Antioxidant capacity of vegetables, spices and dressings relevant to nutrition

Paolino Ninfali1,2,* , Gloria Mea2, Samantha Giorgini2, Marco Rocchi3 and Mara Bacchiocca1

1Istituto di Chimica Biologica, ‘G. Fornaini’ Università di Urbino, via Saffi 2, 61029 Urbino, (PU), Italy
2Centro di Biotecnologie, Università di Urbino,via T. Campanella 1, 61032 Fano, (PU), Italy
3Istituto di Biomatematica, Università di Urbino, Loc. Crocicchia, 61029 Urbino, (PU), Italy

(Received 26 May 2004 – Revised 3 September 2004 – Accepted 14 October 2004)

Vegetables are the most important sources of phenolics in the Mediterranean diet. Phenolics, especially flavonoids, are suggested as being essential bioactive compounds providing health benefits. In this study, twenty-seven vegetables, fifteen aromatic herbs and some spices consumed in Central Italy (the Marches region) were studied to reveal total phenolic, flavonoid and flavanol content as well as their antioxidant capacity measured by the oxygen radical absorbance capacity (ORAC) method. A comparison in terms of antioxidant capacity was made between different salads, as well as between salads to which aromatic herbs had been added. Lemon balm and marjoram at a concentration of 1·5 % w/w increased by 150 % and 200 % respectively the antioxidant capacity of a salad portion. A 200 g portion of a salad enriched with marjoram corresponded to an intake of 200 (sd 10) mg phenolics and 4000 (sd 300) ORAC units (μmol Trolox equivalents). Olive oils and wine or apple vinegars were the salad dressings that provided the highest increase in antioxidant capacity. Among the spices tested, cumin and fresh ginger made the most significant contribution to the antioxidant capacity. The results are useful in surveying the antioxidant parameters of vegetables, herbs and spices produced and consumed in our geographical area as well as in quantifying the daily intake of phenolics and ORAC units. The results can be used in public health campaigns to stimulate the consumption of vegetables able to provide significant health protection in order to prevent chronic diseases.

Dietary counselling: Phenolic compounds: Antioxidant capacity: ORAC units: Antioxidant-rich foods

Chronic diseases are induced by metabolic alterations that are often correlated and contemporarily present in patients. A typical example is the plurimetabolic syndrome, characterized by the concurrent presence of obesity, diabetes, dyslipidaemia and hypertension (World Health Organization, 1985) in the same individual. Insulin resistance is a fundamental pathogenic factor in the ever-increasing incidence of this syndrome, which is associated with an elevated risk of cardiovascular morbidity (Reaven, 2001). Many scientific papers have focused on the relationship between free-radical-induced oxidative stress and the progressive increase in the risk of disease (World Health Organization, 1990, 2003; Willett, 2002).

The incidence of chronic diseases is higher in the elderly (Smith et al. 1999), but conditions that generate various pathologies start in childhood and adolescence (Stewart et al. 2002). In Europe, obesity is becoming a serious problem: in Italy, a large prevalence of overweight and obesity was observed in school subjects (Celi et al. 2003). In addition, children of normal weight could become obese if they did not follow a balanced nutritional regimen (American Dietetic Association, 1999). Most young people lead a sedentary life and make common nutritional errors, among which we highlight an insufficient consumption of fruits and vegetables (Ames, 1998).

Fruits and vegetables contain antioxidant compounds broadly called polyphenols that are known to reduce oxidative stress and prevent chronic diseases (Ames et al. 1993, 1995; Diaz et al. 1997; Giacosa et al. 1997; Gariballa & Sinclair, 1998; Miller et al. 1998; Muller et al. 1999). The antioxidant properties of these compounds are responsible for their anticancer, antiviral and anti-inflammatory properties (Cao et al. 1997). They can also prevent capillary fragility and platelet aggregation (Benavente-Garcia et al. 1997; Aviram, 1999).

To encourage vegetable consumption through nutritional counselling, among both the young and the elderly, it is important to bear in mind that not all vegetables have the same phenolic composition and not all phenolics have the same antioxidant capacity (Vinson et al. 2001; Ou et al. 2002; Ninfali & Bacchiocca, 2003). It is therefore important to recognize which vegetables have the highest antioxidant capacity and introduce them regularly into the diet (Halliwell, 1999) and equally important to know...

Abbreviations: AAPH, 2,2’-azobis(2-amidinopropane)dihydrochloride; ORAC, oxygen radical absorbance capacity.

* Corresponding author: Professor Paolino Ninfali, fax +39 722 320188, email p.ninfali@uniurb.it
Materials and methods

Chemicals

2,2'-Azobis(2-aminopropane)dihydrochloride (AAPH) was purchased from Polyscience (Warrington, PA, USA), 6-hydroxy-2,5,7,8-tetramethyl-2-carboxylic acid (Trolox) and fluorescein sodium salt were obtained from Aldrich (Milwaukee, WI, USA), Folin-Ciocalteu phenol reagent and all other reagents from Sigma Aldrich (Milan, Italy).

Vegetables

All vegetables, except Brassicaceae, were obtained fresh from a local greengrocer in the spring and summer of 2003. Brassicaceae were purchased, fresh, in the winter of 2002. Naturally occurring herbs were collected in the spring and early summer of 2003, whereas spices were obtained from a local herb supplier. Twenty-seven different types of vegetable and fifteen different types of herb were tested. In some cases, more than one cultivar was tested. For each vegetable cultivar and for each herb, at least four composite samples were tested, each in duplicate.

