CONVOLUTION TRANSFORMS RELATED TO NON-HARMONIC FOURIER SERIES

D. B. SUMNER

1. Introduction. Widder has pointed out (2, p. 219) in connection with Wiener's fundamental work on the operational calculus (1, pp. 557-584), that the convolution transform

$$
\begin{equation*}
f(x)=\int_{-\infty}^{\infty} G(x-t) \phi(t) d t \tag{1.1}
\end{equation*}
$$

will be inverted by the operator $D E(D)$, where $D=d / d x$, and

$$
1 / w E(w)=\int_{-\infty}^{\infty} \exp (-x w) G(x) d x
$$

where a suitable interpretation must be found for $E(D)$. Cases where $E(w)$ is entire have been considered by Widder (2, pp. 217-249; 3, pp. 7-60), Hirschman and Widder (4, pp. 659-696; 8, pp. 135-201), and the author (5).

The most general method of interpreting $E(D)$ is as $\lim _{n \rightarrow \infty} P_{n}(D)$, where $P_{n}(w)$ is a polynomial of degree n, the method requiring a knowledge of $f(x)$ only for real values of its argument. However in cases where more is known about $E(w)(4$, p. 692; 5, pp. 174-183; 6, p. 219), it is possible to represent $E(w)$ as an integral, when the computations are simpler, but it is necessary to have $f(x)$ defined for complex arguments.

The purpose of this article is to consider convolution transforms for which the invertor function $E(w)$ is entire, is not necessarily even, and can be represented by a Fourier-Lebesgue integral. The real numbers which are taken to be the zeros of $E(w)$ are a generalization of the non-harmonic Fourier exponents discussed by Levinson (7, pp. 47-57). The classical Stieltjes transform (3), and the generalized form of it (5), are particular cases. The assumptions made about the zeros of $E(w)$ are sufficient to establish all properties needed, and no integrability condition is postulated for $E(u)$.
2. Definitions. We suppose throughout that

$$
\begin{align*}
& \lambda_{n}=\rho+n-\delta+2 \delta \alpha_{n}, \mu_{n}=n-\delta+2 \delta \beta_{n} \quad(n=1,2, \ldots), \tag{2.1}\\
& \\
& \quad 0 \leqslant \alpha_{n}, \beta_{n} \leqslant 1, \quad 0 \leqslant \delta<\frac{1}{4}, \quad 0 \leqslant \rho<1-2 \delta ; \tag{2.2}\\
& \tag{2.3}\\
& E(w)=\prod_{1}^{\infty}\left(1-w / \lambda_{n}\right)\left(1+w / \mu_{n}\right) ; \\
& G(z)=\lim _{R \rightarrow \infty}(2 \pi i)^{-1} \int_{c-i R}^{c+i R} \exp (z w) d w / w E(w), \quad 0<c<\lambda_{1} .
\end{align*}
$$

The symbols A, A_{k} denote absolute constants throughout.

[^0]3. Some properties of $E(w)$. The numbers λ_{n}, μ_{n} are those used by Levinson (7, pp. 47-57) in his work on non-harmonic Fourier series. With the notation $w=u+i v=r \exp (i \phi)$, Levinson's methods may be used to establish the following inequalities:
\[

$$
\begin{align*}
|E(\mathrm{w})| & \leqslant A \exp (\pi|v|) / \mathrm{r}^{\rho+1-4 \delta}, \quad(r \geqslant 1) ; \tag{3.1}\\
|E(w)| & \geqslant A \exp (\pi|v|) / r^{\rho+1-4 \delta}, \text { provided that } \\
r \geqslant 1, \quad\left|w-r_{n}\right| & \geqslant \Delta>0, \quad r_{n}=\lambda_{n} \text { or }-\mu_{n} ; \tag{3.2}\\
\left|E^{\prime}\left(r_{n}\right)\right|^{-1} & \leqslant A r^{\rho+1+4 \delta} ;
\end{align*}
$$
\]

(3.4) there exists a constant $q, 1<q \leqslant 2$, such that $E(u) \in L^{q}(-\infty, \infty)$.

For the behaviour of $E(w)$ along the imaginary axis, we establish the more precise inequalities

$$
\begin{gather*}
|E(i v)| \leqslant A \exp (\pi|v|) /|v|^{\rho+1-2 \delta},|E(i v)| \geqslant A \exp (\pi|v|) /|v|^{\rho+1+2 \delta} ; \tag{3.5}\\
|\operatorname{amp} E(i v \theta) / E(i v)|<A(1-\theta), \tag{3.6}
\end{gather*}
$$

where $0<\theta \leqslant 1$, and the constant is independent of v;
$|E(i v \theta) / E(i v)|$ is a decreasing function of $|v|, 0<\theta<1$.
Proof of (3.1). Let $\Re(w)>0$, and N be the integer defined by

$$
\begin{equation*}
\left(\rho+N-\frac{1}{2}\right) \cos \phi \leqslant r<\left(\rho+N+\frac{1}{2}\right) \cos \phi \tag{3.8}
\end{equation*}
$$

