
Proceedings of the Edinburgh Mathematical Society (1986) 29, 75-91 I

A WEIGHTED HYPERPLANE MEAN ASSOCIATED WITH
HARMONIC MAJORIZATION IN HALF-SPACES

by D. H. ARMITAGE

(Received 12th December 1984)

1. Introduction and main results

The purpose of this paper is to introduce a new kind of weighted hyperplane mean
for subharmonic functions and to use this mean in giving results on the harmonic
majorization of subharmonic functions of restricted growth in half-spaces.

An arbitrary point of the Euclidean space Rn+1, where n ^ 1, will be denoted by M = (X,y)
where X = (xu..., xn) e R" and y e R. We write

\X\=(x2+---+x2
n)\ \M\=(\X\2+y2)±

and, in the sense of Lebesgue, dX = dxl...dxn. Throughout this paper a and b will be
real numbers such that 0 ̂  a < b and

Dfl = {MeR"+1:y>a}, Qa,b

If / is a non-negative Lebesgue measurable function on R" x {y}, where y>a, let

VJLf.y)^-*)-'-1 J {l + \X\/(y-
R"

If / takes values of both signs, we write

provided at least one of the terms on the right-hand side is finite.
The weighted mean *PO is related to the mean introduced by Brawn in his study of

subharmonic functions in strips [4], and this paper depends upon his work. Our
theorems, however, are more closely analogous to those of Kuran [9] on half-spherical
means. Other hyperplane means which have been studied in relation to subharmonic
functions in half-spaces are

\f(X,y)dX (1)
R"
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76 D. H. ARMITAGE

(see [1] and the papers cited there for a sample of the literature) and

(2)

[9, 11, 12, 15]. An advantage of working with the mean *Pa is that ¥„(/, ) is finite on
(a, oo) for a large class of functions f, whereas the means (1) and (2) are finite for
comparatively small classes of functions. However, in order to obtain interesting
conclusions from hypotheses concerning the behaviour of *Ffl(s, •) for a subharmonic
function s in Da, it is necessary to impose a general restriction on the growth of s+. We
shall say that a subharmonic function s in Da belongs to the class £fa if for each b > a
and each positive number k

lims+(M)e~'l|M|=0 (3)

as M tends to the Alexandroff point s4 (at infinity) from inside Qa b.
We denote the closure and boundary in R"+ * of a set £ by £ and dE.

Theorem 1. Let s be a non-negative function in Da such that seSfa,

s(N) = lim sup s{M) < oo (N e dDa), (4)
M-N
MeDa

and

j ( l + |X|2)-*("+11s(jr,a)dX<oo. (5)
R"

Then ^ ( s . y ) is real-valued on (a, oo) and tends to a limit ij/a(s) as y-*co such that
0 ^ / ( ) ^

This theorem is of the same type as [10], Theorem 2 and [12], Theorem 2, which
deal with the limiting behaviour of half-spherical means and certain weighted
hyperplane means, respectively.

Before giving our results on harmonic majorization, we need a brief discussion of
Poisson integrals in strips and half-spaces. Let / and g be extended real-valued
functions defined on R" x {a} and R" x {b}, respectively, such that

(6)
R"

and

\ \ \ W (7)

Then the Poisson integral in Qa b of the function equal to / on R" x {a} and equal to 0
on R" x {b} exists and is harmonic in Qfl,, (see [3], pp. 747, 748, 758). We denote this
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HARMONIC MAJORIZATION IN HALF-SPACES 77

Poisson integral by Ia,bif. Similarly, the Poisson integral in O.ab of the function equal to
g o n R " x {b} and equal to 0 on R" x {a} exists and is harmonic in Qa b. We denote this
Poisson integral by Ja>b,g. If F is defined on dQa b and if lab F and Ja,btF exist and are
harmonic in Slab, we write

Ha, b,F~ I a, b, F + J a, b, F-

Further details of Poisson integrals in strips are given in Sections 2 and 3.
A necessary and sufficient condition for the Poisson integral of / in Da to exist and to

be harmonic in Da is

(8)

