{-}(X)$ and that $a(A - \lambda_0) < \infty$. If $\lambda_0 \notin \sigma(A)$, then $\lambda_0 \notin \sigma_{ab}(A)$ and the proof is complete. Suppose that $\lambda_0 \in \sigma(A)$. Then λ_0 is an isolated point of $\sigma_{a}(A)$ ([10, Lemma 2.5]). Now $0 < a(A - \lambda_0) < \infty$ implies that Kato's number $v(A - \lambda_0 : I)$ is finite ([6, Theorem 3]). Following Zemánek's method of removing jumping points ([18, Theorem 7.1]), while applying Kato's reduction theorem ([6, Theorem 4]), we conclude that the space X decomposes into a direct sum of two closed subspaces X_0 and X_1. These subspaces are $(A - \lambda_0)$-invariant, hence A-invariant, and have the following properties: (we quote only those relevant to our problem). The space X_1 is finite dimensional (and $A - \lambda_0$ is nilpotent on it). If A_0 is the restriction of A to X_0 considered as an operator from X_0 into itself then $a(A_0 - \lambda_0)$ is constant on a neighbourhood of λ_0, and hence it is 0. Let F be the finite rank operator defined by $F = I$ on X_1, $F = 0$ on X_0. Hence, $AF = FA$, $a(A + F - \lambda_0) = 0$ and $A + F - \lambda_0 \in \Phi_{+}(X)$ ([7, Theorem 5.26 of Chapter IV]). Thus, $\lambda_0 \notin \sigma_{a}(A + F)$ and the proof is complete.

Corollary 2.2. $\lambda \notin \sigma_{a}(A) \setminus \sigma_{ab}(A)$ if and only if λ is an isolated point of $\sigma_{a}(A)$, an eigenvalue of A of finite multiplicity, $a(A - \lambda) < \infty$ and $R(A - \lambda)$ is closed.

Corollary 2.3. Let $\lambda \notin \sigma_{a}(A)$ be an isolated point of $\sigma_{a}(A)$ and let $a(A - \lambda) = \infty$. Then $\lambda \in \sigma_{es}(A)$.

Proof. Let λ be an isolated point of $\sigma_{a}(A)$, $a(A - \lambda) = \infty$ and $\lambda \notin \sigma_{a}(A)$. Then $0 < a(A - \lambda) < \infty$, $R(A - \lambda)$ is closed and Kato's number $v(A - \lambda : I)$ is finite ([6, Theorem 3]). Let us apply the operator F from the proof of Theorem 2.1. Then, by [3, Theorem 2], $a(A - \lambda) < \infty$, which provides a contradiction. This completes the proof.

Corollary 2.4. $\sigma_{ab}(A) = \sigma_{es}(A) \cup \{\text{limit points of } \sigma_{a}(A)\}$.

Corollary 2.5. Let $A \in B(X)$. Then

(i) $\sigma_{es}(A) \subset \sigma_{ab}(A) \subset \sigma_{eb}(A)$,

(ii) $\partial \sigma_{eb}(A) \subset \partial \sigma_{ab}(A) \subset \partial \sigma_{es}(A)$,

(iii) $\sigma_{es}(A) = \sigma_{eb}(A) = \sigma_{eb}(A)$,

(iv) $\sigma_{ab}(A)$ (or $\sigma_{eb}(A)$) can be obtained from $\sigma_{es}(A)$ (or $\sigma_{eb}(A)$) by filling in some holes of $\sigma_{es}(A)$ (or $\sigma_{eb}(A)$).

(v) If $\sigma_{es}(A)$ is connected, $\sigma_{ab}(A)$ is connected, and if $\sigma_{eb}(A)$ is connected, $\sigma_{eb}(A)$ is connected.

Proof. It is sufficient to prove (ii). Since $\partial \sigma_{eb}(A) \subset \partial \sigma_{em}(A)$ ([15, Theorem 1(b)]) and $\partial \sigma_{em}(A) \subset \partial \sigma_{ea}(A)$ ([13, Theorem 1]), then $\partial \sigma_{eb}(A) \subset \partial \sigma_{ab}(A)$. Suppose $\lambda_0 \in \partial \sigma_{ab}(A)$ and $\lambda_0 \notin \sigma_{ea}(A)$. Hence, $0 < a(A - \lambda_0) < \infty$ and $R(A - \lambda_0)$ is closed. Then there
exists an \(\varepsilon > 0 \) such that \(0 < |\lambda_0 - \lambda| < \varepsilon \) implies that \(R(A - \lambda) \) is closed and \(\alpha(A - \lambda) \) is constant ([7, p. 243]). Since \(\lambda_0 \in \partial \sigma_{ab}(A) \), we have, by Theorem 2.1, that the constant is 0. Thus, \(\lambda_0 \) is an isolated point of \(\sigma_{ab}(A) \), and again by Theorem 2.1 we have that \(a(A - \lambda_0) = \infty \). Hence, \(\lambda_0 \in \sigma_{ea}(A) \) (Corollary 2.3). This is a contradiction, and the proof is complete.