On considering separately the factors in (2.2) for which $1 \leqslant n<N, n=\mathrm{N}$ and $n \geqslant N+1$, as Levinson does, we get

$$
\begin{align*}
& |E(w)| \leqslant\left|\frac{\Gamma(\rho+N+1+\delta) \Gamma(\rho+N+1-\delta-w)}{\Gamma(\rho+N+1-\delta) \Gamma(\rho+N+1+\delta-w)}\right| \tag{3.9}\\
& \quad \cdot\left|\frac{\Gamma(\rho+1-\delta) \Gamma(1-\delta)\left(\lambda_{N}-w\right)}{\Gamma(\rho+1-\delta-w) \Gamma(1-\delta+w)(\rho+N-\delta-w)}\right|
\end{align*}
$$

By Stirling's theorem the first factor in (3.9) does not exceed

$$
\begin{equation*}
A_{1}\left(\rho+N-\frac{1}{2}\right)^{2 \delta} /|\rho+N+1-\delta-w|^{2 \delta} ; \tag{3.10}
\end{equation*}
$$

while the second factor does not exceed

$$
\begin{equation*}
\frac{A_{2}}{r^{\rho+1-2 \delta}}\left|\frac{\left(\lambda_{N}-w\right) \sin \pi(w+\delta-\rho)}{\pi(w+\delta-N-\rho)}\right| . \tag{3.11}
\end{equation*}
$$

Now when $|w+\delta-N-\rho|<\frac{1}{2}, \mid \sin \pi(w+\delta-\rho) / \pi(w+\delta-N-\rho)<A_{3} ;$ and by (2.1), $\left|\lambda_{N}-w\right|<1$. When $|w+\delta-N-\rho| \geqslant \frac{1}{2},|\sin \pi(w+\delta-\rho)| \leqslant$ $A_{4} \exp (\pi|v|)$, and $\left|\left(\lambda_{N}-w\right) /(w+\delta-N-\rho)\right| \leqslant 1+2 \delta \alpha_{N} /|w+\delta-N-\rho|$ <2. Thus in all cases the second factor in (3.9) does not exceed

$$
\begin{equation*}
A_{5} \exp (\pi|v|) / r^{\rho+1-2 \delta} \tag{3.12}
\end{equation*}
$$

We prove now that

$$
\begin{equation*}
b d\{|\rho+N+1-\delta-w| \cos \phi\}>0 \tag{3.13}
\end{equation*}
$$

For by (3.21), (3.8), when $0 \leqslant|\phi| \leqslant \pi / 4$,

$$
\begin{aligned}
|\rho+N+1-\delta-w| \cos \phi \geqslant & 2^{-\frac{1}{2}}(\rho+N+1-\delta-u)> \\
& 2^{-\frac{1}{2}}\left[\left(\rho+N+\frac{1}{2}\right) \sin ^{2} \phi+\frac{1}{2}-\delta\right] \geqslant 2^{-\frac{1}{2}}\left(\frac{1}{2}-\delta\right)
\end{aligned}
$$

and when $\pi / 4<|\phi|<\pi / 2$,

$$
\begin{aligned}
|\rho+N+1-\delta-w| \cos \phi & \geqslant(\rho+N+1-\delta-u) /\left(\rho+N+\frac{1}{2}\right) \\
& \geqslant \sin ^{2} \phi+\left(\frac{1}{2}-\delta\right) /\left(\rho+N+\frac{1}{2}\right) \geqslant \frac{1}{2}
\end{aligned}
$$

by (3.8) and $r \geqslant 1$.
From (3.9), (3.10), and (3.12),

$$
\begin{aligned}
|E(w)| & \leqslant A_{6}\left(\rho+N-\frac{1}{2}\right)^{2 \delta} \exp (\pi|v|) / r^{\rho+1-2 \delta}|\rho+N+1-\delta-w|^{2 \delta}, \\
& \leqslant A_{7} r^{2 \delta} \exp (\pi|v|) / r^{\rho+1-2 \delta}\{|\rho+N+1-\delta-w| \cos \phi\}^{2 \delta}, \\
& \leqslant A_{8} \exp (\pi|v|) / r^{\rho+1-4 \delta}
\end{aligned}
$$

by (3.13). This proves (3.1) for $\Re(w)>0$; and the assertion is seen to be true for $\Re(w)<0$ by applying the same argument to $E(-w)$.

Remark on the proof of (3.4). Levinson's method may be used to show that when $\rho+N \leqslant u \leqslant \rho+2 N$,

$$
\begin{align*}
|E(u)| \leqslant & \frac{A_{9} N^{4 \delta-\rho-1}}{(\rho+2 N+1-u)^{2} \delta} \prod_{N}^{2 N}\left|\frac{\rho+n-\delta+\alpha_{n}-u-2 i}{\rho+n-\delta-u-2 i}\right|^{2 \delta}, \tag{3.14}\\
& \int_{\rho+N}^{\rho+2 N}|E(u)|^{q} d u \leqslant A_{10} / N^{q(\rho+1)-1-2 q \delta}, \tag{3.15}
\end{align*}
$$

provided that
If in addition

$$
\begin{equation*}
0 \leqslant 2 q \delta<1 \tag{3.16}
\end{equation*}
$$

(3.17)

$$
\begin{equation*}
q(\rho+1-2 \delta)>1 \tag{3.17}
\end{equation*}
$$

it follows from (3.15) that $E(u) \in L(0, \infty)$. The final conclusion follows by considering $E(-u)$ in the same way.

It is evident that there always exists a number $q, 1<q \leqslant 2$, satisfying (3.16) and (3.17), for example $q=(1-\Delta)^{-1}$, where $2 \delta<\Delta<1-2 \delta$.

