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Every PSL2(13) in the Monster contains 13A-elements

Robert A. Wilson

Abstract

We prove the assertion in the title by conducting an exhaustive computational search for
subgroups isomorphic to PSL2(13) and containing elements in class 13B.

Supplementary materials are available with this article.

1. Introduction

The Monster is the largest of the 26 sporadic simple groups, and the only one whose maximal
subgroups are not yet completely classified. Much work has however been done on this problem
over the years (see for example [3, 5–8, 10]), but a few obstinate cases remain. One of these
is the problem of classifying subgroups isomorphic to PSL2(13), whose normalizers might
be maximal. This case was considered in unpublished work by Holmes, but apparently not
completed.

In [6] some subgroups isomorphic to PSL2(13) are described. Notation here and later
generally follows the Atlas [2], with one or two modifications following [9].

Theorem 1 (Norton). The following two conjugacy classes of subgroups isomorphic to
PSL2(13) exist in the Monster.

(1) One with centralizer 31+2.22, so its normalizer lies in (31+2.22×G2(3)).2. Such a PSL2(13)
has type (2B, 3B, 7A, 13A).

(2) One of type (2B, 3B, 7B, 13A) with centralizer of order 3 and normalizer contained in
3.Fi24.

In particular, no subgroup isomorphic to PSL2(13) and containing 13B-elements is known.
Our main result is that, in fact, no such subgroup exists.

Theorem 2. There is no subgroup of the Monster which is isomorphic to PSL2(13) and
contains 13B-elements.

Theoretical methods do not get us very far, and the main tool is an exhaustive search for
all subgroups generated by 13:6 and D12 intersecting in a cyclic group of order 6.

Lemma 1. There is a unique class of subgroups 13:6 containing 13B-elements. Every such
subgroup contains 6F -elements and has centralizer which is cyclic of order 4.

Proof. Elements in class 13B have centralizer 131+2:2.A4 and normalizer

131+2:(3× 4S4).

Every 13:6 lies in the subgroup 131+2:(3× 4A4) of index 2. Since 4A4 contains a unique class
of non-central involutions, it follows that there is a unique class of 13:6, which has centralizer
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cyclic of order 4. Note that the 3-elements which cube a 13B-element are in class 3C in the
Monster, so the elements of order 6 in this 13:6 are in class 6F .

The normalizer of a cyclic group of order 6 containing 6F -elements is a group of shape
S3 × 21+8.A9.

2. Computational techniques

We use the computer construction described in [4], in which the Monster is generated by a
subgroup 〈a, b〉 ∼= 21+24.Co1, together with a ‘triality element’ T , which centralizes a subgroup
211.M24 of 〈a, b〉, all acting on a 196882-space over F3. In particular, we use the techniques
described in [5] and [8]. We repeat some of the most important ones here for convenience.

2.1. Obtaining 2.Co1

It is straightforward to obtain elements of 2.Co1 as 24× 24 matrices over F3, corresponding in
pairs (modulo sign) to elements of the quotient of 21+24.Co1 by the normal 2-subgroup. To do
this, we compute 24 suitable rows of the corresponding 196882 × 196882 matrix and extract
the 24× 24 matrix from them.

This process can be carried out for any element of the Monster which commutes with the
central element z of 21+24Co1, even if it is only given as a word in the generators of the Monster.
We just have to compute the images of a carefully selected set of 24 coordinate vectors and
extract another (not necessarily the same) carefully selected set of 24 coordinates from the
answer.

2.2. Changing post

In our computations we are often ‘tied to the post’, in the sense that we can really only
compute elements in the subgroup 21+24.Co1. However, a method was given in [3] for
‘changing post’, specifically, finding a word in the generators of the Monster which conjugates
any given 2B-element in 21+24.Co1 to the central involution. In principle, we pre-compute
some representatives for the conjugacy classes of 2B-elements in this group, as words in the
generators. Then we conjugate our arbitrary 2B-element to one of these by the usual dihedral
group method. In practice, however, it turns out not to be too hard to deal with each case as
it arises.

The process consists of two steps. In the first step, the involution is conjugated to a standard
copy in the quotient Co1, such that conjugation by T (or T−1) takes this standard copy into
the normal subgroup 21+24. This first stage is achieved by standard dihedral group methods.
The second stage is to conjugate this involution in 21+24 to a standard one, zT or zT

−1

.
This second stage is achieved by a random search, using the birthday paradox to speed it
up, among the roughly 16 million conjugates. Modulo the central involution, this process can
be carried out using only the action of Co1 on the Leech lattice modulo 2. The effect of this
central involution is only to swap between the two cases T and T−1. (The search could also
be done more systematically using base-and-strong-generating-set methods in the permutation
representation on 8292375 points.)