(compare [7], Theorem 6). We denote this half-space Poisson integral by /O>0o,/- We
shall also need, more generally, half-space Poisson integrals of measures. If fi is a signed
measure on R" such that

l ( l + |X|2)-«'I+1»d|^|(X)<oo, (9)
R"

then the half-space Poisson integral of fi in Da is given by

/a,co.,(M)=(2/sn+1) J (y-a){\X-Z\2 + (y-a)2}-H"+1)dtiZ)
R"

and is harmonic in Da. Here sn + 1 is the surface area of the unit sphere in R"+1.

Theorem 2. Let s be a function in Da such that seSfa, (4) holds, and

J (l + \X\2yiln+1)s+(X,a)dX <oo. (10)
R"

Then ¥„($, •) and *P0(s+,) are real-valued on (a, oo) and y¥a(s
+,y) tends to a limit

il/a(s
+) as y-KX> such that 0gi/ ' o(s+)^oo.

For s to have a positive harmonic majorant in Da it is necessary and sufficient that
*l/a(s

+) <co.
If ^a(s

+)<co, then

(i) Ta(s, y) tends to a finite limit ij/a(s) as y-*<x>,
(ii) | ( l + |Z|2)-*<B+

(iii) lim/ajfc>s(Af) = /O 0 0 J(M) (MeDa),
b-*<x>

(iv) limJo,i,,J(iW)=(cB)-Va(s)(>'-a) (M.eDJ,
fc-»co
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(v) the function hs a, defined in Da by writing

ha(M) = Ia,«,,s(M)+(cnr
1iPs(s)(y-a), (11)

is a harmonic major ant of s in Da.

Corollary. If seSfa and

M->N

and ij/a(s
 + ) = O, then s^O, in Da.

Under the hypotheses of Theorem 2 it is possible that the function hs a, defined by
(11), is a harmonic majorant of s in Da but is not the least such majorant. However, the
following theorem gives sufficient conditions for hsa to be the least harmonic majorant
of s in Da.

Theorem 3. Suppose that a>0 and that se£f0. Then s has a positive harmonic
majorant in Da if and only i/(10) holds and i^a(s+)<oo. Further, if these conditions are
satisfied, then the least harmonic majorant of s in Da is the function hs a given by (11).

The example s(M)= — -J{y — a) shows that the conditions in Theorem 3 are not
necessary for its final conclusion; this function is subharmonic in Da but has no
subharmonic extension to Do.

Finally, we consider ij/a(s) as a function of a.

Theorem 4. Let s be defined in Da. If se£fa and s satisfies (4) and (10) and if
•Aa(s+) < °°» tnen <A • (s) 1S constant on [a, oo).

A similar result for half-spherical means is given in [12], Theorem 1.

2. Preliminaries on Poisson integrals in strips

We recapitulate some of Brawn's results.
Let O: [0, oo) x (0,2)->R be defined by

O(0, y) = (2w)"*"2l ~in{T{\n)} ~1 J t"~ * sinh{(1 - y)t}(sinh t)" * dt

in J £i"r1

where J i n _ ! denotes the Bessel function of the first kind of order jn — l ([14], p. 40).
Then <1> is positive and continuous on [0, oo) x (0,1). If / and g are functions satisfying
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(6) and (7), then IOihyf and Jabg are given by

Ia,b,f(M)=(b-ay J ®(\X-Z\/(b-a),(y-a)/(b-a))f(Z,a)dZ

R"

and

= {b-ay | <J>(\X-Z\/(b-a),(b-y)/(b-a))g(Z,b)dZ.

Lemma A. / / / is a function on R"x {a} satisfying (6) then laib<f is harmonic in QaJ)

and

lim / a 6 / (M)=0 (JVeR"
Af-N

If, further, f is continuous at a point P of R" x {a}, then

lim /a,b

/ / / /jas compact support, then

lim J

77ie same results, with R"x{a} and Rnx{b} interchanged, hold for Ja,b<g, where g is a
function on R" x {b} satisfying (7).

