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ABSTRACT 
The paper presents a Model-Driven approach for Product-Service System (PSS) Design promoting an 
increased digitalization of the PSS design process based on the combination of data-driven design 
(DDD) activities and value-driven design (VDD) methods. The approach is the results of an 8-year 
long research profile named (omitted for blind review) featuring the collaboration between (omitted 
for blind review) and nine industrial companies, in the field of PSS Design. It combines VDD models 
and the supporting data-driven activities in the frame of PSS design and aligns with the product value 
stream and the knowledge value stream in the product innovation process as described by Kennedy et 
al. (2008). The paper provides a high-level overview of the approach describing the different stages 
and activities, and provides references to external scientific contributions for more exhaustive 
descriptions of the research rationale and validity. The approach is meant to ultimately drive the 
development and implementation of a simulation environment for cross-functional and multi-
disciplinary decision making in PSS, named Model-Driven Decision Arena, describe in the concluding 
part of the paper. 
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1 INTRODUCTION 

Solving problems in engineering product development becomes increasingly expensive and time-

consuming as development projects progress, and financial commitments are made and production 

started (Ullman 2002, Ulrich and Eppinger, 2012). Mechanical and knowledge engineering models are 

important means to predict hardware properties at an early stage of design. In the process of an 

increasing transition towards Product-Service Systems (PSS) offerings, such models shall also be used 

in a broader business perspective to design the entire ecosystem of products and services (Mahut et al. 

2017). The exponential evolution of computational hardware (enabling also software development) 

has brought also increased growth in the use of virtual models for performance analysis and 

optimization (e.g., Computational Fluid Dynamics, Multibody Dynamics, etc.). Vallhagen et al. (2013) 

show how virtual modeling methods are becoming a commodity in the domain of structural 

mechanics, aerodynamics, and fluid mechanics. The same cannot be said for PSS design support, 

where early design decisions are driven by a larger and heterogeneous set of needs including lifecycle 

implications, supply chain impact, and more high-level global challenges. Computational modeling 

has not reached the level of maturity to compute such dimensions, often referred to as “ilities” in the 

scientific literature (McManus et al., 2007; Bertoni and Bertoni, 2019).  

The transition from product seller to PSS provider implies fundamental changes in both value creation 

for customers and value capture by the provider (Matschewsky et al. 2018). Hence researchers have 

turned to the value concept to structure design approaches and provide new ways of measuring the 

viability and expected success of such offerings (Bertoni et al., 2016; Kimita et al., 2009a; Sakao and 

Lindahl, 2012). This has renewed interest in Value Centric Design (VCD) and Value Driven Design 

(VDD) (see: Vengadasalam et al. 2017).  

At the same time, one success factor in engineering design is the ability to make effective and risk-

managed decisions in a timely manner. The ability to do so relies on the availability of knowledge, 

hence, a major quest in PSS design is search for information and subsequent build of knowledge. This 

search comes down to the availability of data to populate early PSS design models and simulations, 

while the creation of knowledge is subjected to the interpretation and the analysis of data, dealing with 

ingrained uncertainties and the need to validate prediction models. The term Data-Driven Design 

(DDD) is being consistently used to refer to the opportunities for data collection and analysis granted 

by the advent of cyber-physical systems and the Internet of Things (Kim et al., 2017). By exploiting 

connectedness in cyber-physical systems, explorative models can be created and used as a foundation 

for more informed decisions. Literature shows three major areas of application for data-driven design 

models for PSS, respectively focusing on customer needs identification, design synthesis, and more 

recently, early design concept assessment (Bertoni and Larsson, 2017). 

The research presented in this paper is grounded on the idea that multidisciplinary simulations become 

of foremost importance for PSS design. Those need to emphasize value creation along the entire 

lifecycle by confronting the shift toward digitalization and circular economy challenges (Lugnet et al., 

2020). On such a basis the paper presents an approach promoting an increased digitalization of the 

PSS design process based on the combination of DDD activities and VDD, ultimately driving the 

development and implementation of a simulation environment for cross-functional and multi-

disciplinary decision making. The paper summarizes the results of multiple research contributions in 

the field of PSS design, formalizing them in a process model (namely the Model-Driven Product 

Service Systems Design approach) with related data-driven activities, ultimately aiming to support the 

design of PSS in the light of the increased availability of product and service data. 