Salads, 200 g total weight each, were prepared using the following fresh vegetables: lettuce (Romana); tomato (Sarom); cucumber (Lungo verde degli ortolani); onion (Bianca di Maggio); carrot (Tancar). Ingredients were combined to obtain a balanced mixture of each component. Briefly, salad 1 was prepared with 76 g lettuce and 124 g tomato; salad 2 with 50 g lettuce, 80 g tomato and 70 g cucumber; salad 3 with 44 g lettuce, 72 g tomato, 63 g cucumber and 21 g onion; salad 4 with 39 g lettuce, 64 g tomato, 45 g cucumber, 18 g onion and 34 g carrot. Salads, 200 g each, used to evaluate possible advantages gained by the addition of fresh aromatic herbs, were prepared as follows: salad 1 by mixing 100 g lettuce and 100 g tomato; salad 2 with 98.5 g lettuce, 98.5 g tomato and 3 g lemon balm; salad 3 with 98.5 g lettuce, 98.5 g tomato and 3 g marjoram. For each salad, the experiment was repeated four times, and each salad was tested in duplicate.

Cooking regimens

Some vegetables (black cabbage, broccoli, cauliflower, green cabbage, savoy cabbage) were heat-treated by boiling or steaming. For boiling, 100 g vegetables were added to 500 ml boiling water; after 15 min, the vegetables were drained, cooled on ice and processed for the phenolic and oxygen radical absorbance capacity (ORAC) analysis. For steaming, 100 g vegetable were steamed for 30 min in a steam pan, then cooled on ice and immediately analysed for phenolics and ORAC. For each vegetable, the experiment was repeated four times and each regimen was tested in duplicate.

Dressings

We used an extra-virgin olive oil produced in the 2002/2003 season in the Marche region by a local producer; named-brand peanut oil and vinegars were purchased in a supermarket. Aromatic oils were prepared as follows. For the basil oil, 5 g basil inflorescence was added to 1 litre extra-virgin olive oil and maceration occurred over 10 d in the dark; then 5 g leaves were added and a further 30 d maceration were allowed before the assay. For the garlic oil, 6 g fresh garlic and 4 g seasoned garlic were partially slit with a knife, added to 1 litre extra-virgin olive oil and left in the dark for a 40 d maceration period. For the garlic aromatic oil, 2 g peeled garlic, 1 g rosemary, 2 g garden sage and 5 g red chilli pepper, cut into small pieces, were added to the oil and left in the dark for 40 d. For the parsley oil, 10 g parsley were cut into large pieces, added to extra-virgin olive oil, left for 40 d in the dark and then used for the assay. Vegetables and aromatic herbs were carefully cleaned and wiped before adding them to the extra-virgin olive oil; after maceration, the oils were filtered and used.

Phenolic extraction

Vegetables or aromatic herbs were cleaned, carefully washed with tap water, wiped by soft centrifugation and chopped in a food processor, whereas dry spices were processed. Ground materials were suspended (1:5, w/v) in 80:20 v/v acetone/perchloric acid 5 %, shaken for 30 min at 4 °C and then centrifuged for 10 min at 3000 g (Ninfali & Bacchiocca, 2003). The supernatant was collected and used for the assays.

For the olive and seed oil as well as the aromatic oils, the extraction of phenolics was performed using 80 % methanol as reported (Ninfali et al. 2002). The diluted phenolic extract was used for the assays.

Vinegars were diluted with 0.075 M Na phosphate buffer pH 7.0 and then assayed directly for phenolics and ORAC.

Assay of phenolics, flavonoids and flavanols

Phenolic compounds were assayed according to the Folin-Ciocalteu method (Singleton et al. 1999). The total phenolic content was expressed as caffeic acid equivalents in mg/g fresh vegetable. Flavonoids were determined by the method of Eberhardt et al. (Eberhardt et al. 2000;
Oxygen radical absorbance capacity assay

The original method of Cao et al. (1993), with a few modifications, was used (NinfaI & Bacciocca, 2003). The final reaction mixture for the assay (2 ml) was prepared as follows: 1650 μM 0·05 μM fluorescein sodium salt in 0·075 mol·l·1 sodium phosphate buffer, pH 7·0, 200 μM diluted sample or 50 μM Trolox. The control was 0·075 mol·l·1 Na phosphate buffer, pH 7·0. Fluorescence was read every 5 min at 37°C using an LS-5 spectrofluorometer (Perkin-Elmer, Norwalk, CT, USA) at 485 nm excitation, 520 nm emission. When stability was reached, the reaction was initiated with 150 μl 5·55 mm AAPH and fluorescence was read up to a value of zero. The ORAC value is calculated according to the formula:

$$\text{ORAC (μmol Trolox equivalents/g)} = \frac{(A_t - A_b)/(A_s - A_b)}{kah}$$

where A_t is the area under the curve (AUC) of fluorescein in the sample, calculated with the ORIGIN 2·8 integrating program (Microcal Software), A_s is the AUC of the Trolox, A_b is the AUC of the control, k is the dilution factor, a is the concentration of the Trolox in μmol/l, and h is the ratio between the litres of extract and the grams of vegetable or oil used for the extraction.

Statistics

Duplicate analysis for each measurement (total phenolics, flavonoids, flavanols and ORAC) were conducted for the twenty-seven vegetable samples, fifteen aromatic herbs, six spices and ten dressings. To establish the reproducibility of the analytical method, sample preparation was repeated four times. Differences between the means were evaluated with ANOVA, using the Origin 2·8 (Microsoft Software) statistics program. A multivariate analysis was performed to discover a possible relationship between the different parameters (ORAC, phenolics, flavonoids and flavanols). The significance of the model was evaluated by ANOVA. The significance of the regression coefficients was evaluated by Student’s t test. The significance level was fixed at 0·05 for all the statistical analysis.