Proof of (3.5). Since

$$
\begin{aligned}
\left|\left(1-\frac{i v}{\rho+n+\delta}\right)\left(1+\frac{i v}{n+\delta}\right)\right| & \leqslant\left|\left(1-\frac{i v}{\lambda_{n}}\right)\left(1+\frac{i v}{\mu_{n}}\right)\right| \\
& \leqslant\left|\left(1-\frac{i v}{\rho+n-\delta}\right)\left(1+\frac{i v}{n-\delta}\right)\right|
\end{aligned}
$$

it follows that

$$
\begin{aligned}
\left|\frac{\Gamma(\rho+1+\delta) \Gamma(1+\delta)}{\Gamma(\rho+1+\delta-i v) \Gamma(1+\delta+i v)}\right| & \leqslant|E(i v)| \\
& \leqslant\left|\frac{\Gamma(\rho+1-\delta) \Gamma(1-\delta)}{\Gamma(\rho+1-\delta-i v) \Gamma(1-\delta+i v)}\right|
\end{aligned}
$$

and (3.5) then follows from a classical property ($9, \mathrm{p} .259$) of the Γ-function.

Proof of (3.6). We give details for the case $v>0$. Writing

$$
\phi_{n}=\operatorname{amp}\left\{\left(1-i v \theta / \lambda_{n}\right)\left(1+i v \theta / \mu_{n}\right) /\left(1-i v / \lambda_{n}\right)\left(1+i v / \mu_{n}\right)\right\},
$$

and using the inequalities for λ_{n}, μ_{n} and ρ in (2.1), we have

$$
\begin{aligned}
\phi_{n} & =\arctan \left(\frac{v(1-\theta) \lambda_{n}}{v^{2} \theta+\lambda_{n}^{2}}\right)-\arctan \left(\frac{v(1-\theta) \mu_{n}}{v^{2} \theta+\mu_{n}^{2}}\right), \\
& <\arctan \left(\frac{v(1-\theta)(\rho+n+\delta)}{v^{2} \theta+(\rho+n-\delta)^{2}}\right)-\arctan \left(\frac{v(1-\theta)(n-\delta)}{v^{2} \theta+(n+\delta)^{2}}\right), \\
& <\arctan \left(\frac{v(1-\theta)(n+1-\delta)}{v^{2} \theta+(n-\delta)^{2}}\right)-\arctan \left(\frac{v(1-\theta)(n-\delta)}{v^{2} \theta+(n+\delta)^{2}}\right), \\
& =\arctan \frac{v(1-\theta)\left\{v^{2} \theta+n^{2}(1+4 \delta)+2 n \delta(1-2 \delta)+\delta^{2}\right\}}{\left[v^{2} \theta+(n-\delta)^{2}\right]\left[v^{2} \theta+(n+\delta)^{2}\right]+v^{2}(1-\theta)^{2}(n+1-\delta)(n-\delta)} .
\end{aligned}
$$

On observing that

$$
0<v^{2} \theta+n^{2}(1+4 \delta)+2 n \delta(1-2 \delta)+\delta^{2}<2\left[v^{2} \theta+(n+\delta)^{2}\right]
$$

we see that $\phi_{n}<\arctan \left\{2 v(1-\theta) /\left[v^{2} \theta+(n-\delta)^{2}\right]\right\}$. A similar argument applied to $-\phi_{n}$ gives

$$
-\phi_{n}<\arctan \left\{3 v(1-\theta) /\left[v^{2} \theta+(n-\delta)^{2}\right]\right\}
$$

and thus

$$
\left|\phi_{n}\right|<\arctan \left\{3 v(1-\theta) /\left[v^{2} \theta+(n-\delta)^{2}\right]\right\} .
$$

It then follows easily that $|\operatorname{amp}[E(i v \theta) / E(i v)]|<A(1-\theta)$, the constant being independent of v.

Proof of (3.7). Let Λ be the region consisting of the w-plane from which the points $v=0,|u| \geqslant 1-\delta$ have been removed. Then the series

$$
\sum_{1}^{\infty}\left(\frac{w}{\lambda_{n}-w}-\frac{\theta w}{\lambda_{n}-\theta w}\right), \quad \sum_{1}^{\infty}\left(\frac{w}{\mu_{n}-w}-\frac{\theta w}{\mu_{n}-\theta w}\right)
$$

converge absolutely and uniformly in any compact subset of Λ, and

$$
\begin{gathered}
\frac{d}{d v} \log \left[\frac{E(i v \theta)}{E(i v)}\right]=i \sum_{1}^{\infty}\left(\frac{\lambda_{n}+i v}{\lambda_{n}^{2}+v^{2}}-\frac{\theta\left(\lambda_{n}+i v \theta\right)}{\lambda_{n}^{2}+v^{2} \theta^{2}}\right) \\
-\quad-i \sum_{1}^{\infty}\left(\frac{\mu_{n}-i v}{\mu_{n}^{2}+v^{2}}-\frac{\theta\left(\mu_{n}-i v \theta\right)}{\mu_{n}^{2}+v^{2} \theta^{2}}\right), \\
\Re\left\{\frac{d}{d v} \log \frac{E(i v \theta)}{E(i v)}\right\}=-\sum_{1}^{\infty}\left[\frac{v \lambda_{n}^{2}\left(1-\theta^{2}\right)}{\left(\lambda_{n}^{2}+v^{2}\right)\left(\lambda_{n}^{2}+v^{2} \theta^{2}\right)}+\frac{v \mu_{n}^{2}\left(1-\theta^{2}\right)}{\left(\mu_{n}^{2}+v^{2}\right)\left(\mu_{n}^{2}+v^{2} \theta^{2}\right)}\right]<0 .
\end{gathered}
$$