3. Finding 13:6 and its centralizer

The group 13:6 × 4 can be found inside the involution centralizer 21+24.Co1. Our strategy is
to find the centralizing element of order 4 first, and look in its centralizer for the rest of the
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group. Therefore, we begin by looking for the centralizer of a 2B-involution in Co1. Using the
generators a, b for 21+24Co1 defined in [4], we find that

(ab(abab2)2)21

maps to such an involution and, using standard methods (see [1]), most of its centralizer may
be generated by

c = (a(ab(abab2)2)21)5,

d = ab(abab2)2.

In order to be able to use words previously computed for useful subgroups, we first find
standard generators for the composition factor G2(4). These may be taken as

e = (cdcdcd2)5,

f = d8(cd2)6d34.

We then use the words stored in [11] for maximal subgroups of G2(4) to make PSL2(13)
(modulo the 2-group) generated by

g1 = (efefef2)3((ef)2(efef2)2ef2)3(efefef2)18,

g2 = (efef2)13(ef(efef2)2)5(efef2)2

and various useful elements within PSL2(13) as follows:

g3 = g22(g1g2)2,

g4 = g1g3g1g
2
3 ,

g5 = (g1g2)13.

Modulo the 2-group, g1 and g3 generate 13:6, in which g4 is an element of order 13, and g5
is an element of order 4 commuting with this copy of 13:6. Now we ‘apply the formula’ a few
times to get the elements we really want, that is, elements which normalize 〈g4〉:

g′1 = g1(g124 g
3
1g4g1)6,

g′3 = g3(g34g
5
3g4g3)6,

g′5 = g4g5(g4g
3
5g4g5)6,

g′′1 = g′1g
′
5,

g′′3 = g′3(g′5)2.

Having found the 13:6, generated by g′′1 and g′′3 , and its centralizer, generated by g′5, we now
need to find the normalizer of the element of order 6, which is in Monster-class 6F . As noted
above, this normalizer is a subgroup of shape S3 × 21+8

+
.A9, which lies inside the centralizer

of the 2B-involution g′′1 .

4. Changing post

The first step in this process is to ‘change post’, that is, to conjugate the new involution g′′1 to z
so that we can work in its centralizer to find the elements we need. (We describe the calculations
that we actually did. They could be simplified slightly by using the pre-computation described
in § 2.) The first step is to work in the quotient Co1 to conjugate g′′1 into the normal 211 of the
standard copy of 211:M24. Now this standard copy is generated by h and i, where

h = (ab)34(abab2)3(ab)6,

i = (ab2)35((ababab2)2ab)4(ab2)5.
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We then want to lift to 21+24211M24 and find an element in 21+24.211 outside 21+24 which is
conjugated by T or T−1 into the 21+24. To do this, we make an element k which has order 22
in the quotient 211M24 as follows.

k1 = hihi2,

k2 = hihihi2,

k = (k1k2)3k2k1k2.

It follows from details in [4] that either (k11)T or (k11)T
−1

lies in the 21+24.

We now find that (g′′1 )(ab)
4

k11 has order 15 modulo the central involution and therefore

l1 = (ab)4(k11(ab)36g′′1 (ab)4)7

conjugates g′′1 into the desired place. A simple trial and error then gives us that T conjugates
the resulting involution into the normal 2-group.

The second stage of the process of ‘changing post’ is to conjugate our element (g′′1 )l1T to
zT modulo 〈z〉. To do this, we translate these elements of 21+24 into vectors of the standard
module for Co1, as described in [8]. Then we make a few thousand images of each under
elements of Co1 and sort the results in order to find coincidences. Any coincidence between
the two lists of images gives us an element of Co1 to map one to the other. We find that the
element

l2 = (ab)7(ab2)31(ab(abab2)2)25(ababab2ab)13(ababab2)10

performs the required conjugation and

l = l1T l2T
−1

conjugates g′′1 to z.

5. Finding the normalizer of the 6

We have now reduced the computation of the 6-normalizer to a computation inside the
involution centralizer 21+24.Co1. We do this in two stages, first finding the image in the quotient
Co1 and then lifting to the involution centralizer.

5.1. Finding S3 ×A9 in Co1

Now the element of order 3 which normalizes our 13-element and centralizes g′′1 is g′′′3 = g54g
′′
3 g

8
4 .

The conjugate of this by l lies in C(z), and our aim is to find its centralizer therein.
First we do some searches in the quotient Co1. Actually, we work in 2.Co1, where we have

the standard generators corresponding to a and b, and we make the two elements (differing by
a sign) corresponding to (g′′′3 )l by the method described in § 2.