The paper summarizes the results of an 8-year long research profile named Model-Driven 

Development and Decision Support (MD3S) featuring the collaboration between Blekinge Institute of 

Technology and nine industrial companies. The research environment and the research approach are 

described in detail in section 2. Section 3 presents a brief review of DDD and VDD models in PSS 

design. Section 4 provides a high-level overview of the approach for model-driven PSS design 

developed during the research profile, describing the different stages and activities, and providing 

references to external scientific contributions for more exhaustive descriptions of research rationale 

and validity of the different processes included in the approach. Section 5 discusses the findings in 

light of the current literature highlighting relevant questions for further research in the field.  
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2 RESEARCH APPROACH AND ENVIRONMENT 

The research presented in this paper has been performed in the frame of the MD3S research profile at 

Blekinge Institute of Technology. The profile is a research initiative dedicated to sustainable Product-

Service Systems (PSS) innovation which has the main objective to develop, disseminate, and integrate 

relevant, user-friendly, and efficient computer-aided support methods and tools for sustainable PSS 

innovation into business leaders’, business developers’ and product developers’ working environments. 

The applied research was performed to support and enable industry to thrive in the changing global 

context, supported by both simulated and real data using the internet of things and AI/machine 

learning. The research was performed through a combination of participatory action research and case 

study analysis in collaboration with nine industrial partners operating in the aerospace, construction 

machinery, packaging, fixtures, and sealing industry. Despite operating in different sectors the partner 

companies shared some key features making them relevant as research subjects: they were all active in 

the business-to-business sector, most of them were familiar with systems engineering and set-based 

concurrent engineering, they had experience with cross-functional design teams; they had grown 

lessons learned on the need to facilitate a participatory process in the design; their business was facing 

rapid transformations largely driven by the same macro trends, i.e. servitization, digitalization, 

connectivity, artificial intelligence, and resource scarcity. Figure 1 shows the partner structure of the 

MD3S research profile. 

 

Figure 1. Partner structure of the MD3S research profile at Blekinge Institute of 
 Technology 

3 VALUE-DRIVEN AND DATA-DRIVEN PSS DESIGN 

More than a decade ago, Isaksson et al., (2009) in their paper on challenges and opportunities for 

product-service systems development published in the Journal of Engineering Design, highlighted the 

need for an integrated effort of engineering, marketing, and sales to develop PSS offering. They 

described a situation in which services and physical products were largely developed independently, 

arguing the need for a development process, called Functional Product Development (FPD) process, to 

address the new needs introduced by the PSS transition. They identified four main constituents of the 

FPD process, namely: 

 Being highly driven by the focus on customer needs. 

 Include a high degree of customer involvement during the development process. 
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 Enlarge the stakeholder collaboration network to include customers partners and suppliers. 

 Being capable of modeling and simulating all aspects of PSS in the early phases of design. 

When the Isaksson et al. (2009) paper was published, the academic discussion on the concept of 

Value-Driven Design was very much in its infancy, mostly limited to some use case applications in the 

field of aerospace systems engineering. At the same time the term Data-Driven Design, despite being 

already coined (Domazet 1995), had not gained momentum in research and the application of data 

science in engineering design counted only a few examples and prototyped applications (see Kusiak 

and Tseng, 2000; Agard and Kusiak, 2004; Kusiak and Smith, 2007).  

The VDD term was popularized by Collopy and Hollingsworth (2011) in the Journal of Aircraft and 

collects methods/tools for design decision support that uses generated value (rather than requirements) 

as the main design objective to orient trade-off resolution for complex systems and ecosystems 

(Isaksson et al. 2013). VDD features two main approaches to increases awareness of how much 

customers value certain capabilities against each other, namely deterministic optimization models and 

qualitative models.  