It follows that $|E(i v \theta) / E(i v)|$ is a decreasing function of $|v|$.
4. Representation of the operator. Let p be the index conjugate to q, so that $p \geqslant 2$. By (3.4), the function

$$
k(y)=\lim _{R \rightarrow \infty}^{(p)}(2 \pi)^{-\frac{1}{2}} \int_{-R}^{R} E(u) \exp (-i u y) d u
$$

exists and belongs to $L^{p}(-\infty, \infty)$. On considering the contour integral $\int E(w) \exp (-i y w) d w$ taken round the boundary of the semi-circular disc $|w| \leqslant R, v \geqslant 0$, we see that the part of the integral taken round the arc of the semi-circle is $O\left(R^{-\beta}\right),(R \rightarrow \infty)$ when $|y|>\pi$, where $\beta=\rho+1-4 \delta>0$ in (3.1). Thus

$$
\begin{equation*}
k(y)=0 \quad p . p . \text { in }|y|>\pi \tag{4.1}
\end{equation*}
$$

Since $E(u)$ is continuous

$$
\begin{align*}
E(u) & =\lim _{R \rightarrow \infty}(2 \pi)^{-\frac{1}{2}} \int_{-R}^{R} k(y)[1-|y| / R] \exp (i u y) d y \tag{4.2}\\
& =(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) \exp (i u y) d y
\end{align*}
$$

and $k(y) \in L^{2}(-\pi, \pi)$ by (4.1) and $p \geqslant 2$.
It is easily seen that for complex w, the integral

$$
(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) \exp (i y w) d y
$$

defines an entire function, and by (4.2) we may write

$$
\begin{equation*}
E(w)=(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) \exp (i y w) d y . \tag{4.3}
\end{equation*}
$$

In proving the inversion theorem we shall make use of the function $E(\theta w)$, $0<\theta \leqslant 1$, for which we prove

$$
\begin{equation*}
\left|E\left(\theta r_{n}\right)\right| \leqslant A(1-\theta) r_{n} \tag{4.4}
\end{equation*}
$$

where r_{n} stands for λ_{n} or $-\mu_{n}$ and the constant is independent of n.
Let $m(y, \alpha)=\exp (-i y \alpha \theta)-\exp (-i y \alpha)$. Then for $|y|<\pi$, and $0<\theta \leqslant 1$,

$$
\begin{gathered}
|m(y, \alpha)|=|\alpha|\left|\int_{\theta y}^{y} \exp (-i t \alpha) d t\right| \leqslant \pi|\alpha|(1-\theta) \\
\left|E\left(-\theta \mu_{k}\right)-E\left(-\mu_{k}\right)\right|=(2 \pi)^{-\frac{1}{2}}\left|\int_{-\pi}^{\pi} k(y) m\left(y, \mu_{k}\right) d y\right| \leqslant A(1-\theta) \mu_{k},
\end{gathered}
$$

by the Schwarz inequality.
With the usual interpretation of $\exp (a D)$ as a shift operator, we have formally

$$
\begin{aligned}
D E(D) \cdot f(x) & =\lim _{\theta \rightarrow 1} D E(\theta D) \cdot f(x), \\
& =\lim _{\theta \rightarrow 1}(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) \exp (i y \theta D) d y \cdot f^{\prime}(x), \\
& =\lim _{\theta \rightarrow 1}(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) f^{\prime}(x+i y \theta) d y
\end{aligned}
$$

We therefore define the operation $D E(D) . f(x)$ by

$$
\begin{equation*}
D E(D) \cdot f(x)=\lim _{\theta \rightarrow 1}(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) f^{\prime}(x+i y \theta) d y . \tag{4.5}
\end{equation*}
$$

5. Properties of the nucleus. Denoting the strip $|y|<\pi$ of the z-plane by B, we prove the following propositions:
(5.1) the integral (2.3) defining $G(z)$ converges absolutely when $z \in B$, converges uniformly when z belongs to a compact subset of B, and therefore defines a function analytic in B;

$$
\begin{array}{rlr}
G(z) & =\left\{\begin{array}{lr}
1+O\left[\exp \left(-x \mu_{1}\right)\right], & (x \rightarrow \infty \text { in } B), \\
O\left[\exp \left(x \lambda_{1}\right)\right], & (x \rightarrow-\infty \text { in } B) ;
\end{array}\right. \\
G^{\prime}(z) & =\left\{\begin{array}{lr}
O\left[\exp \left(-x \mu_{1}\right)\right], & (x \rightarrow \infty \text { in } B), \\
O\left[\exp \left(x \lambda_{1}\right)\right], & (x \rightarrow-\infty \text { in } B) ;
\end{array}\right. \tag{5.3}
\end{array}
$$