Results

Table 1 shows the total phenols, flavonoids, flavanols and ORAC values of forty vegetables. Pepper, radish, onion, lettuce, tomato, cucumber, aubergine and courgette from more than one cultivar were analysed. Each different cultivar causes vegetables, albeit of the same family, to possess significantly different phenolic, flavanol and ORAC values. This is clearly evident, for example, in lettuce, onion and pepper cultivars. Various lettuce cultivars have been analysed and compared with Chioggia red chicory, which is commonly used in Northern and Central Italy, mixed with or instead of lettuce, to prepare salads. The total phenolic values in Chioggia red chicory were higher than those found in any analysed lettuce cultivar. The lettuce Rossa di Trento is the cultivar with the highest phenolic content and antioxidant activity and its ORAC value is not significantly different from that of Chioggia red chicory. A second vegetable showing marked differences from one cultivar to another is cabbage. Green cabbage shows in fact one half of the phenolics, flavonoids and ORAC values of savoy or black cabbage; moreover, savoy cabbage has a higher flavonoid content and higher ORAC values than black cabbage. A similar discrepancy between the cultivars is observed for the radish.

In order to explore the relationship between the ORAC and the other considered variables (total phenols, flavonoids and flavanols), we applied a multiple linear regression model. The model was statistically significant ($P<0·001$). Table 2 shows the regression coefficient for each variable together with its significance value. The coefficients show that the ORAC values strictly depend on the total phenols ($P=0·048$) and flavanols ($P=0·001$), whereas the contribution of the flavonoids was not significant ($P=0·156$).

Table 3 lists total phenols, flavonoids, flavanols and ORAC values for selected aromatic herbs. Garden thyme, garden sage, rosemary and marjoram have the highest concentrations of phenolics and the highest ORAC values. The values are many-fold higher than those of the vegetables reported in Table 1.

Table 4 shows total phenols, flavonoids and ORAC values for four spices and two seasoned salts of different brands. A high phenolic content as well as noteworthy antioxidant activity was found in cumin and fresh ginger. Values of seasoned salt 1 are about the double those of salt 2.

Table 5 shows the phenolics and ORAC values of both pure or aromatized oils as well as of vinegars commonly used in seasoning vegetables. Beyond the marked difference in extra-virgin olive oil and seed oil, previously described (NinfaI et al. 2001), it is interesting to note the limited phenolics and ORAC values of flavoured oils. The maceration of vegetables, spices or herbs in extra-virgin olive oil caused a 40–60 % loss in phenolics and a 40–80 % loss in ORAC units.

Among the vinegars, red wine and apple vinegars are those with the highest phenolic and ORAC values; compared with extra-virgin olive oils, they have a higher concentration of phenolics, but their antioxidant activity is inferior.

Brassica vegetables have a strong flavour if eaten fresh and are therefore generally cooked. We compared the phenolic and ORAC values of some of them after cooking in boiling water or steaming (Fig. 1). Fig. 1(A) shows that boiled brassica vegetables lost almost 80 % of their phenolic content, whereas steamed vegetables lost only 20–30 %, compared with fresh vegetables. Fig. 1(B) shows that the ORAC values of the same vegetables showed a pattern very similar to that of the phenolic content. Fig. 2 shows the linear relationship between total phenolics and type of cooking; the linear correlation coefficients were higher than 0·960 for all vegetables.

Fig. 3 shows ORAC values of different salads. Fig. 3(A) shows ORAC values for four salads of 200 g serving size. The basic sauce was prepared with lettuce and tomato; this
Table 1. Total phenol, flavonoid, flavanol and oxygen radical absorbance capacity (ORAC) values in the vegetables analysed