We find that the following elements m1,m2,m3,m4,m5 in Co1-class 3A generate the
centralizing A9 modulo the 2-group, where

m0 = ((ab)2(abab2)2ab2)22,

m1 = (ab)13(ababab2ab)23(ab2)2m0(ab2)38(ababab2ab)5(ab)27,

m2 = (ab)16(ababab2ab)17(ab2)2m0(ab2)38(ababab2ab)11(ab)24,

m3 = (ab)28(ababab2)(ababab2ab)23(ab2)19m0(ab2)21(ababab2ab)5(ababab2)23(ab)12,

m4 = (ab)15(ababab2)(ababab2ab)16(ab2)36m0(ab2)4(ababab2ab)12(ababab2)23(ab)25,

m5 = (ab)6(ababab2)2(ababab2ab)24(ab2)29m0(ab2)11(ababab2ab)4(ababab2)22(ab)34.
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We next find a copy of J2 centralizing m3m4, generated by

m6 = (ab)16(ab2)29m0(ab2)11(ab)24,

m7 = (ab)27(ababab2ab)18(ab2)38m0(ab2)2(ababab2ab)10(ab)13,

m8 = (ab)14(ababab2)(ab2)28m0(ab2)12(ababab2)23(ab)26,

m9 = (ab)19(ababab2)(ababab2ab)19(ab2)15m0(ab2)25(ababab2ab)9(ababab2)23(ab)21.

In here we look for involutions which centralize the A9. We put n = m6m7 and o = m8m9,
and p = ((no)2(nono2)2)4, and then

m10 = (no)4(nonono2no)2(no2)9p(no2)(nonono2no)5(no)11,

m11 = (no)10(nonono2no)5(no2)4p(no2)6(nonono2no)2(no)5

to generate the S3 which commutes with the A9 modulo the 2-group.

5.2. Lifting to S3 × 21+8A9

First we apply the formula to the generators of S3, to make them commute with the element
m3m4 (which has order 10 and fifth power equal to the central involution z). That is, we make

m′10 = m3m4m10(m3m4m
3
10m3m4m10)2,

m′11 = m3m4m11(m3m4m
3
11m3m4m11)2,

m′12 = (m′10m
′
11)2,

where m′12 is an element of order 3. It is easy to check that m′12 is congruent modulo the
2-group to (g′′′3 )l (rather than its inverse).

Next we want to find which element of 21+24 to conjugate m′12 by in order to get (g′′′3 )l. It is
not enough to use the formula, because the latter element is only given as a word involving T .
We have to test all 216 conjugates until we find the right one. We make 16 elements to conjugate
by as follows:

q0 = (a2m′12)3a2,

q4 = (m1m2m5)12q0(m1m2m5)2,

qi+1 = (m3m4)8qi(m3m4)2 for i = 0, 1, 2, 4, 5, 6,

q′i = (m′12)2qim
′
12 for all i.

Testing such a large number of cases has to be done carefully. We can eliminate all but the
correct case very quickly as follows. Pick a random vector v and compute its 256 images under
(g′′′3 )lq, where q is any product of the qi. Similarly, compute the 256 images of v under (m′12)q

′
,

where q′ is any product of the q′i. Now comparing these vectors is very quick, and we find that
the correct conjugate of m′12 is

m′′12 = q0q2q6q
′
0q
′
1q
′
5m
′
12q
′
0q
′
1q
′
5q0q2q6z.

Having found this, we now apply the formula to get the elements we want:

r1 = m′′12m3m4m
′′
12(m3m4)9m′′12m3m4,

r2 = m′′12m1m2m5m
′′
12(m1m2m5)13m′′12m1m2m5,

r3 = m′′12,

r4 = m′10(m′′12)2m′10m
′′
12m

′
10.

We now have that 〈r3, r4〉 ∼= S3 and 〈r1, r2〉 ∼= 21+8
+

.A9.
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6. Enumerating the cases

From the structure constant for the triple of classes (2B, 2B, 6F ) in the Monster we know that
the element of order 6 extends to exactly 15255 dihedral groups of order 12 that are generated
by 2B-elements. It is easy to see that 135 of these are generated by the product of an involution
in the S3 generated by r3 and r4, with an involution in the normal subgroup 21+8. The other
15120 are all generated by involutions mapping to one of cycle type (24, 1) in A9. There are
945 such involutions in A9, and each lifts to 16 involutions in 28.A9. (We ignore the central
involution, as this is the cube of our element of order 6.)

We first determine a map onto a standard copy of A9, as permutations on nine points. This
can be obtained easily using the Meataxe, from the copy of 2.A9 inside 2.Co1, which we have
already used. It turns out that such a map is given by

r1 7→ (8, 7, 5, 9, 4),

r2 7→ (1, 2, 3, 4, 5, 6, 7),

(g′5)l 7→ (1, 6, 4, 5)(2, 3, 7, 9).

We can then determine (more or less by hand) a set of words in these generators which give
representatives of the orbits of (g′5)l on the involutions of type (24, 1) in A9.