The following example was used by Salinas ([15]) in another context. We use it to show that in general \(\sigma_{ea}(A) \neq \sigma_{ab}(A) \).

Example 2.6. Let \(H \) be a separable Hilbert space, and let \(V \) be a unilateral shift of multiplicity one on \(H \); also let \(N \in B(H) \) be any quasinilpotent operator. Set \(A = K \circ V^* \otimes N \). If we denote by \(D \) the closed unit disc in \(\mathbb{C} \) we have \(\sigma_{ab}(A) = D \), while \(\sigma_{ea}(A) = \partial D \cup \{0\} \).

Proof. Salinas showed that \(\sigma_{em}(A) = \partial D \cup \{0\} \) and \(\sigma_{ab}(A) = D \). Hence, by ([13, Theorem 2.1]) we have that \(\sigma_{ea}(A) = \partial D \cup \{0\} \). Suppose \(0 < |\lambda| < 1 \) and \(\lambda \notin \sigma_{ab}(A) \). Then \(a(A - \lambda) < \infty \) (Theorem 2.1). Now \(\lambda \notin \sigma_{ea}(A) \) ([16], [9, Theorem 1(4)]). This is a contradiction, and the proof is complete.

From the proof of Theorem 2.1 and Corollary 2.3 we have the following of a T. J. Laffey and T. T. West theorem ([8, Proposition 2]).

Corollary 2.7. Let \(A \in \Phi_\tau(X) \). Then the following statements are equivalent:

(i) \(A = V + F \), where \(\alpha(V) = 0 \), \(F \) is finite rank and \(VF = FV \);

(ii) there exists a finite rank projection \(P \) commuting with \(A \) such that \(\alpha(A | N(P)) = 0 \);

(iii) there exists \(\varepsilon > 0 \) such that \(\alpha(A + \lambda) = 0 \) for \(0 < |\lambda| < \varepsilon \);

(iv) \(a(A) < \infty \).

3. **Spectral mapping theorem for \(\sigma_{ab}(A) \).**

Theorem 3.1. If \(A \) is any operator and \(p \) is any polynomial, then

\[
\sigma_{ab}(p(A)) = p(\sigma_{ab}(A)).
\]

Proof. Let \(\lambda \notin \sigma(ab)(A) \) and \(p(t) = c(t - \lambda_1) \ldots (t - \lambda_n), \ c \neq 0 \). Thus, \(p(A) - \lambda = c(A - \lambda_1) \ldots (A - \lambda_n) \), where \(A - \lambda_i \in \Phi_\tau(X) \) and \(a(A - \lambda_i) < \infty \) for \(i = 1, \ldots, n \) (Theorem 2.1). Then \(p(A) - \lambda \in \Phi_\tau(X) \) ([17, Theorem 6.6, Theorem 3.5, Theorem 2.3 of Chapter V]). Let us show that \(a(p(A) - \lambda) < \infty \). By ([5, Proposition 38.7]) it is sufficient to prove that \(p(A) - \lambda \) is injective on the subspace \(U = \bigcap_{n=1}^{\infty} (p(A) - \lambda)^n(X) \). We shall use the method of mathematical induction. This is true for \(n = 1 \). Suppose that this is true for all polynomials of degree \(n - 1 \). Set \(p(A) - \lambda = q(A)(A - \lambda_i) \) where \(q(t) \) is polynomial of degree \(n - 1 \). Let \(x \in U \) and \((p(A) - \lambda)x = 0 \). Then \((A - \lambda_i)(q(A)x) = 0 \) and \(q(A)x \in \bigcap_{n=1}^{\infty} (A - \lambda_i)^n(X) \). Hence, by ([5, Proposition 38.7]) \(q(A)x = 0 \). Since \(x \in \bigcap_{n=1}^{\infty} (q(A))^n(X) \) and \(q(t) \) is a polynomial of degree \(n - 1 \), we have that \(x = 0 \). Thus, we see by Theorem 2.1 that \(\lambda \notin \sigma_{ab}(p(A)) \). This shows that \(\sigma(ab)(p(A)) \subset p(\sigma_{ab}(A)) \). We now turn to the proof of the opposite inclusion. Suppose that \(\lambda \notin p(\sigma_{ab}(A)) \) and \(\lambda \notin \sigma_{ab}(p(A)) \).
Then \(p(A) - \lambda \in \Phi_+(X) \) and \(a(p(A) - \lambda) < \infty \) (Theorem 2.1). By ([4, p. 20]) \(A - \lambda_i \in \Phi_+(X) \) for \(i = 1, \ldots, n \). Let \(\lambda_i \in \sigma_{ab}(A) \) and \(\lambda = p(\lambda_i) \). Now, \(\lambda \) is an isolated point of \(\sigma_p(p(A)) \) (Corollary 2.2) and by ([4]) \(\lambda_i \) is an isolated point of \(\sigma_{ab}(A) \). Thus, \(A - \lambda_i \in \Phi_+(X) \) ([7, Theorem 5.22 of Chapter IV]), and by Corollary 2.3 we have \(a(A - \lambda_i) < \infty \). Again, by Theorem 2.1, we have that \(\lambda_i \notin \sigma_{ab}(A) \), which provides a contradiction. This completes the proof.