The results for Iab f are contained in [3] (Theorem 1, Lemmas 1, 2) in the case where
a = 0 and b=\. For an indication of the modifications required to pass to the general
case, see [3], p. 758. It is easy to see that the corresponding results hold for Jai i , , r

Next, we give the results on harmonic majorization in strips that we shall need.

Lemma B. / / s is defined in Cla b and is subharmonic in Qab and satisfies

lim sup s(M) = s(iV) < oo (N e dfia, b),
M->N

and

lim
Af-jrf

then HUtbf, is a harmonic majorant of s in Qa b.

Lemma C. / / 0^<x<a<b</9 and s is subharmonic in Qa fi and has a positive
harmonic majorant there, then the least harmonic majorant of s in Qa b is Ha b s.
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In the case where a = 0 and b = 1 Lemma B is [3], Theorem 2, and in the case where
a = 0 and /?=1 Lemma C is [4], Theorem 2. The stated generalizations are easily
obtained from the cited cases.

3. Further results on Poisson integrals in strips

We use A to denote a finite positive constant depending at most on n, not necessarily
the same on any two occurrences.

Lemma 1. / / 0Sa<c^j{a + b) and if g is a non-negative function on R"x{b} such
that

then

AJa,bJ0,..., 0, c)^c-ayVa{g, b) ̂  AJa<bJ0,..., 0, c).

We start by showing that

r)iil-n)e-'zr (12)

whenever r^O and %<y<l. A similar but slightly less general result than (12) is given
in [4], Lemma 1. Our proof of (12) for large r is modelled on the proof in [4]. We start
from the equation

m = 1
, 0<y< 1),

where Kin-t denotes the Bessel function of the third kind of order \n — 1 ([14], p. 78).
For this equation, see [2], formula (22) and note that O is normalized in accordance
with [4] and not [2]. Hence when r ^ 1 and 0<y< 1

£ minsin(mny)Kia-l(mnr)
m = 2

m = 2
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The first of the above inequalities follows from the inequalities

i | (0<y<l,m =

and the second follows from the inequality

^ e - t ( ^ 1 ) ([14], p. 219).

Since as r-»oo

Kim-1(nr) = (2r)-*e-"'(l+o(l)) ([14], p. 219),

it follows from (13) that

<D(r, y) = (2r)*(1 ~n) sin(ny) e~Kr

Hence (12) holds when r is larger than some positive number ro = ro(n) and 0<y< 1.
Now define a function h1 in Q0>2 by writing

h1(X,y) = <t>(\X\,y).

Then hx is harmonic in I2Oi2 and vanishes on R" x {1}. (It is the Poisson kernel of QOil

with pole at the origin, see [2]). Hence \dhJdy\^A in the set {(X,y):\X\<Lro,^y^i}
and therefore if 0 ^ r g r o and j^y<l, then by the mean value theorem, there exists
y'e(y, 1) such that

dh

and it now follows that the right-hand inequality in (12) holds whenever r^O and

Next define h2 in Rn+1 by writing

h2(X, y)=cos(nxJ4r0)... cos(nxJ4r0) sinh(njn(l - y)/4r0).

It is easy to check that h2 is harmonic in Rn+1. Further, if
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then hl>A and /i2^sinh(7ix/«/8r0) on d(ondDi and h1^.0 = h2 on dconD^ Hence
h h on dw, and it follows from the minimum principle that h17tAh2 in dj. Hence if

^j>gl, then

*(»-. y) = M ' , 0 , . . . , 0,y) ^ Ah2{r, 0,...,0,y)

It now follows that the left-hand inequality in (12) holds whenever r^O and \^y^\,
and the proof of (12) is complete.