<table>
<thead>
<tr>
<th>Vegetables</th>
<th>Cultivar</th>
<th>Botanical name</th>
<th>Total phenols* mg/100 g</th>
<th>Flavonoids* mg/100 g</th>
<th>Flavanols* mg/100 g</th>
<th>ORAC* μmolTE/100 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
<td>SD</td>
</tr>
<tr>
<td>Aubergine</td>
<td>Violetta lunga</td>
<td>Solanum melongena</td>
<td>64·8</td>
<td>5·9</td>
<td>25·70</td>
<td>2·31</td>
</tr>
<tr>
<td></td>
<td>Black beauty</td>
<td></td>
<td>57·4</td>
<td>6·0</td>
<td>28·40</td>
<td>2·61</td>
</tr>
<tr>
<td>Artichoke</td>
<td>Violetto</td>
<td>Cynara scolymus</td>
<td>330·4</td>
<td>32</td>
<td>85·20</td>
<td>25·0</td>
</tr>
<tr>
<td>Asparagus</td>
<td>Argenteui</td>
<td>Asparagus officinalis</td>
<td>64·0</td>
<td>5·9</td>
<td>24·60</td>
<td>2·61</td>
</tr>
<tr>
<td>Beet green</td>
<td>Sottile marchigiana</td>
<td>Beta vulgaris</td>
<td>53·0</td>
<td>6·2</td>
<td>47·00</td>
<td>4·17</td>
</tr>
<tr>
<td>Beetroot</td>
<td>Tonda sanguigna</td>
<td>Beta vulgaris var Rubra</td>
<td>154·1</td>
<td>14·0</td>
<td>92·80</td>
<td>9·23</td>
</tr>
<tr>
<td>Cabbage</td>
<td>Testa di ferro</td>
<td>Brassica oleracea conv. Capita</td>
<td>105·2</td>
<td>92·0</td>
<td>45·70</td>
<td>4·23</td>
</tr>
<tr>
<td></td>
<td>savoy cabbage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabbage</td>
<td>Cabezeta nera</td>
<td>Brassica oleracea conv. Acephala</td>
<td>108·6</td>
<td>10·0</td>
<td>38·60</td>
<td>3·86</td>
</tr>
<tr>
<td>Broccoli</td>
<td>Ramoso calabrese</td>
<td>Brassica oleracea conv. Botrytis, cv Italic</td>
<td>109·5</td>
<td>10·0</td>
<td>60·10</td>
<td>6·11</td>
</tr>
<tr>
<td>Carrot</td>
<td>Tancar</td>
<td>Daucus carota</td>
<td>14·6</td>
<td>2·1</td>
<td>12·80</td>
<td>1·30</td>
</tr>
<tr>
<td>Celery</td>
<td>L. var dulce</td>
<td>Apium graveolens</td>
<td>13·5</td>
<td>1·5</td>
<td>6·10</td>
<td>0·61</td>
</tr>
<tr>
<td>Cauliflower</td>
<td>Precocce di fano</td>
<td>Brassica oleracea, conv. Botrytis</td>
<td>62·3</td>
<td>6·1</td>
<td>32·00</td>
<td>3·51</td>
</tr>
<tr>
<td>Courgette</td>
<td>Verde di Milano</td>
<td>Cucumis pepo</td>
<td>26·4</td>
<td>3·0</td>
<td>9·02</td>
<td>0·92</td>
</tr>
<tr>
<td></td>
<td>Di faenza</td>
<td></td>
<td>32·4</td>
<td>3·1</td>
<td>7·20</td>
<td>0·81</td>
</tr>
<tr>
<td>Cucumber</td>
<td>Lungo verde degli ortolani</td>
<td>Cucumis sativus</td>
<td>18·9</td>
<td>2·0</td>
<td>4·71</td>
<td>0·47</td>
</tr>
<tr>
<td></td>
<td>Verde lunghissimo</td>
<td></td>
<td>16·7</td>
<td>2·0</td>
<td>0·85</td>
<td>0·09</td>
</tr>
<tr>
<td>Fennel</td>
<td>Chiarino</td>
<td>Foeniculum vulgare</td>
<td>27·5</td>
<td>2·2</td>
<td>11·0</td>
<td>1·12</td>
</tr>
<tr>
<td>Garlic</td>
<td>Bianco</td>
<td>Allium sativum</td>
<td>81·7</td>
<td>7·9</td>
<td>12·4</td>
<td>1·09</td>
</tr>
<tr>
<td>Green pepper</td>
<td>Midway</td>
<td>Capsicum annuum, cv Grossum</td>
<td>44·6</td>
<td>4·6</td>
<td>9·90</td>
<td>0·92</td>
</tr>
<tr>
<td>Green chilli</td>
<td>Sigaretta di Bergamo</td>
<td>Capsicum annuum, (frutescens)</td>
<td>101·1</td>
<td>11·0</td>
<td>8·92</td>
<td>0·85</td>
</tr>
<tr>
<td>Leek</td>
<td>Arti</td>
<td>Allium porrum</td>
<td>41·6</td>
<td>4·0</td>
<td>10·10</td>
<td>1·02</td>
</tr>
<tr>
<td></td>
<td>Rossa di Trento</td>
<td></td>
<td>88·2</td>
<td>8·6</td>
<td>28·00</td>
<td>3·08</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Cappuccio estiva 'Kagnran'</td>
<td>Lactuca sativa</td>
<td>44·2</td>
<td>4·1</td>
<td>36·50</td>
<td>4·10</td>
</tr>
<tr>
<td></td>
<td>Catalogna</td>
<td></td>
<td>55·6</td>
<td>4·2</td>
<td>47·60</td>
<td>5·01</td>
</tr>
<tr>
<td></td>
<td>Cacarote</td>
<td></td>
<td>66·2</td>
<td>6·2</td>
<td>25·90</td>
<td>2·63</td>
</tr>
<tr>
<td>Onion</td>
<td>Bianca di maggio</td>
<td>Allium cepa</td>
<td>23·6</td>
<td>2·4</td>
<td>6·40</td>
<td>0·72</td>
</tr>
<tr>
<td></td>
<td>Rossa di tropea</td>
<td></td>
<td>42·8</td>
<td>4·1</td>
<td>3·60</td>
<td>0·4</td>
</tr>
<tr>
<td>Radish</td>
<td>Tondo</td>
<td>Raphanus sativum</td>
<td>61·4</td>
<td>6·9</td>
<td>10·90</td>
<td>1·10</td>
</tr>
<tr>
<td></td>
<td>Jolly</td>
<td></td>
<td>30·0</td>
<td>3·5</td>
<td>10·80</td>
<td>1·20</td>
</tr>
<tr>
<td>Red chicory</td>
<td>Rossa di chiojia</td>
<td>Cichorium intybus</td>
<td>129·5</td>
<td>11·0</td>
<td>89·10</td>
<td>8·56</td>
</tr>
<tr>
<td>Red chilli</td>
<td>Ciliegia piccante</td>
<td>Capsicum annuum, (frutescens)</td>
<td>158·1</td>
<td>12·0</td>
<td>15·30</td>
<td>1·60</td>
</tr>
<tr>
<td>Red pepper</td>
<td>Quadrato d'asti rosso</td>
<td>Capsicum annuum, cv Grossum</td>
<td>76·5</td>
<td>8·2</td>
<td>7·91</td>
<td>0·81</td>
</tr>
<tr>
<td>Spinach</td>
<td>America</td>
<td>Spinacia oleracea</td>
<td>89·4</td>
<td>8·1</td>
<td>32·50</td>
<td>3·26</td>
</tr>
<tr>
<td>Squash</td>
<td>Butternut</td>
<td>Cucumis pepo</td>
<td>23·2</td>
<td>2·1</td>
<td>9·22</td>
<td>0·98</td>
</tr>
<tr>
<td>Tomato</td>
<td>Miroo a grappolo</td>
<td></td>
<td>50·7</td>
<td>5·3</td>
<td>6·21</td>
<td>0·61</td>
</tr>
<tr>
<td></td>
<td>S. Marzano</td>
<td>Solanum lycopersicum L.</td>
<td>32·3</td>
<td>2·9</td>
<td>6·12</td>
<td>0·61</td>
</tr>
<tr>
<td>Yellow pepper</td>
<td>Cuneo giallo</td>
<td>Capsicum annuum, cv Grossom</td>
<td>113·7</td>
<td>11·0</td>
<td>7·02</td>
<td>0·72</td>
</tr>
</tbody>
</table>