To show that if \(f \) is an analytic function defined on a neighbourhood of \(\sigma(A) \), then \(f(\sigma_{ab}(A)) = \sigma_{ab}(f(A)) \) we shall apply K. Oberai's method ([12]). First we shall prove two following statements which are of particular interest.

Theorem 3.2. Let \(A \in B(X) \). Then the mapping \(A \mapsto \sigma_{ab}(A) \) is upper semi-continuous.

Proof. Let \(A_n \to A \). We have to show that \(\limsup \sigma_{ab}(A_n) \subseteq \sigma_{ab}(A) \). It is enough to show that if \(0 \notin \sigma_{ab}(A) \), then \(0 \notin \limsup \sigma_{ab}(A_n) \). Let \(0 \notin \sigma_{ab}(A) \). Then 0 is an isolated point of \(\sigma_p(A) \) and \(A \in \Phi_+(X) \) (Theorem 2.1). By ([7, Theorem 5.22 of Chapter IV]) there exists an \(\varepsilon > 0 \) and an integer \(n_1 \) such that \(A_n - \lambda \in \Phi_+(X) \) for \(|\lambda| < \varepsilon \) and for \(n \geq n_1 \). We may assume that \(\alpha(A - \lambda) = 0 \) for \(0 < |\lambda| < \varepsilon \). Let \(n \geq n_1 \). Hence, by ([7, p. 243]) \(\alpha(A_n - \lambda) \) are constant for all \(|\lambda| < \varepsilon \) except for an isolated set. Let \(0 < |\lambda_0| < \varepsilon \). Set \(S_0 = \{ \lambda \in \mathbb{C} : |\lambda| = |\lambda_0| \} \) and \(m(A) = \inf\{\|Ax\| : \|x\| = 1\} \). Now, \(m(A - \lambda) > 0 \) for \(\lambda \in S_0 \). Since \(m(A - \lambda) \) is a continuous function of \(\lambda \) ([2, p. 19]) and \(S_0 \) is compact, there exists a \(\mu_0 \in S_0 \) such that \(m(A - \mu_0) = \inf\{m(A - \lambda) : \lambda \in S_0\} \). Let \(n_2 \) be an integer such that for \(n \geq n_2 \) we have \(\|A_n - A\| < m(A - \mu_0) \). Hence, for \(n \geq n_0 = \max(n_1, n_2) \) and \(\lambda \in S_0 \) we have \(m(A - \lambda) - \|A_n - A\| < m(A_n - \lambda) \) ([2, Lemma 2.2]). Thus, \(m(A_n - \lambda) > 0 \) and \(\alpha(A_n - \lambda) = 0 \) for all \(|\lambda| < \varepsilon \) except for an isolated set and for \(n \geq n_0 \). Therefore, for \(n \geq n_0 \) we see that \(\sigma_{ab}(A_n) \cap \{ \lambda \in \mathbb{C} : |\lambda| < \varepsilon \} \) is empty (Corollary 2.3 and Theorem 2.1). Thus we have \(0 \notin \limsup \sigma_{ab}(A_n) \), and the proof is complete.

Theorem 3.3. Let \(A \in B(X) \) and let \(f \) be an analytic function defined on a neighbourhood of \(\sigma(A) \). Then \(\sigma_{ae}(f(A)) = f(\sigma_{ae}(A)) \).