(5.4) when $z_{0} \in B$, there is a constant R_{0} such that the integrals

$$
\int_{-\infty}^{-R_{0}}\left|\frac{d}{d t} \frac{G(z-t)}{G\left(z_{0}-t\right)}\right| d t, \quad \int_{R_{0}}^{\infty}\left|\frac{d}{d t} \frac{G(z-t)}{G\left(z_{0}-t\right)}\right| d t
$$

converge uniformly when z belongs to any compact subset of B.
Proof of (5.1). By (2.3), (3.2),

$$
\begin{equation*}
\left|\frac{1}{2 \pi i} \int_{c-i_{\infty}}^{c+i_{\infty}} \frac{\exp (z w) d w}{w E(w)}\right| \leqslant A_{1} \exp (c x) \int_{-\infty}^{\infty} \exp [-y v-(\pi-\epsilon)|v|] d v \tag{2}
\end{equation*}
$$

since $|y|<\pi$ in B. This inequality is sufficient to establish the assertions of (5.1).

Proof of (5.2), (5.3). On account of the classical properties of Dirichlet series it is sufficient to show that

$$
G(z)=\left\{\begin{align*}
1-\sum_{1}^{\infty} \exp \left(-z \mu_{n}\right) / \mu_{n} E^{\prime}\left(-\mu_{n}\right), & (x>0,|y|<\pi), \tag{5.5}\\
-\sum_{1}^{\infty} \exp \left(z \lambda_{n}\right) / \lambda_{n} E^{\prime}\left(\lambda_{n}\right), & (x<0,|y|<\pi)
\end{align*}\right.
$$

the Dirichlet series converging absolutely in the indicated regions.
Details are given for the case $x<0$. Designating the points $c-i R$, $c+R \cot \beta-i R, c+R \cot \beta+i R$ and $c+i R$ by A, B, C and D respectively, where $0<\beta<\frac{1}{2} \pi$, let L be the contour formed by the linear segments $A B$ and $C D$ and the circular arc $|w-c|=R$ joining to B to C. Consider

$$
I=\int_{L} \exp (z w) d w / w E(w) .
$$

By using (3.2) and $x<0,0<\beta<\frac{1}{2} \pi,|y|<\pi$, and estimating the integrals along $A B, B C$ and $C D$ separately, we see that $I=o(1)$ as $R \rightarrow \infty$. The second equation in (5.5) then follows from the definition of $G(z)$ and the calculus of residues.

Proof of (5.4). When $x \neq 0, G(z)$ is represented by the absolutely convergent Dirichlet series (5.5), and it is well known that functions so defined can have but a finite number of zeros. Since z_{0} is given, and $X_{1} \leqslant x \leqslant X_{2}$
in the compact subset of B, we may choose R_{0} so that $G\left(z_{0}-t\right)$ does not vanish for $|t| \geqslant R$. It then follows easily that

$$
\left|\frac{d}{d t} \frac{G(z-t)}{G\left(z_{0}-t\right)}\right|=\left\{\begin{array}{lr}
O\left[\exp \left(t \mu_{1}\right)\right] & (t \rightarrow-\infty) \\
O\left\{\exp \left[-t\left(\lambda_{2}-\lambda_{1}\right)\right]\right\} & (t \rightarrow \infty),
\end{array}\right.
$$

where the constants are independent of z. These estimates are sufficient for the proof.
6. Properties of the transform. The following theorem gives properties of the functions $f(x)$ and $\phi(t)$ in (1.1) which will be used later.

Theorem I. Let $\phi(t) \in L(0, R)$ for any R and be such that the integral (1.1) converges for at least one z in B, and let $\Phi(t)=\int_{0}^{t} \phi(u) d u$: then (6.1) the integral (1.1) converges for all z in B, and defines a function analytic in B;

$$
\Phi(t)=\left\{\begin{array}{lr}
o\left(\exp t \lambda_{1}\right) & (t \rightarrow \infty), \tag{6.2}\\
o(\exp -t \Delta) & (t \rightarrow-\infty),
\end{array}\right.
$$

for any positive Δ.
Proof of (6.1). On account of (5.4), the method of Widder-Hirschmann may be used (4, pp. 691-692).

Proof of (6.2). It follows from the representation (5.5) of $G(z)$ for $x \neq 0$ that $G(z)$ and $G^{\prime}(z)$ have at most a finite number of zeros. Let A be a positive number such that neither $G(z)$ nor $G^{\prime}(z)$ vanishes for $|x| \geqslant A$. To prove the first assertion, define $\psi(t)=\int_{0}^{t} G(-A-u) d \Phi(u)$. Then by hypothesis, $\psi(\infty)$ is finite, and

$$
\begin{aligned}
\Phi(t) \exp \left(-t \lambda_{1}\right) & =\exp \left(-t \lambda_{1}\right) \int_{0}^{t} d \psi(u) / G(-A-u) \\
& =\exp \left(-t \lambda_{1}\right)\left[\frac{\psi(t)}{G(-A-t)}-\int_{0}^{t} \frac{\psi(u) G^{\prime}(-A-u) d u}{G^{2}(-A-u)}\right] \\
& =o(1)
\end{aligned}
$$

as $t \rightarrow \infty$ by l'Hopital's rule, and (5.5).
To prove the second assertion, write $\psi(t)=\int_{0}^{t} G(A-u) d \Phi(u)$; and in the same way, $\Phi(t) \exp (t \Delta)=o(1),(t \rightarrow-\infty)$.