Intuitively, mathematical optimization models are used to identify the “best system solution” for the 

maximization of a given monetary function for value. Several case studies in the aerospace sector 

proposed variations of Net Present Value (NPV) and Surplus Value (SV) equations to perform such an 

optimization (see: Curran et al. 2010; Cheung et al., 2012). NPV is a widely adopted method for the 

analysis of investments based on the cash flow generated by different investment strategies over the 

years; it uses a yearly “discount rate” making cash flows less and less valuable the farther they happen in 

the future. The SV is instead based on the assumption that seeking optimization of the profit of a whole 

industry (including all the actors in the supply chain) will render design decisions that will maximize the 

profit for each company involved. Thus SV should be easier to compute as a subset of NPV since it is 

not affected by competition (Cheung et al., 2012). Critique has however been raised on the use of 

monetary functions (Soban et al., 2012) and proposes the use of more qualitative models. The lack of 

trustworthiness in deterministic models, induced by uncertainty and lack of data, is claimed to hinder 

communication among the decision-makers (Collopy, 2012, Monceaux et al. 2014), thus calling for the 

implementation of VDD models based on Multi-Attribute Decision Making to support early-stage 

system design. The EVOKE model (Bertoni et al., 2018) and the EVA model (Rondini et al., 2018) are 

two examples of such models developed in the field of PSS design decision making. 

Additionally, current VDD research shows that in situations where the ‘system’ to be engineered is 

becoming increasingly large and complex, value models are the main enablers to support a value 

orientation in requirement management. Furthermore, the availability of data from the usage phase, 

granted by the increased access to information communication technologies, enables the development 

of more reliable assessment models based on quantitative measurement rather than qualitative 

assessment. For instance, the ability to record data about hardware use, service performances, and 

human-product interactions (e.g., using smart devices to collect feedback from customers and 

stakeholders) is believed by many to sensibly improve the early-stage design decision making, hence 

the above-mentioned ‘frontloading’ exercise. The qualitative value analysis loop is also believed to be 

a necessary complement of more deterministic analysis, creating awareness and consensus among 

decision-makers on possible solution directions even before starting to engineer the PSS. 

The interest in integrating data science as an enabler of better design decisions has radically increased 

in the last years from both researchers and industrial practitioners. Nevertheless, due to its novelty, the 

research field still lacks consistent methodologies and approaches generalizable in different industrial 

areas and implemented into the established design processes (Bertoni, 2018). While some case studies 

and conceptual frameworks are available dealing with the very early planning of a new product, 

limited contributions are available integrating data-driven models in traditionally engineering-oriented 

product or service development projects, encompassing idea generation and sub-system embodiment 

(Bertoni and Larsson, 2017). Recently, the idea to support PSS as a whole has been addressed by the 

proposal of a Data-Driven Product-Service Systems Design and Delivery methodology (Sala et al., 

2020) developed to leverage the benefits of data collection and analysis both in the PSS design and in 

the delivery process of PSS. Such methodology is partially based on the PSS Lean Design 

Methodology (Pezzotta et al., 2018), which proposes a comprehensive approach focusing on the whole 

PSS life from the identification of customer needs to the monitoring of performances on the market. 

The model-driven PSS design approach presented in this paper builds on the theory here described 

taking as a standpoint the specific issues emerging in the early stages of PSS design. It does not aim to 

https://doi.org/10.1017/pds.2021.475 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.475


ICED21 2141 

provide a comprehensive picture of PSS lifecycle design and management, rather it proposes an 

approach encompassing processes and deterministic and probabilistic models to be applied at a lower 

level of process granularity. 

4 THE MODEL-DRIVEN PRODUCT SERVICE SYSTEMS DESIGN APPROACH 

This section provides a summary of the approach for model-driven PSS design developed in the frame 

of the MD3S research profile. The text does not go into the details of the case studies implementation, 

rather it presents the overview of the processes and methods applied all along the product innovation 

process, providing references to the specific cases to further investigate the applications in detail. 

Finally, the section describes the cross-disciplinary simulation environment for multi-disciplinary 

decision-making that has been developed and tested to operationalize the proposed design approach. 

Figure 2 summarizes the steps of the Model-Driven PSS Design process (in orange) framed in the 

generic activities of a VDD process adapted from the work by Bertoni and Bertoni (2019a) (in green) 

and in relation to the knowledge value stream and the product value stream as defined by Kennedy et 

al. (2008).  