Using (g′5)l, we see that we may restrict attention to those involutions whose fixed point is
9, 5 or 8. We make the following elements:

r5 = (r1r
2
2)5r1(r1r

2
2)5r41 7→ (2, 8, 9),

r′2 = r82 7→ (1, 2, 3, 4, 5, 6, 7),

r6 = r1r
′
2r5(r′2)6r41 7→ (1, 4, 5),

r7 = (r′2)6r6r
′
2r6 7→ (1, 4, 5, 6, 2),

r8 = (r1r2r1r
2
2)3 7→ (1, 5)(2, 7)(3, 8)(4, 6).

It is now easy to see that the 105 involutions in this class which fix the point 9 are given by

(r8)r
α
6 r
′β
7 r
′γ
2 ,

where r′7 = r67 and 0 6 α 6 2, 0 6 β 6 4, 0 6 γ 6 6.
Similarly, those which fix 5 are given by

(r8)r
α
6 r
′β
7 r
′γ
2 r

4
1

and those which fix 8 are
(r8)r

α
6 r
′β
7 r
′γ
2 r

2
1 .

Now we lift to 21+8A9 and see which elements of the 21+8 we need to multiply these words
by. We make the following generators for 21+8:

s0 = r72,

s4 = (s0)(r1r
8
2),

si+1 = (si)
r1 for i = 0, 1, 2, 4, 5, 6.

The result is that sr8 is an involution for the following 16 words s:

s1, s0s1s2s3, s5, s0s2s3s5,

s0s1s4s6, s1s2s3s4s6, s0s4s5s6, s2s3s4s5s6,

s7, s0s2s3s7, s1s5s7, s0s1s2s3s5s7,

s0s4s6s7, s2s3s4s6s7, s0s1s4s5s6s7, s1s2s3s4s5s6s7.
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Slightly more systematically, we may define

t0 = s1r8,

t1 = s5r8,

t2 = s7r8,

t3 = s1s5t2,

ti+4 = s0s2s3ti for 0 6 i 6 3,

ti+8 = s0s4s6ti for 0 6 i 6 7.

By this stage we have a complete set of 3360 involutions corresponding to fixed points 9 and
5. The first batch of 1680 cases are ti conjugated by rα6 r

′β
7 r
′γ
2 and the second batch of 1680

cases are ti conjugated by rα6 r
′β
7 r
′γ
2 r

4
1.

The set of 1680 involutions corresponding to fixed point 8 are the ti conjugated by rα6 r
′β
7 r
′γ
2 r

2
1.

This set can be further reduced by investigating the action of (g′5)l. In fact, it seems not worth
doing this in full generality, but merely in the A9 quotient. By explicit computation we find
that this element has 20 orbits of size 4, and 10 orbits of size 2, and five fixed points, making 35
orbits altogether. We may therefore reduce the 16.105 = 1680 cases to 16.35 = 560 by taking
one from each orbit. We took the following 35 values for (γ, β, α), which we write as γβα to
save space:

000, 002, 022, 031, 100, 101, 102, 120, 122, 131,

132, 141, 200, 210, 221, 231, 232, 300, 302, 401,

001, 010, 021, 032, 042, 110, 212, 412, 421, 432,

012, 112, 201, 311, 512.

(The first two rows comprise representatives for the orbits of length 4, the third row orbits of
length 2 and the last row the fixed points.)

A fourth batch of 255 cases comes from the 255 non-trivial elements of 21+8/2. Although only
135 of these cases are involutions, it seemed more trouble than it was worth (and error-prone)
to try to select the correct cases. Moreover, the fact that there were exactly 135 involution
cases out of the 255 provided an additional sanity check.

7. Results

For each of the 4175 involutions generated as above, we tested to see whether it extends 13:6
to PSL2(13) as follows. We tested each of the six involutions in the outer half of the D12 to
see if its product with the element of order 13 has order 3. The element of order 13 is

gl4 = gl1Tl2T
−1

4 = T l−12 T−1l−11 g4l1T l2T
−1 = T l212 T

−1l451 g4l1T l2T
−1.

For the sake of efficiency, we pre-compute the element

g′4 = l−11 g4l1.

Since the cyclic part of the D12 is generated by r3 of order 3, and z of order 2, we obtain the
six involutions by multiplying by the six elements in this cyclic group. More specifically, the
involutions we test are the product of one of

r4, r3r4, r
2
3r4, zr4, zr3r4, zr

2
3r4

with one of the conjugates of one of the ti, or with a product of some si.
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Each of the 4175 cases tested took a little under a minute to check, making a total running
time, including making all the required group elements, of around three days, on my geriatric
laptop.

We found that none of the cases passed this test. This therefore concludes the proof of
Theorem 2. However, a negative result like this is not robust against bugs in the computer
programs, and we therefore embarked on extensive checking. The programs used are available
as online supplementary material from the publisher’s website and can be used as the basis
for further checks as necessary.
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