It is convenient at this point to establish some properties of the function

$$
\begin{equation*}
K(x, \theta)=\theta(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) G^{\prime}(x+i y \theta) d y . \tag{6.3}
\end{equation*}
$$

These properties are:

$$
K(x, \theta)=\left\{\begin{array}{lr}
(1-\theta) O\left[\exp \left(-x \mu_{1}\right),\right. & (x \rightarrow \infty), \tag{6.4}\\
(1-\theta) O\left[\exp \left(x \lambda_{1}\right)\right], & (x \rightarrow-\infty),
\end{array}\right.
$$

with similar estimates for $K^{\prime}(x, \theta)$;

$$
\begin{equation*}
K(x, \theta)=O\left[(1-\theta)^{-1}\right] \text { uniformly in } x \text { as } \theta \rightarrow 1 \tag{6.5}
\end{equation*}
$$

(6.6) when x is positive, $\lim _{\theta \rightarrow 1} \int_{0}^{x} K(t, \theta) d t=\frac{1}{2}=\lim _{\theta \rightarrow 1} \int_{-x}^{0} K(t, \theta) d t$.

Proof of (6.4). Details are given for the case $x>0$.

$$
\begin{array}{rlr}
|K(x, \theta)| & =\left|\theta(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) d y(2 \pi i)^{-1} \int_{c-i_{\infty}}^{c+i_{\infty}} \exp [w(x+i y \theta)] d w / E(w)\right| \\
& =\left|(2 \pi i)^{-1} \int_{c-i_{\infty}}^{c+i_{\infty}} E(\theta w) \exp (x w) d w / E(w)\right|, & b y(4.3) ; \\
& =\left|\sum_{1}^{\infty} E\left(-\theta \mu_{n}\right) \exp \left(-x \mu_{n}\right) / E^{\prime}\left(-\mu_{n}\right)\right|, \\
& \leqslant A_{1}(1-\theta) \sum_{1}^{\infty} \mu_{n} \exp \left(-x \mu_{n}\right) /\left|E^{\prime}\left(-\mu_{n}\right)\right|, & b y \text { (4.4); } \tag{4.4}
\end{array}
$$

and as $x>0$ and (3.3) guarantee the convergence of this series, our assertion is proved.

Proof of (6.5). By (4.3), (6.3) and Cauchy's theorem,

$$
\begin{aligned}
K(x, \theta) & =\theta(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) d y(2 \pi i)^{-1} \int_{-i_{\infty}}^{i_{\infty}} \exp [w(x+i y \theta)] d w / E(w), \\
& =\theta(2 \pi)^{-1} \int_{-\infty}^{\infty} \exp (i x v) E(i v \theta) d v / E(i v) .
\end{aligned}
$$

Using the fact that for $0<\theta<1$,

$$
\left|\left(1-i v \theta / \lambda_{n}\right) /\left(1-i v \lambda_{n}\right)\right| \text { and }\left|\left(1+i v \theta / \mu_{n}\right) /\left(1+i v / \mu_{n}\right)\right|
$$

are less than unity, we have

$$
\left|\frac{1-i v \theta /(\rho+n-\delta)}{1-i v /(\rho+n-\delta)}\right| \leqslant\left|\frac{1-i v \theta / \lambda_{n}}{1-i v / \lambda_{n}}\right| \leqslant\left|\frac{1-i v \theta /(\rho+n+\delta}{1-i v /(\rho+n+\delta}\right|
$$

with similar inequalities involving μ_{n}. Hence

$$
\begin{aligned}
\left|\frac{\Gamma(\rho+1-\delta-i v) \Gamma(1-\delta+i v)}{\Gamma(\rho+1-\delta-i v \theta)}\right| & \Gamma(1-\delta+i v \theta)
\end{aligned} \leqslant\left|\frac{E(i v \theta)}{E(i v)}\right|,
$$

and by (9, p. 259),

$$
\begin{equation*}
|E(i v \theta) / E(i v)| \sim A \exp [-\pi|v|(1-\theta)] \quad(|v| \rightarrow \infty) \tag{6.7}
\end{equation*}
$$

Since $0<\theta<1$, this is sufficient to prove our result.
Proof of (6.6). Write $I=\int_{0}^{x} K(t, \theta) d t$, where $x \neq 0$. Then

$$
\begin{aligned}
I & =\theta(2 \pi)^{-\frac{1}{2}} \int_{0}^{x} d t \int_{-\pi}^{\pi} k(y) G^{\prime}(t+i y \theta) d y, \\
& =\theta(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y)[G(x+i y \theta)-G(i y \theta)] d y,
\end{aligned}
$$

the interchange of the integrations being justified, since $k(y) \in L^{2}(-\pi, \pi)$ and

$$
\begin{aligned}
\left|G^{\prime}(t+i y \theta)\right| & =\left|(2 \pi i)^{-1} \int_{c-i_{\infty}}^{c+i \infty} \exp [w(t+i y \theta)] d w / E(w)\right|, \\
& =\left|(2 \pi)^{-1} \int_{-\infty}^{\infty} \exp (-v y \theta+i v t) d v / E(i v)\right|, \\
& =\int_{-\infty}^{\infty} \exp [-\pi|v|(1-\theta)] O\left[|v|^{\mid+1+2 \delta}\right] d v, b y(3.5), \\
& =O\left[(1-\theta)^{-\rho-2-2 \delta}\right] .
\end{aligned}
$$