If a, b and c are as in the lemma, then \-Sk{b — c)/(b — a)<l. Hence, by (12), for each
ZeR"

<b(\Z\/(b-a),{b-c)/(b-a)) (14)

lies between positive multiples of

(the implied constants depending only on n). Since, for such a, b and c,

2(c - a)/(b -a)< sin {n(b - c)/(b -a)}<n{c- a)/{b - a),

it follows that (14) lies between positive multiples of

(the implied constants again depending only on n). Hence the lemma follows.
We need some results on the Perron-Wiener-Brelot (PWB) solution of the Dirichlet

problem (see, for example, [8] for a general account). If Q is an unbounded domain in
R" + 1, we denote its compactified boundary 3QKJ{S/} by d*£l A function F, defined at
least on d*Q, such that the PWB solution of the Dirichlet problem in Q with boundary
data F exists and is harmonic in Q is called resolutive, and we denote the PWB solution
by H(Q,F).

Lemma 2. Let f and g be functions on R" x {a} and R" x {b} respectively.

(i) Define Fx on d*Qab by writing

Fl(M)=f(M)(MeR"x{a}), F1(M)=g(M)(MeR"x{b}), F1(^) = 0.

/ / / and g satisfy (6) and (7), then Ft is resolutive and H{Clab,Fl) = Ia^f + Ja^g in ilaJ>.
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(ii) Define F2 on d*Da by writing

F2(M) = f{M) (MedDa), F2(j*) = 0.

Then F2 is resolutive if and only 1/(8) holds, and in this case H(Da,F2) = Iacoj:

We prove only (i), the proof of (ii) being similar. If / and g are real-valued and
continuous in their domains of definition and have compact supports, then Ia,bj + Ja,b,B
is harmonic in Cla b and by Lemma A,

lim {/a,6>/(M) + Ja,6,9(M)} = F1(iV) (Ned*na,b).
M->N

It follows that Ia,b.f + Ja.b.g ls t n e classical solution and hence the PWB solution of the
Dirichlet problem in Qa b with boundary data Ft. It follows from this special case that
the harmonic measure on d*Qab relative to a point (X, y) of O.ab is given on R" x {a} by

{b-a)-^(\X-Z\/(b-a),(y-a)/(b-a))dZ

and on R" x {b} by

(b - a)-^(\X - Z\/(b - a), (b - y)/(b - a)) dZ,

whence the general result follows.

4. Means of half-space Poisson integrals and potentials

Lemma 3. Let n be a signed measure on R" such that (9) holds. Then *Pa(/fli „,„,>>) is
finite on (a, 00) and tends to 0 as y—»-oo.

We may suppose, without loss of generality, that a = 0. Then

R"R

y{y2 + \X-Z\2)-*n+i)dn(Z)dX
R"

'• + \X-Z\2)-*o+1>e-*w»dXd\n\(Z). (15)
R"R"R"
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Now, for each ZeR", putting X = yX' and Z = yZ', we have

= y-* f
R"

(16)

To prove the last written equality, note that the integral in (16) is a constant positive
multiple of the value at (Z', 1) of the Poisson integral in Do of the function
(l + |X'|2)"*(n+1) and use the reproductive property of the Poisson kernel. From (15)
and (17) we obtain

\vtfo.».l»y)\£AHy2+\z\2)-il"*1)d\ii\(Z). (18)
R"

Since /i satisfies (9), the right-hand side of (18) is finite for each positive y and tends to 0
as y-»oo, by Lebesgue's dominated convergence theorem.

Recall that a superharmonic function in a domain fi is called a potential if its greatest
harmonic minorant in fi is identially zero.

Lemma 4. / / u is a potential in Da, then ^ ( M , y) is finite on {a, oo) and tends to 0 as
y-*co.

Again it suffices to work with a = 0. In [12], Theorem 3 it was shown that if u is a
potential in Do, then the function

K(u,y)=j{\x\2+(y+i)Ti{n+1Hx,y)dx
R"

is real-valued for y>0 and tends to 0 as y-*co. We use this result to prove Lemma 4.
Suppose that yo>O and that (X,y)eDyo. Then

where C depends only on y0. Hence

which is bounded on Dyg. It now follows that 1'0(u, •) is dominated by a constant
multiple of K(u, •) and, in view of the properties of K(u, •), this proves the lemma.
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Lemma 5. / /

v(M) = y-a (MeDa),

then »Fa(i>, •) = cn on (a, oo).