* Values are referred to mg/100 g fresh weight vegetable and are the means with standard deviations of four different determinations.
Antioxidant capacity of vegetables, spices, and dressings

Table 2. Statistical coefficients obtained from the multiple linear regression model

<table>
<thead>
<tr>
<th>Variables</th>
<th>Regression coefficients</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenols</td>
<td>10·101</td>
<td>0·048</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>8·659</td>
<td>0·156</td>
</tr>
<tr>
<td>Flavanols</td>
<td>1042·778</td>
<td>0·001</td>
</tr>
</tbody>
</table>

The test was performed using the values from Table 1. The significance of the regression coefficients was evaluated by the Student's t-test.

The present study shows the phenolic content and antioxidant capacities of fresh and seasonally harvested vegetables. The phenolic content was matched with the concentration of two phenolic subgroups, flavonoids and flavanols. By a multiple linear regression model, we provided significant evidence that ORAC values are strictly dependent on the phenolics and that the contribution to ORAC of the flavanols is remarkable. We also show that the diversification and the combination into salads of different vegetables provides an opportunity to introduce a variety of phenolics with the possibility of markedly increasing the total antioxidant capacity of the vegetable portion.

The use of freshly harvested vegetables in human nutrition is of fundamental importance today as modern storage or transforming systems allow the conservation of fresh vegetables for long periods of time in refrigerated cells under a controlled atmosphere, although the long-storage salad was enriched with one ingredient in each step, while subtracting a proportional amount of previously present vegetables in such a way as to maintain the 200 g serving size. In practical terms, in salad 2 we added cucumber, in salad 3 onions and in salad 4 carrots. The phenolic content of the four salads did not show any significant difference (data not shown). On the contrary, ORAC values increased by 20 % in type 3 salads in comparison to type 1 salads, whereas in type 4 salads, reducing the other components to allow for the addition of carrots, the ORAC value decreased by 30 %.

Fig. 3(B) shows the ORAC values of salads to which fresh aromatic herbs had been added. The addition of 1·5 % w/w of lemon balm doubled the ORAC value of the basic salad, whereas the addition of 1·5 % w/w marjoram increased it 4-fold. The content of phenolics correlated with the antioxidant capacity in the three salads (data not shown). In practice, a 200 g portion of a salad enriched with 1·5 % fresh marjoram leaves gave an intake of 200 ± 10 mg phenolics and 4000 ± 300 μmol Trolox equivalents (ORAC units).

Table 3. Phenolic, flavonoid, flavanol and oxygen radical absorbance capacity (ORAC) values in selected herbs

<table>
<thead>
<tr>
<th>Herbs</th>
<th>Botanical name</th>
<th>Total phenols* mg/100 g SD</th>
<th>Flavonoids* mg/100 g SD</th>
<th>Flavanols* mg/100 g SD</th>
<th>ORAC* μmolTE/100 g SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chive</td>
<td>Allium schoenoprasum</td>
<td>74·9</td>
<td>35·3</td>
<td>1·10</td>
<td>2094·2</td>
</tr>
<tr>
<td>Dill</td>
<td>Anethum graveolens</td>
<td>215·2</td>
<td>93·2</td>
<td>0·73</td>
<td>439·2</td>
</tr>
<tr>
<td>Garden sage</td>
<td>Salvia officinalis</td>
<td>798·0</td>
<td>749·5</td>
<td>1·61</td>
<td>32004·1</td>
</tr>
<tr>
<td>Garden savory</td>
<td>Satureja hortensis</td>
<td>201·2</td>
<td>67·5</td>
<td>1·13</td>
<td>9645·2</td>
</tr>
<tr>
<td>Garden thyme</td>
<td>Thymus vulgaris</td>
<td>1537·0</td>
<td>1185·3</td>
<td>0·22</td>
<td>27425·5</td>
</tr>
<tr>
<td>Hyssop</td>
<td>Hysopos officinalis</td>
<td>214·5</td>
<td>176·0</td>
<td>2·65</td>
<td>6050·2</td>
</tr>
<tr>
<td>Lemon balm</td>
<td>Melissa officinalis</td>
<td>434·0</td>
<td>289·0</td>
<td>1·91</td>
<td>5996·5</td>
</tr>
<tr>
<td>Marjoram</td>
<td>Origanum majorana</td>
<td>854·2</td>
<td>812·6</td>
<td>2·71</td>
<td>27297·4</td>
</tr>
<tr>
<td>Oregano</td>
<td>Origanum vulgare</td>
<td>435·1</td>
<td>361·0</td>
<td>1·14</td>
<td>13970·2</td>
</tr>
<tr>
<td>Parsley</td>
<td>Petroselium hortensis</td>
<td>67·9</td>
<td>52·2</td>
<td>0·90</td>
<td>13978·1</td>
</tr>
<tr>
<td>Peppermint</td>
<td>Mentha piperita</td>
<td>611·2</td>
<td>592·5</td>
<td>4·33</td>
<td>13978·1</td>
</tr>
<tr>
<td>Rocket</td>
<td>Eruca sativa</td>
<td>136·4</td>
<td>46·0</td>
<td>1·42</td>
<td>2373·3</td>
</tr>
<tr>
<td>Rosemary</td>
<td>Rosmarinus officinalis</td>
<td>1377·3</td>
<td>1321·2</td>
<td>2·41</td>
<td>290·32</td>
</tr>
<tr>
<td>Sweet basil</td>
<td>Ocymum basilicum</td>
<td>234·0</td>
<td>230·0</td>
<td>0·93</td>
<td>4805·2</td>
</tr>
<tr>
<td>Tarragon</td>
<td>Artemisia dracunculus</td>
<td>570·0</td>
<td>537·0</td>
<td>0·11</td>
<td>15542·2</td>
</tr>
</tbody>
</table>

* Values are referred to mg/100 g fresh weight vegetable and are means with standard deviations of four different determinations.