Thus
$I=\theta(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) d y(2 \pi i)^{-1} \int_{c-i_{\infty}}^{c+i_{\infty}}\{\exp [w(x+i y \theta)]-\exp (i y \theta w)\} d w / w E(w)$.
Again by (4.3) and the absolute convergence of the inner integral for $|y|<\pi$, we may interchange the integrations, and get

$$
\begin{equation*}
I=\frac{\theta}{2 \pi} \int_{-\infty}^{\infty} \frac{[\exp (i x v)-1] E(i v \theta)}{i v E(i v)} d v \tag{6.8}
\end{equation*}
$$

the application of Cauchy's theorem being justified by the analyticity of $[\exp (x w)-1] / w$ at the origin.

We observe next that $E(\theta w) / E(w)$ is real when w is real. Hence $I=P-Q$, where

$$
\begin{aligned}
& Q=\frac{\theta}{2 \pi} \int_{0}^{\infty} \frac{1-\cos x v}{v} \Im\left[\frac{E(i v \theta)}{E(i v)}\right] d v, \\
& P=\frac{\theta}{2 \pi} \int_{0}^{\infty} \frac{\sin x v}{v} \Re\left[\frac{E(i v \theta)}{E(i v)}\right] d v .
\end{aligned}
$$

It is then sufficient to show that

$$
\begin{gather*}
Q \rightarrow 0 \tag{6.9}\\
P \rightarrow \frac{1}{2} \\
\text { is sufficient to consider } \\
Q_{1}=\int_{1}^{\infty} \frac{1-\cos x v}{v} \Im\left[\frac{E(i v \theta)}{E(i v)}\right] d v
\end{gather*}
$$

$$
\theta \rightarrow 1,
$$

$$
\theta \rightarrow 1
$$

To prove (6.9), it is sufficient to consider

We then have

$$
\begin{aligned}
\left|Q_{1}\right| & =\left|\int_{1}^{\infty} \frac{1-\cos x v}{v}\right| \frac{E(i v \theta)}{E(i v)}\left|\sin \operatorname{amp}\left[\frac{E(i v \theta)}{E(i v)}\right] d v\right| \\
& \leqslant A_{1}(1-\theta) \int_{1}^{\infty} v^{-1} \exp [-\pi v(1-\theta)] d v, \quad b y(3.6) \text { and }(6.7), \\
& =A_{1}(1-\theta) \int_{\pi(1-\theta)}^{\infty} t^{-1} \exp (-t) d t<A_{2}(1-\theta)^{\frac{1}{2}} \Gamma\left(\frac{1}{2}\right)
\end{aligned}
$$

Thus Q_{1}, and consequently Q tends to zero as θ tends to unity.
To prove (6.10), we observe that on account of (3.7),

$$
\int_{0}^{\infty} \frac{\sin x v}{v}\left|\frac{E(i v \theta)}{E(i v)}\right| d v
$$

converges uniformly in $\frac{1}{2} \leqslant \theta \leqslant 1$; and from (3.6), that $\mathfrak{R}[E(i v \theta) / E(i v)]$ is
positive when θ is close to unity. It is therefore sufficient to prove that $C(\theta) \rightarrow 0(\theta \rightarrow 1)$, where

$$
C(\theta)=\int_{0}^{\infty} \frac{\sin x v}{v}\left\{\left|\frac{E(i v \theta)}{E(i v)}\right|-\Re\left[\frac{E(i v \theta)}{E(i v)}\right]\right\} d v
$$

But

$$
\begin{align*}
|C(\theta)| & \leqslant \int_{0}^{\infty}\left|\frac{E(i v \theta)}{E(i v)}\right|\left\{1-\cos \operatorname{amp}\left[\frac{E(i v \theta)}{E(i v)}\right]\right\} d v \\
& \leqslant A_{3}(1-\theta)^{2} \int_{0}^{\infty} \exp [-\pi v(1-\theta)] d v \\
& =O[(1-\theta)] \tag{3.6}
\end{align*}
$$

7. The inversion theorems. The main result is

Theorem II. Let $\phi(t) \in L(0, R)$ for any R and be such that the integral (1.1) converges for at least one z in the strip B : then if $f(z)$ is defined by (1.1) and $D E(D) . f(x)$ by (4.5),

$$
D E(D) \cdot f(x)=\frac{1}{2}[\phi(x+)+\phi(x-)],
$$

whenever the right-hand side has a meaning.
For

$$
\begin{aligned}
D E(D) \cdot f(x) & =\lim _{\theta \rightarrow 1}(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) d y \int_{-\infty}^{\infty} G^{\prime}(x-t+i y \theta) \phi(t) d t \\
& =\lim _{\theta \rightarrow 1} \int_{-\infty}^{\infty} \phi(t) d t(2 \pi)^{-\frac{1}{2}} \int_{-\pi}^{\pi} k(y) G^{\prime}(x-t+i y \theta) d y \\
& =\lim _{\theta \rightarrow 1} \int_{-\infty}^{\infty} K(x-t, \theta) \phi(t) d t
\end{aligned}
$$

the interchange of the integrations being justified by the uniform convergence of (1.1) in any compact subset of B, and the fact that $k(y) \in L^{2}(-\pi, \pi)$. It is sufficient to prove

$$
\begin{align*}
& \int_{-\infty}^{x} K(x-t, \theta) \phi(t) d t \rightarrow \frac{1}{2} \phi(x-) \tag{7.1}\\
& \int_{x}^{\infty} K(x-t, \theta) \phi(t) d t \rightarrow \frac{1}{2} \phi(x+) \tag{7.2}
\end{align*}
$$

as $\theta \rightarrow 1$.
We give details for (7.1). Let $T>0$, and write

$$
\int_{x-T}^{x} K(x-t, \theta)[\phi(t)-\phi(x-)] d t=\int_{0}^{T} K(t, \theta)[\phi(x-t)-\phi(x-)] d t=J(0, T)
$$