 

Figure 2. The model driven PSS design approach and its relationship with value-driven 
design process and data-driven design activities framed in the product innovation process 

by Kennedy et al. (2008). 

4.1 Stage 1: Problem recognition 

This is the initial phase of the PSS design process and it is where a problem to be solved or a set of 

needs to be satisfied are identified. This step wants to provide an understanding of the main 

dimensions of ‘value’ that are relevant for PSS engineering and design. The Triple Bottom Line 

(Norman and MacDonald, 2004), Value Proposition Canvas (Osterwalder et al., 2014) and the Design 

Thinking methodology (Brown, 2008) frameworks are the main references in this respect. From a 

DDD perspective, this step provides an understanding of what problem needs to be investigated, 

setting the boundaries of what data are relevant. It answers the question: “What would you need to 

know if you could have all the data you want?”. 

4.2 Stage 2: Model design 

In this stage, the first simulation and assessment models are developed. The work starts with the 

definition of a Value Creation Strategy (VCS) (Bertoni and Bertoni, 2019a). The VCS provides a 

detailed description of the characteristics, motivators, and preferences of different markets and 

customers for the PSS. The VCS also helps the design team in defining a complete and customized list 

of value criteria for a new PSS solution. These criteria are further prioritized to mirror the preferences 

of a given market and consider both a customer and provider perspective. Customer Tier Analysis, 

Personas, and Value Strategy Canvas are the main tools used here to inform the creation of the VCS. 

Here is also where a data collection strategy is formulated and where DDD models are designed to 

support the quantification of value drivers. Initial data gathering can happen out of historical databases 
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or live measurements with the intent to create an understanding of the AS-IS situation in terms of data 

availability and structure. 

4.3 Stage 3: Model analysis 

This stage provides a more granular, detailed assessment of the value of alternative PSS design 

concept configurations. The EVOKE model (Bertoni et al., 2018) is a major support tool for this task. 

It exploits value functions of different shapes and sizes to map the engineering characteristics of a 

product against the value criteria. This mapping process matrix is informed by an IBIS map. The 

EVOKE model is initially used for a high-level screening of the concept ideas from a value 

perspective, and it is extended in a second step for a more detailed assessment of specific pre-selected 

concepts. Such extension is possible when a shared agreement on an overall concept definition is 

reached, thus when specific design features of the new PSS are defined at a high level. The extension 

consists of enhancing the EVOKE computation by the estimation of the EVOKE parameters through 

Design of Experiment (DOE) allowing for the automatic computation of multiple EVOKE results 

inside the design space boundaries of a specific concept (see Bertoni and Bertoni, 2019b). As a last 

step sensitivity analysis is run on the model parameters to identify the needed improvement in terms of 

data availability and reliability, this is done to provide the most consistent and reliable models to be 

used in stage 4 when quantitative simulations are run. 

4.4 Stage 4: Options generation and pre-selection 

At this stage, the PSS concept starts to take a more defined shape both in terms of more detailed 

geometry definition and service systems simulations. In other words, this stage brings the design team 

from the realm of qualitative assessment to the domain of quantitative analysis. A basic geometrical 

definition of the product allows for simple optimization models utilizing Computer-Aided Engineering 

simulations. From the service systems design side, process models are used to simulate the operational 

life of the PSS and Discrete Event Simulations are used here to calculate the performances of a design 

concept in alternative lifecycle scenarios. The individual behaviors of customers or relevant agents can 

also be modeled when relevant by the use of agent-based simulations. The increased use of 

quantitative simulations requires models to be populated by data derived from historical databases, 

collected on the field, or based on assumptions and expertise of the design teams. Scenario simulations 

are allowed by the creation of surrogate models for both product and service behaviors, those are 

enhanced using data science algorithms (see for instance Bertoni et al., 2020). A critical aspect to be 

considered for the DDD activity in this stage is the necessity to keep “transparency” on the collection, 

use, and application of data science algorithms. This is because of the heterogeneous nature of the 

computed data that own different reliability and maturity level. Failing to keep transparency on data 

sources and reliability might give a false impression of models' reliability to the decision-makers. 