This is the result of a simple calculation which we omit.

5. Proof of Theorem 1

The following lemmas will be useful in the proofs of Theorems 1 and 2.

Lemma 6. / / / is a function on dDa which satisfies (8), then for each MeDa

lim/fl,6, /(M) = /a,00, /(M). (19)
b-»oo

If, further, / ^ 0 on dDa, then for each be(a, oo), we have / a > i J > / ^ J a o o / in QaJ>.

Lemma 7. / / s satisfies the hypotheses of Theorem 1, then for each M = (X, y) e Da, we
have that Habs(M) is increasing (in the wide sense) as a function ofb on (y, oo).

The proof of Lemma 6 depends on the following result.

Lemma D. Let Cl0 and Q be unbounded domains in R"+1 such that Qc f i 0 . Let F be a
function on Qo u d*Q0 such that F is resolutive on d*Q0 and F = H(Cl0, F) in Cl0. Then F is
resolutive on d*Q. and F = H(Q, F) in Q.

See [5], p. 98, for the corresponding result in bounded domains.
To prove Lemma 6, define F in Da u d*Da by putting

F(M) = Ia,oo,f(M) (MeDa), F(M)=f{M) (MedDa), F(^) = 0.

Then, by Lemma 2(ii), F is resolutive on d*Da and F = H(Da,F) in Da. Hence, by
Lemma D, F is resolutive on d*Cla b and F = H(Qab,F) in ilab. By Lemma 2(i), we also
have in Qab

Hence

in Qo 6. I f / ^ 0 on dDa, then F ^ O in Da and Ja,fc>f ^ 0 in Qa b, so the inequality stated in
the lemma now follows. To prove (19), it now suffices to show that JafbiF(M)->0 as
b->co for each MeDa. Since F is a half-space Poisson integral in Da, we have by
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Lemma 3, *Fa(F,fe)-»O as b->co. From Lemma 1 it now follows, in the case where / ^
on dDa that

b-* ao
0,..., 0,y)=0

for each y>a. In the case where / takes values of both signs, the same conclusion
follows by working with / + and / " . Since we may translate the origin parallel to the
xu ..., xn-axes, we find that Ja,b,f{M)->0 as b->co for each MeDa, as required.

To prove Lemma 7, suppose that a<b<b' and define w in Da to be equal to Hab s in
Q.ab and equal to s elsewhere in Da. Then w^s in Qa b ([3], Theorem 2, interpreted for
Qat) and w is subharmonic in Da ([4], p. 280). It is easy to check that w satisfies the
conditions of [3], Theorem 2, interpreted for Qayb-. Hence HaJ),^w = Habs in Q.a b.

Lemma E. / / s is subharmonic in Da and s has a positive harmonic majorant in Da,
then s is expressible in the form

s{M) = la^JM) + k(y-a)-u{M) (MeDJ, (20)

where n is a signed measure on R" satisfying (9), k is a real number and u is a potential in
Da.

This result is essentially known. It can be deduced from [12], Theorem 5(ii) and the
Riesz decomposition theorem in the form given, for example, in [12], Theorem C.

We can now complete the proof of Theorem 1. Since s&ifa, it is clear that *Pa(s, •) is
finite on (a, oo). Since, by Lemma 7, Hab s is an increasing function of b in Da, and since,
by Lemma 6, Ia,b,s->la,n,s m AJ a s b^<x>, it follows that either JaibtS-*<x> in Da or Ja,b,s
tends to a harmonic limit in Da as b-*co. In the former case, it follows from Lemma 1
that ¥a(s, b)-yco as fc-*oo. In the latter case, s has a harmonic majorant in Da, since, by
Lemma B, Habs^.s in Qab and since limb_xHa b s is harmonic in Da. Hence, in this
case, by Lemma E, s has the representation (20) in Da, so that

va(s, y)=^a(h, oo. „ y)+wa(y -a,y)- va(u, y)

--O + cJc -0 (J>-KX)),

by Lemmas 3, 4 and 5.