Proof. \(\Phi_+(X) \) is an F-semigroup with index \(i \) ([4, p. 20]). Also

\[
\sigma_{ae}(A) = \sigma_{ae}(A) \cup \left(\bigcup_{n \geq 1} F_n \right),
\]

(3.1)

where \(\sigma_{ae}(A) = \{ \lambda \in \mathbb{C} : A - \lambda \notin \Phi_+(X) \} \), \(F_n = \{ \lambda \in \sigma(A) : A - \lambda \in \Phi_+(X) \} \), \(i(A - \lambda) = n \). Now suppose that \(\mu \notin f(\sigma_{ae}(A)) \). Then \(\mu - f(\lambda) \) has no zeros on \(\sigma_{ae}(A) \) and in particular has no zeros on \(\sigma_{ae}(A) \). Applying ([4, Theorem 1]) we conclude that \(\mu - f(A) \in \Phi_+(X) \) and

\[
i(\mu - f(A)) = \sum_n n \alpha_n,
\]

where \(\alpha_n \) is the number of isolated zeros of \(\mu - f(\lambda) \) on \(F_n \) counted according to their multiplicities. From (3.1) it follows that \(\alpha_n = 0 \) for \(n \geq 1 \). Thus \(i(\mu - f(A)) \leq 0 \), which implies that \(\mu \notin \sigma_{ae}(f(A)) \). This completes the proof.
THEOREM 3.4. Let \(A \in B(X) \) and let \(f \) be an analytic function defined on a neighbourhood of \(\sigma(A) \). Then
\[
f(\sigma_{ab}(A)) = \sigma_{ab}(f(A)).
\]

Proof. Let \((p_n(t))\) be a sequence of polynomials converging uniformly to \(f(t) \) on a neighbourhood of \(\sigma(A) \). We have
\[
f(\sigma_{ab}(A)) = \lim p_n(\sigma_{ab}(A)) \quad \text{(by ([12, p. 370])})
\]
\[
= \lim \sigma_{ab}(p_n(A)) \quad \text{(by Theorem 3.1)}
\]
\[
\leq \sigma_{ab}(f(A)) \quad \text{(by Theorem 3.2)}.
\]

To prove the converse suppose that \(\lambda \in \sigma_{ab}(f(A)) \).

Case I. \(\lambda \in \sigma_{ea}(f(A)) \). By Theorem 3.3 \(\lambda \in f(\sigma_{ea}(A)) \). Thus, we have \(\lambda \in f(\sigma_{ab}(A)) \).

Case II. \(\lambda \notin \sigma_{ea}(f(A)) \). In this case \(\lambda \) is a limit point of \(\sigma_{a}(f(A)) \) (Corollary 2.4), and there exists a sequence \((\lambda_n) \subset \sigma_{a}(f(A))\) such that \(\lambda_n \to \lambda \). Now, there exists a sequence \((\mu_n) \subset \sigma_{a}(A)\) such that \(f(\mu_n) = \lambda_n \to \lambda \) ([4]). Then \((\mu_n)\) contains a convergent subsequence and we may assume that \(\lim \mu_n = \mu \in \sigma_{a}(A) \). Then \(\lambda = f(\mu) \in f(\sigma_{ab}(A)) \). This completes the proof of the theorem.

4. A perturbation theorem.

THEOREM 4.1. Let \(A \in B(X) \) and let \(N \in B(X) \) be a quasinilpotent operator commuting with \(A \). Then \(\sigma_{ab}(A + N) = \sigma_{ab}(A) \).

Proof. It is enough to show that if \(0 \notin \sigma_{ab}(A) \), then \(0 \notin \sigma_{ab}(A + N) \). Let \(0 \notin \sigma_{ab}(A) \). If \(0 \notin \sigma_{q}(A) \), then \(0 \notin \sigma_{q}(A + N) \) ([1, p. 320]). Hence, we have that \(0 \notin \sigma_{ab}(A + N) \). If \(0 \in \sigma_{q}(A) \), then \(0 \) is an isolated point of \(\sigma_{q}(A) \) (Corollary 2.2), and therefore \(0 \) is an isolated point of \(\sigma_{q}(A + N) \) ([1, p. 320]). Since \(0 \notin \sigma_{ab}(A) \), we see that \(0 \notin \sigma_{ea}(A + N) \) ([19, Theorem 7]). This implies that \(0 \notin \sigma_{ab}(A + N) \) (Corollary 2.3), and the proof is complete.

ACKNOWLEDGEMENT. I am grateful to Dr. J. Zemánek for his interest in this paper and for a useful remark in connection with the proof of Theorem 2.1.

REFERENCES