Table 4. Phenolic, flavonoid and oxygen radical absorbance capacity (ORAC) values in selected spices

<table>
<thead>
<tr>
<th>Spices</th>
<th>Botanical name</th>
<th>Total phenols* mg/100 g SD</th>
<th>Total flavonoids* mg/100 g SD</th>
<th>ORAC* μmolTE/100 g SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cumin</td>
<td>Cuminum cyminum</td>
<td>750·0</td>
<td>740·1</td>
<td>76·0</td>
</tr>
<tr>
<td>Cardamom</td>
<td>Elettaria cardamomum</td>
<td>148·3</td>
<td>19·3</td>
<td>2·3</td>
</tr>
<tr>
<td>Coriander</td>
<td>Coriandrum sativum</td>
<td>134·2</td>
<td>94·6</td>
<td>9·2</td>
</tr>
<tr>
<td>Fresh ginger</td>
<td>Zingiber officinalis</td>
<td>200·5</td>
<td>117·5</td>
<td>12·0</td>
</tr>
<tr>
<td>Seasoned salt 1</td>
<td>–</td>
<td>274·2</td>
<td>255·0</td>
<td>23·0</td>
</tr>
<tr>
<td>Seasoned salt 2</td>
<td>–</td>
<td>110·5</td>
<td>91·0</td>
<td>8·0</td>
</tr>
</tbody>
</table>

* Values are referred to mg/100 g of spices and are means with standard deviations of four different determinations.
or mildly processed vegetables possess a significantly lower phenolic and ascorbic acid content than fresh vegetables (Kalt et al. 1998, 1999) and their antioxidant capacity decreases proportionally (Serafini et al. 2002; Ninfali & Bacchiocca, 2004). Only the raw and seasonally harvested vegetables are able to exhibit in vitro their maximal antioxidant capacity owing to their intact phenolic and flavanol contents.

The present results are obtained in in vitro conditions, but they can certainly have a relevance in in vivo. The bioavailability of the phenolics is one of the most studied aspects of the nutritional biochemistry of vegetables.

The vast number of studies so far produced has provided the following evidence:

1. When the phenolic content of the consumed food is compared with the phenolic concentration present in plasma, part of the phenol glucoside moiety is shown to appear in the plasma as aglycones or as glucuronide or sulphate conjugates (Walle, 2004), which maintain their antioxidant capacity (Lu et al. 2003).

2. The pharmacokinetics of the phenolics depend on the food type since, for instance, in a vegetable diet containing citrus fruits, only quercetin, but not...
In summary, this suggests that not all of the ingested phenolics can reach the plasma, but those that escape in the bloodstream lead to a significant increase in total plasmatic antioxidant capacity, both when they are in the free aglyconic form and when they are in the glucuronide or sulphate conjugated form (Cao et al. 1998; Lu et al. 2003; Prior et al. 2003). The interval of time during which the plasmatic antioxidant capacity remains significantly increased depends on the amount and type of the vegetable mixture consumed.

In this paper, we attributed a major importance to the phenolic family, whereas we did not evaluate specifically the contribution to the ORAC values of the vitamin C concentration, since the vitamin C antioxidant capacity can be better estimated using other methods of detection (Szeto et al. 2002). However, the contribution of vitamin C to the ORAC values of the vegetables reported in Table 1 can be derived, for example, for peppers and Brassicaceae, through the following calculation. Peppers have an ascorbate value in the intracellular fluid of 15 (sd 2) μM, whereas for brassica vegetables this is about 5 (sd 1) μM vitamin C (www.inran.it). Since the ORAC value of 1 μM ascorbate solution is 0.95 (sd 0.02) μmol Trolox equivalents/1 (Ou et al. 2001), the contribution of vitamin C to the ORAC can be obtained by the equation:

\[
\frac{[0.95 \times \text{μM ascorbate}]/\text{ORAC value}}{100}
\]

Using this method, the contribution of ascorbic acid to the total ORAC value was in the range 3–5% for the peppers and 0.5–10% for the brassicas.

A second aspect we consider in the present study is the choice of cultivar. The comparison of selected cultivars reveals impressive differences. Among the various types of lettuce, we found that the phenolic and ORAC values of Rossa di Trento lettuce were 3–4-fold higher than the values obtained from Romana lettuce, one of the most consumed lettuces in Italy, which was used as a reference. These data indicate that the choice of the cultivar increases both the quantity and the quality of phenolics and very likely also the health benefits. The lettuce Rossa di Trento and Chioggia red chicory, which in addition also contain anthocyanins, show high levels of phytochemicals so the consumption of these cultivars should be encouraged.

Our data on vegetable combinations show that the introduction of different vegetables into the same mixture does not significantly change the phenolic content but can change the ORAC value, which accurately represents the antioxidant capacity of the mixture. We have shown that the introduction of onions increased the ORAC value by 20%, whereas carrots reduced it by 30%. The antioxidant capacity can be increased by the opportune combination of vegetables. However, the norm of diversifying vegetable consumption should remain since a decline in the ORAC value is not necessarily a negative aspect if a large variety of dietary antioxidants is ingested. Moreover, the ORAC method measures only hydrosoluble antioxidants. Since we have applied it to salads including carrots, which contain carotenoids extractable by means of apolar solvents, we justify the carrot-induced decrease in the ORAC value considering that carotenoids express limited solubility in water, their antioxidant activity being exerted only in the conjugated form (Cao et al. 1998; Lu et al. 2003; Prior et al. 2003). As for carotenoids, we attributed a major importance to the antioxidant capacity of vegetables, spices and dressings.