4.5 Stage 5: Choice 

In this stage, the final design decision on the PSS design is taken. More advanced simulations are 

developed based on the increased understanding of what needs to be modeled and what data need to be 

collected, awareness respectively obtained as follow-up of the “model design” and “model analysis” 

stage. The new simulation can be now complemented by the new “fresh” data collected from the field. 

Choices are made to improve the simulations and the design concepts. In parallel VDD models focus 

now on calculating the monetary value of design solutions no longer encompassing qualitative 

measurement. This brings VDD models to be used in the same fashion as in the definition of VDD by 

Collopy and Hollingsworth (2011) and iterated in a number of examples by (Castagne et al., 2009; 

Cheug et al., 2012). In this way, based on the information provided by the previous simulations, the 

design team can estimate the monetary value (representing long-term profitability) of a proposed PSS 

solution, both from a provider and customer viewpoint. 

4.6 Stage 6: Implementation 

This stage goes beyond the product development process and concerns the practical implementation 

and delivery of the PSS. Although the development being formally closed such a stage is relevant to 

monitor the effects of design decisions. Based on the information available, delivery decisions are 

implemented, new data are stored, and the DDD models are kept up to date. This creates a virtuous 
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loop in which a constant update and refresh of operational data improve the reliability of the design 

models and support the constant development of innovative PSS solutions. The resulting design 

support takes the form of a digital twin featuring constant updates based on the data from the usage 

phase. A methodology for the continuous design and delivery of PSS has been proposed as 

complementary research to the proposed process by Sala et al. (2020) but it is not described in this paper. 

4.7 The Model-Driven Decision Arena: an enabler for model-driven PSS design 

Even if the outcome of the model analysis stage contains the necessary information to support the 

sought decision, it is still hard for a diverse group of stakeholders to navigate through and make sense 

of the generated data. Key enablers for exploration and negotiation in a multi-stakeholder decision 

scenario are constructs and practices aiding interaction with model-generated data. A major challenge 

in this exercise is how to exploit human judgment to deal with situations where the data set is both 

very large but also incomplete and inconsistent. In this situation, the visualization strategy shall 

consider the need to empower the human component and augment its ability to recognize patterns and 

relationships in the data set. Visualization is an important part of the intended workflow as it may 

augment problem-solving capabilities by enabling the processing of more data without overloading the 

user. Cognitive tools propel users into far more effective thinkers and computer-based tools with 

visual interfaces may be the most powerful and flexible cognitive systems (Ware, 2005). 

The research leading to the model-driven PSS design process described in this paper has identified in 

the Model-Driven Decision Arena (MDDA) a suitable enabler for PSS development. The MDDA is a 

simulation and decision-making environment where PSS models are visualized at decision gate events. 

Those models include the 3D geometry for the given design case, the results of the qualitative and 

quantitative value assessment models, the color-coded visualization of the latter, and the control panel 

for parameters selection in the DoE. The MDDA provides decision-makers with ad-hoc interfaces to 

explore the behavior of given configurations under varying assumptions. These interfaces allow the 

design team participants to play with some of the model inputs and other relevant scenario parameters. 

A detailed description of the MDDA environment is available in Wall et al. (2020).  

5 CONCLUDING DISCUSSION 

The transition toward the PSS business model generates cascading effects on the design and 

development process. Engineers need to keep the focus on value creation from the perspective of the 

whole lifecycle, thus access to multidisciplinary models and simulations becomes a key competitive 

advantage. The approach presented in this paper is the result of applied research in multiple industrial 

contexts facing the design challenges introduced by the transition to PSS. 

The challenge of the co-existence of multidisciplinary models in complex development projects is not 

new. Researchers in model-based systems engineering have stressed the need for multiple and 

heterogeneous models to communicate and share data and information. Model-based systems 

engineering environments have been developed together with specific modeling languages (such as 

UML or SysML) to manage the complexity of the concurrent design of multiple sub-systems driven 

by the cascading definition of requirements. In such a context, the concept of VDD has challenged the 

requirements-driven approach for system development, based on the idea that to develop new 

innovative solutions engineers should focus on the maximization of value rather than on the 

fulfillment of requirements.    