6. Proof of Theorem 2

Clearly, if s satisfies the hypotheses of Theorem 2, then s+ satisfies the hypotheses of
Theorem 1, so that *¥a(s

+,y) is finite on (a, oo) and tends to a limit i//a(s
+) as y->oo such

For each positive integer m, define sm in Qa b to be max{ — m, s}. Then each sm satisfies
the hypotheses of Lemma B, so that Hab Sm is a harmonic majorant of sm in Qa b. By
monotone convergence, HabSm-*Hab s in QaJ, as m-*co. Hence Ha M is a harmonic
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majorant of s in £la b. In particular, this implies that

so that

Jfl>6,,_(0,...,0,4(a

Hence, by Lemma 1, y¥a(s~,b)<co, and since y¥a(s
+,b)<co, it now follows that ^ ( s , •)

is finite on (a, oo).
Now suppose that s has a positive harmonic majorant in Da. Then

is bounded on ( a + 1 , oo) ([9], Theorem 4) and since *¥a(s
+, y) is dominated by a positive

multiple of this integral for y>a +1 (cf. proof of Lemma 4 above), we have ^(s"1") < oo.
Conversely, suppose that i//a(s

+)<ao. By Lemmas B and 7, Habs+ is a harmonic
majorant of s+ in Qab and increases with b. Hence it follows easily that as b->co, either
^a ,6,s+^°° m Da

 o r Hab s+ tends to a limit function which is a harmonic majorant of
s+ in Da. To show that s has a positive harmonic majorant in Da, it now suffices to
prove that for some MeDa

l imtf 0 i M + (M)<oo. (21)
b-* oo

By Lemma 1, if ft ̂ a + 2, then

lim supJOift,s+(0,...,0,a+l)<co,
b-* oo

so that

and by Lemma 6,

Hence (21) holds with M = (0, . . . , 0, a+1).
For the remainder of this section we suppose that tj/a(s

+)<co and we show that (i)-
(v) hold.

Since s has a positive harmonic majorant in Da, by Lemma E, we can write s in the
form (20), so that, by Lemmas 3, 4 and 5

lim Us, y) = cnk. (22)
y->oo
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To prove (ii), note that

J {(y + l-a)2 + \X\2}-^+^s-(
R"

is bounded for ye(a, oo), by [12], Theorem 5(i), interpreted for Da. Since s~ is lower
semi-continuous in Da, on letting y-+a+, we obtain, by Fatou's lemma,

J (1 +1X\2) -*(n+»s~(X, a) dX < oo,
R"

and this, with (10), gives the result.
Conclusion (iii) now follows from Lemma 6.
To prove (iv), we use again the representation (20) of s. Writing # = /„,«,,,,, we have

Ja,b,H~*0 in £>0 as b-»oo (cf. proof of Lemma 6). Also, by Lemmas 1 and 4, if y>a, then

Oglim Ja_bJ0,...,0,y)

b-* oo

Since we may translate the origin parallel to the xu...,xn-axes, we find that ./„,(,,o->0 in
Da as b-KX). It now follows that

lim Ja^s(M) = klimJaib^a(M) (MeDa).
b~*co b-*<x>

From Lemma 2(i) it is easy to see that Jaby_a(M) = y — a when MeQa b. Hence

and since tl/a(s) = cnk (see (22)), the result follows.
The conclusion (v) now follows from (iii) and (iv), since, by Lemma B, Ha b s is a

harmonic majorant of s in Qai).
To prove the corollary, first extend s to Da by writing

s(N) = lim sup s(M) (NedDa).
Af->iV

Thus extended, s satisfies the hypotheses of Theorem 2, and therefore the function hs a,
given by (11), is a harmonic majorant of s in Da. Since s^O on 30a, we have /„ OT s^0-in
Da. Since, also, i^a(s)^^a(s

+) = O, it follows that /is,a^0 in Dfl. Hence s^O in Da.