Fig. 1. The linear correlation coefficients were the following: broccoli, r 0.998; cauliflower, r 0.997; black cabbage, r 0.968; green cabbage, r 0.999; savoy cabbage, r 0.996.

Fig. 2. Linear relationship between total phenolics and type of cooking. Cooking conditions were the same as reported in the legend to Fig. 1. The linear correlation coefficients were the following: broccoli, r 0.998; cauliflower, r 0.997; black cabbage, r 0.968; green cabbage, r 0.999; savoy cabbage, r 0.996.

Fig. 3. Oxygen radical absorbance capacity (ORAC) values of (A) four different vegetable salads and (B) three salads different in terms of the addition of aromatic herbs. Each salad has a total weight of 200 g. In (A), the ingredients are as listed: 1: 76 g lettuce + 124 g tomato; 2: 50 g lettuce + 80 g tomato + 70 g cucumber; 3: 44 g lettuce + 72 g tomato + 63 g cucumber + 21 g onion; 4: 39 g lettuce + 64 g tomato + 45 g cucumber + 18 g onion + 34 g carrot. For cultivars of vegetables used for the salads see p. 2 of proofs. In (B), each salad has these ingredients: 1: 76 g lettuce + 124 g tomato; 2: 75 g lettuce + 122 g tomato + 3 g lemon balm; 3: 75 g lettuce + 122 g tomato + 3 g marjoram. For cultivars of vegetables used see p. 2 of proofs. Values are the mean ± sd of four different determinations. *Significantly different from salad 1 by ANOVA with P < 0.05. TE.
antioxidant activity towards the peroxyl radicals utilized in the ORAC assay. However, carotenoids are strong antioxidants against the singlet oxygen, and we therefore need a sufficient intake of carrots and other yellow vegetables in the daily diet.

In this work, we have quantified the loss of phenolics and antioxidant capacity in brassica vegetables that need to be cooked. Steamed vegetables retained about 80% of the phenolic and ORAC values of raw vegetables; boiled vegetables retained only 30% of antioxidants, also losing flavour. From raw to boiled brassica vegetables, a linear negative relationship was found between phenolic content and type of cooking. Therefore, the preferred cooking process for vegetables should be steaming at the mildest temperature and for the least possible time in order to protect phenolics and vitamins. This aspect has been elucidated several times in terms of vitamin loss but only seldom in terms of phenolics and ORAC value. The present report contributes to quantifying the phenolic loss and definitively orientating the cooking process toward steaming (Rumm-Kreuter, 2001).

The contribution of aromatic herbs to phenolic and ORAC values is another interesting aspect of this work. Our comparative analysis gave very high ORAC values for garden sage, marjoram, rosemary and garden thyme. These aromatic herbs, utilized in many food products, have been shown to be rich in rosmarinic acid (Zheng & Wang, 2001), a very potent antioxidant. Aromatic herbs represent a reservoir of phenolic compounds concentrated in just a few grams of material and can represent one of the simplest ways to increase the phenolic content and antioxidant capacity of the daily diet, with possible health benefits (Zheng & Wang, 2001). Our data show that the introduction of aromatic herbs into the salads markedly increases the phenolic and ORAC values of the whole salad.

Spices and aromatized salts should be regarded as supplement seasonings capable of providing a marked increase in phenolic and antioxidant capacity. Among the selected spices, we revealed that cumin has the highest ORAC value, although its phenolic and flavonoid content is not the highest.

Two-herb seasoned salt showed very different phenolic and ORAC values; this could be due either to the different composition of the dehydrated herbs or to the different salt:herb ratio. The producers generally did not specify these data, although this information would represent a useful parameter of quality, highlighting their health benefits to consumers.

Finally, we would like to illustrate the importance of the use of salad seasonings. Extra-virgin olive oils, carefully produced using freshly gathered olives at the right degree of maturation, should be the principal condiment for their content of phenolic compounds, which, due to their marked antioxidant capacity, protect the cardiovascular system (Visioli & Galli, 1998; Visioli et al. 1998). On the contrary, we cannot support the use of aromatized oils in which the phenolic content has been dramatically reduced as a result of the activity of phenol oxidases contained in the vegetable, or the use of seed oil, which does not contribute in any way to the phenolic pool but furnishes only fatty acids. The presence of phenolics in wine (Miyagi et al. 1997; Mukamal et al. 2003) and apple vinegars can have positive health effects since these maintain a good portion of the phenolics present in the fruit expressing a significant antioxidant capacity (Burns et al. 2000).

On the basis of the results obtained from the evaluation of phenolic and flavonoid content and the ORAC values of several vegetables, herbs, spices and dressings, we conclude that it is important to educate consumers on the benefits of varying vegetable consumption, choosing those that have the highest antioxidant capacity in order to promote a healthy diet. We stress the need to introduce aromatic herbs as a seasoning supplement in the diet of every age group. The addition of aromatic herbs to salads, at a percentage compatible with palatability, markedly increases their antioxidant capacity. Salad dressings for normal, daily use, extra-virgin olive oil and wine or apple vinegar should be profitably integrated with spices and seasoned salts.

The analysis of the differences in phenolic content and antioxidant capacity of selected vegetables reported here provides a simple and compelling tool for nutrition professionals to guide family vegetable consumption.

Acknowledgements

The authors wish to thank the Association Legambiente of Urbino and the Regione Marche (Ambito Locale 4) for their support of the research on ORAC food analysis.