The approach presented in this paper concerns the design of a PSS, which is an effort that lay in-

between a traditional product development process and a systems engineering project. In specific the 

approach contributes to the early stages of the design (aligning with the Knowledge Value Stream 

definition by Kennedy et al. 2009). Here the consideration of a service-dominant logic requires the 

definition of a common denominator upon which solution alternatives can be benchmarked. To this 

purpose, the concept of value, as proposed by VDD, has been identified as such a common 

denominator to ease engineers' decision-making. Nevertheless, the concept of ‘value’ itself is a 

context-dependent and multi-faceted notion, which needs to be reduced (i.e., rendered in more 

practical and actionable terms), to guide the decisions along the different stages of a development 

project. To make VDD models more “actionable” in the context of early PSS design, the proposed 

approach leverages the increased possibility of product ownership and control introduced by PSS, 

opening to a spectrum of opportunities for data collection.  
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In the engineering design field, the concept of DDD has been often discussed and several applications 

have been presented with the intent to solve problems identified “ad-hoc” (see Kim et al. 2017). Fewer 

contributions are instead focusing on how to integrate a full spectrum of data-driven activities in the 

current development process, to proactively design a development process that would exploit the 

benefit of increased data availability in early engineering design. The novelty of the proposed Mode-

Driven Product Service Systems Design approach relies on complementing the VDD approach by 

formalizing a number of data-driven activities that enable a more consistent and reliable development 

of models to support decision making. In particular, the approach adds a clear indication on when, 

how, and for which purpose data-driven activities shall be introduced in the development process, to 

become effectively integrated into a model-driven approach for the design of PSS. Data can then be 

used to support the creation, population, and operationalization, of the VDD models. In this way, the 

“static” view of VDD models can be overcome by a smoother integration of data-driven methods (and 

data science) in traditional engineering working practices, making a transition from low-fidelity value 

models to deterministic functions as the PSS design process proceeds. 

When using the proposed approach engineers and decision-makers shall be aware that a reason for 

applying it is that of staging discussions about the value contribution of a design, rather than to 

identify the best possible concept via optimization. Triggering discussion forces cross-functional 

design teams to converge to a common view of what the value of a new PSS is and resolve conflicts. 

Gut feeling and personal experience still play a key role in engineering decision making and the 

complexity of the PSS design requires the ability to foresee how product and service features will 

mutually interact and how they will impact the final value delivery. The development and the 

implementation of the Model-Driven Decision Arena described in section 4.7 supports such cross-

disciplinary discussion in early design. This is obtained by leveraging the role of visualization in an 

engineering context in which multiple competencies concur to define the overall design of the future 

PSS architecture, and in which the integration of data-driven models introduces the need for data 

science knowledge, which is often outside the portfolio of competencies of engineers and innovation 

experts. Such problem of understanding the logic and reliability of specific models in a cross-

disciplinary decision-making environment is not new to the literature in engineering design (e.g., 

Johansson et al., 2011), thus the improvement of the understanding through suitable visualization 

techniques becomes a necessary part of a Model-Driven PSS design process. 

The further development of the proposed approach can be promoted from several perspectives. Among 

those, a challenge is not only about producing data or results, but rather to make the data accessible 

and understandable in a wider community. This reflects the need to generate guidelines on how to best 

interact with the environment without the need for expert knowledge. At the same time robustness and 

speed of execution are also main challenges: failing in providing almost instantaneous feedback to a 

decision-making team might compromise the effectiveness of the models to work as a “boundary 

object”, thus acting as a support for facilitating discussions and negotiations between diverse 

stakeholders from different backgrounds to negotiate value contributions in the light of design changes 

(Panarotto et al., 2019). From another angle, the verification activities run with the partner companies 

have highlighted the need for the measurement of a Model Maturity Level (MML) as a promising 

concept to deal with the uncertainty of the knowledge base in early PSS design. The first version of an 

MML has been proposed by Johansson et al (Johansson et al., 2017) computing the distance between 

the current and ideal value of maturity to be expected from a given model, displaying it using a five-

level scale. Such a notion would need to be further developed to assess the degree to which a lack of 

maturity will impact the development process activities. 
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