Then

$$
\begin{align*}
|J[0, \pi(1-\theta)]| & \leqslant \int_{0}^{\pi(1-\theta)}|\phi(x-t)-\phi(x-)||K(t, \theta)| d t \\
& \leqslant A(1-\theta)^{-1} \int_{0}^{\pi(1-\theta)}|\phi(x-t)-\phi(x-)| d t \\
& =o(1) \tag{7.3}
\end{align*}
$$

as $\theta \rightarrow 1$, by (6.5). Next by (6.4),

$$
\begin{align*}
|J[\pi(1-\theta), T]| & \leqslant A(1-\theta) \int_{\pi(1-\theta)}^{T}|\phi(x-t)-\phi(x-)| \exp \left(-t \mu_{1}\right) d t \tag{7.4}\\
& =O(1-\theta) .
\end{align*}
$$

Thus by (6.6), (7.3) and (7.4)

$$
\lim _{\theta \rightarrow 1} \int_{x-T}^{x} K(x-t, \theta) \phi(t) d t=\frac{1}{2} \phi(x-) .
$$

It remains to prove that $\int_{-\infty}^{x-T} K(x-t, \theta) \phi(t) d t \rightarrow 0$ as $\theta \rightarrow 1$. As this integral need not converge absolutely, we write it as

$$
\left[K^{\prime}(x-t, \theta) \Phi(t)\right]_{-\infty}^{T}+\int_{-\infty}^{x-T} K^{\prime}(x-t, \theta) \Phi(t) d t
$$

By (6.2) and (6.4) the integrated term $=o(1)$; and for the same reason

$$
\left|\int_{-\infty}^{x-T} K^{\prime}(x-t, \theta) \Phi(t) d t\right|=\left|\int_{T}^{\infty} K^{\prime}(t, \theta) \Phi(x-t) d t\right|=O(1-\theta) .
$$

Since (7.2) may be proved in the same way, the theorem is complete.
The proof of the following theorem is similar:
Theorem III. Let $f(z)=\int_{-\infty}^{\infty} G(z-t) d \alpha(t)$, where $\alpha(t)$ is a normalized function of bounded variation in any finite interval: then if this integral converges for any z in B, it converges for all such z, converges uniformly in any compact subset of B, and defines a function analytic in B. Also

$$
\lim _{\theta \rightarrow 1}(2 \pi)^{-\frac{1}{2}} \int_{x_{1}}^{x_{2}} d x \int_{-\pi}^{\pi} k(y) f^{\prime}(x+i y \theta) d y=\alpha\left(x_{2}\right)-\alpha\left(x_{1}\right) .
$$

8. Remarks. In the proof of (5.4) we have used the fact that from its representation (5.5) as a Dirichlet series, the nucleus $G(z)$ has but a finite number of zeros. Hirschmann and Widder (8, p. 159) have shown that a more general nucleus has no zeros on the real axis, and it is certainly true that $G(i y) \neq 0$ for $|y|<\pi$. The proof that $G(z)$ does not vanish in B seems to be connected with properties of functions defined by Dirichlet series with coefficients of alternating sign, and will be dealt with elsewhere.

References

1. N. Wiener, The operational calculus, Math. Ann., 95 (1925-26), 557-584.
2. D. V. Widder, Inversion formulas for convolution transforms, Duke Math. J., 14 (1947), 217-249.
3. -_, The Stieltjes transform, Trans. Amer. Math. Soc., 43 (1938), 7-60.
4. I. I. Hirschmann, Jr. and D. V. Widder, Generalized inversion formulas for convolution transforms, Duke Math. J., 15 (1948), 659-696.
5. D. B. Sumner, An inversion formula for the generalized Stieltjes transform, Bull. Amer. Math. Soc., 55 (1949), 174-183.
6. I. I. Hirschmann, Jr. and D. V. Widder, Convolution transforms with complex kernels, Pacific J. Math., 1 (1951), 211-225.
7. N. Levinson, Gap and density theorems (Amer. Math. Soc. Coll., vol. XXVI, 1940).
8. I. I. Hirschmann, Jr. and D. V. Widder, Inversion of a class of convolution transforms, Trans. Amer. Math. Soc., 66 (1949), 135-201.
9. E. C. Titchmarsh, The theory of functions (1st. ed., Oxford, 1932).
10. G. H. Hardy and N. Levinson, Inequalities satisfied by a certain definite integral, Bull. Amer. Math. Soc., 43 (1937), 709-716.

Hamilton College, McMaster University, and
Research Institute of the Canadian Mathematical Congress.

[^0]: Received September 12, 1952; in revised form July 15, 1954.