7. Proof of Theorem 3

If (10) holds and if ij/a(s
+)<co, then it follows from Theorem 2 that s has a positive

harmonic majorant in Dtt.
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Conversely, if s has such a majorant, then s+ has a harmonic majorant in Da and (10)
holds, by [9], Theorem 3 and ^a(s+)<oo by Theorem 2.

To prove the last assertion in the theorem, suppose that 0«x<a<b<fl<y and
define / i i n R n + 1 by

h[X, y) = coshiXiTi/yy/n).. .cosh^n/y^/ri) sin(yn/y).

It is easy to check that h is harmonic in R"+1. Also, / i (M)^ec | M | when M e Q , ^, where
C is a positive constant depending only on a, /?, y and n. Since s e £f0, it is clear that s is
majorized in Slap by some multiple of h. Hence, by Lemma C, the least harmonic
majorant of s in Qab is Habs. If (10) holds and i//(s+)<co, then s has a harmonic
majorant in Da and it is now clear that the least such majorant is lim,,.^ JJa>lliS. By
Theorem 2 (iii), (iv), this limit is given by (11).

8. Proof of Theorem 4

If the hypotheses of Theorem 4 are satisfied, then, by Theorem 2, s has a positive
harmonic majorant in Da. Hence, by Lemma E, s has the representation (20) in Da, and
by Lemmas 3, 4 and 5, i/^(s) = cnk. If we write # = /„,«,,„ and if a'>a, then in Da. we
have H = Ia<a> H, as is well known. Hence, by Lemma 3, ipa(H) = 0. Also \l/a-(y—a) =
ll'a'(y~a') + ll/a'(a' — a) = cn> by Lemma 5 and the special case of Lemma 3 in which the
Poisson integral is a constant function. Hence to show that ^ ( s ) = cnk = i//a(s), it remains
to prove that ^ a (u )=0 . Since u is positive and superharmonic in Da,, we can apply
Lemma E to — w to obtain the representation

u(M) = /a,>00,v(M) + / (y-a ' ) + w(M) (MeDa,),

where v is a non-negative measure on R", / is a non-negative constant and w is a
potential in Da.. From Lemmas 3, 4 and 5, we have \j/a'(u) = cnl. Since u(M)^.l(y—a!) in
£>„., it follows that ^a(u)^/i^a(y—a) + /i^a(a-a') = cn/, by Lemmas 5 and 3 (trivial case).
By Lemma 4, t/ra(«) = O. Hence f = 0, and therefore i^a.(u)=0, as required.

9. Examples

We give two examples to show how our theorems break down if the condition on the
growth of s is relaxed. For simplicity, we work only with n — 1 and a = 0. A point of R2

is denoted by (x, y). Let £ be a positive, number and define ht in R2 by

Then ht is harmonic in R2. Define functions sx and s2 in Do by writing s^lfr,! and
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Then sx and s2 are subharmonic in Do and vanish on 8D0. Also,

lim xm

for any A>e. (Recall that if seSf0, then (3) holds for all positive A.) Straightforward
calculations give

*o(si, V) = Vo(s2, y) = ny~1 sin(ey)(n2 - s2y2) ~* (0 < y < n/e),

*o(si, y) = co(y> n/e, y ± n/e, 2n/s,...),. ¥0(s l 5 y) = 0 (y = rc/e, 2n/e,...),

Hence ^(SIJ-V) takes both finite and infinite values on (0, oo) and has no limit as y—>oo.
Thus the conclusions of Theorem 1 fail for st. On the other hand, lFo(s2>);) is real-
valued on (0, oo) and possesses a finite limit as y-*oo, but s2 does not possess a
harmonic majorant in any half-space Da with 0 ̂  a < n/e. (If s2 had a harmonic majorant
in Da with 0 < a < n/e, then we would have

J (l+x2)-1s(x,a)dx<oo
— co

([9], Theorem 3, which is false). Thus Theorem 2 fails with s = s2-
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