References

Cao G, Alessio HM & Culter RG (1993) Oxygen-radical...
Cao G, Russell RM, Lischner N & Prior RL (1998) Serum antioxi-
dant capacity is increased by consumption of strawberries,
spinach, red wine or vitamin C in elderly women. J Nutr 128, 2383–2390.
Cao G, Sofie E & Prior RL (1997) Antioxidant and prooxidant
behavior of flavonoids: structure–activity relationship. Free
Celi F, Bini V, De Giorgi G, Molinari D, Faroani F, Di Stephano
children and adolescents in three provinces of central Italy,
De Pascual-Teresa S, Santos-Buelga C & Rivas-Gonzalo JC
(2000) Quantitative analysis of flavan-3-ols in Spanish food-
Diaz MN, Frei B, Vita JA & Keane JF (1997) Antioxidants and
Eberhardt MV, Lee CY & Liu RH (2000) Antioxidant activity of
Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA &
of post-harvest quality in fresh or transformed horticultural
Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA &
Eberhardt MV, Lee CY & Liu RH (2000) Antioxidant activity of
Erlund I, Silaste ML, Alfthan G, Rantala M, Kesaniemi YA &
Aro A (2002) Plasma concentrations of the flavonoids hesper-
itin, naringenin and quercetin in human subjects following
their habitual diets high or low in fruit and vegetables. Eur
Franke AA, Custer LJ, Arakaki C & Murphy SP (2004) Vitamin
C and flavonoids levels of fruits and vegetables consumed in
Gil MI, Ferreiros F & Tomás-Barberán FA (1999) Effect of post-
harvest storage and processing on the antioxidant constituents
(flavonoids and vitamin C) of fresh-cut spinach. J Agric Food
Chem 47, 2213–2217.
Halliswell B (1999) Establishing the significant and optimal intake
of dietary antioxidants: the biomarker concept. Nutr Rev 57,
104–113.
Kalt W, Forney CF & McDonald J (1998) Changes in fruit phe-
nolic composition and antioxidant capacity during storage.
Hortic Sci 33, 469, (abstract).
capacity, vitamin C, phenolics, and anthocyanins after fresh
oxidant and antiproliferative activities of raspberries. J Agric Food
Chem 50, 2926–2930.
Lu H, Meng X, Li C, et al. (2003) Glucuronides of tea catechins:
enzymology of biosynthesis and biological activities. Drug
Metab Dispos 31, 452–461.
on measures of lipid peroxidation: result from a randomized
Miyagi Y, Miwa K & Inoue H (1997) Inhibition of human
pattern and type of alcohol consumed in coronary heart
concentration of carotenoids in healthy volunteers after inter-
vention with carotenoid-rich foods. Eur J Nutr 38, 35–44.
Nicoli MC, Anese M & Parpinel M (1999) Influence of proces-
sing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol 10, 94–100.
capacity of vegetables under fresh and frozen conditions. J
Agric Food Chem 51, 2222–2226.
of post-harvest quality in fresh or transformed horticultural
idant capacity of vegetable oils. J Am Oil Chem Soc 78,
243–247.
Ninfali P, Bacchiocca M, Biagetti O, Servili M & Montedoro GF (2002) Validation of the oxygen radical absorb-
cance capacity (ORAC) parameter as a new index of quality
and stability of virgin olive oil. J Am Oil Chem Soc 79,
977–982.
validation of an improved oxygen radical absorbance capacity
assay using fluorescein as the fluorescent probe. J Agric Food
Chem 49, 4619–4626.
Ou B, Huang D, Hampsch-Woodill M, Flanagan JA & Deemer E
(2002) Analysis of antioxidant activities of common vegetables
employing oxygen radical absorbance capacity (ORAC) and
ferric reducing antioxidant power (FRAP) assays: a compara-
and lipophilic antioxidant capacity (oxygen radical absorbance
capacity (ORAC FL)) of plasma and other biological and food
Reaven GM (2001) Insulin resistance, compensatory hyperinsuli-
nemia, and coronary heart disease: syndrome X revisited. In
Handbook of Physiology, Section 7. The Endocrine System,
vol. II, The Endocrine Pancreas and Regulation of Metabolism,
pp. 1169–1197 [LS Jefferson and AD Cherrington, editors].
New York: Oxford University Press.
Rumm-Kreuter D (2001) Comparison of the eating and cooking habits of northern Europe and Mediterranean countries
in the past, present and future. Int J Vitamin Nutr Res 71,
141–148.
Serafini M, Bugiansi R, Salucci M, Azzini E, Ragazzini A &
Maiani G (2002) Effect of acute ingestion of fresh and stored
lettuce (Lactuca sativa) on plasma total antioxidant capacity
and antioxidant capacity and levels in human subjects. Br J
Singleton VL, Orthofer R & Lamuela-Raventos RM (1999) Anal-
ysis of total phenols and other oxidation substrates and antioxi-
dants by mean of Folin-Ciocalteu reagent. Methods Enzymol
299, 152–178.
Supplementation with fruit and vegetable extracts may
decrease DNA damage in the peripheral lymphocytes of an
Stewart RJ, Askew EW, McDonald CM, Metos J, Jackson WD,
children: response to an antioxidant supplement. J Am Diet
Assoc 102, 1652–1657.
Szteto YT, Tomlinson B & Benzie IFF (2002) Total antioxidant
activity and ascorbic acid content of fresh fruits and vegetables: impli-
cations for dietary planning and food preservation. Br J Nutr
87, 55–59.
and quality of polyphenol antioxidants in foods and beverages.
Visioli F & Galli C (1998) The effect of minor constituents of
olive oil on cardiovascular disease: new findings. Nutr Rev
56, 142–147.
Antioxidant capacity of vegetables, spices and dressings