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Abstract

Metabolism is at the core of all functions of living cells as it provides Gibbs free energy and
building blocks for synthesis of macromolecules, which are necessary for structures, growth, and
proliferation. Metabolism is a complex network composed of thousands of reactions catalyzed
by enzymes involving many co-factors and metabolites. Traditionally it has been difficult to
study metabolism as a whole network and most traditional efforts were therefore focused on
specific metabolic pathways, enzymes, and metabolites. By using engineering principles of
mathematical modeling to analyze and study metabolism, as well as engineer it, that is, design
and build, newmetabolic features, it is possible to gainmany new fundamental insights as well as
applications in biotechnology. Here, we present the history and basic principles of engineering
metabolism, as well as the newest developments in the field. We are using examples of
applications in: (1) production of protein pharmaceuticals and chemicals; (2) basic studies of
metabolism; and (3) impacting health care. We will end by discussing how engineering
metabolism can benefit from advances in artificial intelligence (AI)-based models.

Introduction

Metabolism is at the core of all cellular functions providing not only the energy equivalents for
driving all chemical processes but also the building blocks for all cellular structures, growth, and
proliferation. The metabolism is a network of many interconnected chemical reactions that in a
coordinated fashion ensure the degradation and modification of nutrients, that is, from carbon
and nitrogen sources, into different chemicals that the cells can use for the synthesis of building
blocks like amino acids, fatty acids, and nucleotides. These building blocks are subsequently
assembled intomacromolecules like proteins, lipids, DNA, and RNA thatmake up the cell. Major
breakthroughs in our understanding of metabolism were made at the beginning of the 20th
century when Otto Meyerhof, Gustav Embden, and Jakub Karol Parnas identified the individual
chemical reactions involved in the conversion of glucose to pyruvate. This pathway is today
known as the Embden-Meyerhof-Parnas (EMP) pathway, but also often referred to as glycolysis.
In 1922, Otto Meyerhof received the Nobel Prize in Physiology or Medicine for his work on
mapping the conversion of glucose to lactic acid in muscle cells deprived of oxygen, so-called
fermentative metabolism. In 1933, Otto Warburg received the Nobel Prize in Physiology or
Medicine for his discovery of respiratory metabolism, but his name is today more known for the
“Warburg effect” and his discovery that cancer cells tend to bypass respiration, in the presence of
oxygen, as they convert glucose to lactate. This observation was also made by Herbert Crabtree in
studies of cancer cells, but his name is today associated with the same phenomenon in yeast that
produces ethanol at high glucose concentrations even in the presence of oxygen, the so-called
“Crabtree effect” In 1953, Hans Krebs received the Nobel Prize for identifying the steps involved
in the tricarboxylic acid (TCA) cycle, also often referred as Krebs cycle, where acetyl-CoA is
degraded in a metabolic cycle to carbon dioxide resulting in the production of “energy
equivalents”. Fritz Lipmann shared the Nobel Prize in 1953 with Hans Krebs for identifying
acetyl-CoA as a crucial molecule in linking the EMP pathway with the TCA cycle, via the enzyme
Pyruvate Dehydrogenase. In 1978 Peter Mitchell received the Nobel Prize in chemistry for
proposing the chemiosmotic theory, which describes how electrons are transferred from the
co-factor NADH, generated in the TCA cycle, to oxygen reducing it to water. According to this
theory, protons are being pumped against a concentration gradient out of the mitochondrial
matrix when electrons transfer through the so-called electron transport chain. Paul D. Boyer and
John E. Walker, who received the Nobel Prize in Chemistry in 1997 for the identification of the
mechanisms of ATP Synthase, which forms ATP when protons re-enter the mitochondria,
together with Jens C. Skou, who discovered the Na+-K+-ATP pump, and hereby all the mech-
anisms involved in both oxidative and fermentative metabolism of glucose had been mapped.
OtherNobel Prizes in Chemistry were given for the discovery of specific metabolic pathways, that
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is, to Lord Todd in 1957 for his discovery of the biosynthesis of
nucleotides, to Melvin Calvin in 1960 for his discovery of the
mechanisms behind carbon dioxide fixation, and to Luis Leloir
in 1970 for his discovery of the role of sugar nucleotides in sugar
metabolism, for example, for the metabolism of galactose, now
known as the Leloir pathway. Many other Nobel Prizes have been
given for discoveries of vitamins and other bioactive chemicals such as
molecules, enzymes, and pathways of the so-called secondary metab-
olism, for example, terpenes, alkaloids, carotenoids, antibiotics, etc.

The more than 100 years of research on metabolism have
resulted in extensive mapping of most core reactions engaged in
energy generation and cell synthesis, but we don’t always know the
identity and characteristics of the enzymes carrying out the reac-
tions. There are also many dark spots in certain parts of metabol-
ism, especially in plants as their cells have evolved the capability to
perform advanced chemistry, but modern molecular biology tech-
niques have enabled the transfer and assembly of whole plant
pathways into a host organism, for example, Baker’s yeast, and this
has enabled mapping of pathways leading to complex natural
products. This type of heterologous expression assembles all the
enzymes of many different biosynthetic pathways, even from dif-
ferent organisms, leading to the creation of various complex natural
products in so-called cell factories (Gelanie et al., 2015; Zhao et al.,
2023). Information about metabolic reactions and their associated
enzymes is available in several different databases, for example,
Kyoto Encyclopedia of Genes and Genomes (KEGG), which is a
valuable resource that significantly advanced our ability to under-
stand and thus engineer metabolism.

Several studies, including the seminal work related to developing
Metabolic Control Analysis (Kacser and Burns, 1973; Kell et al.,
1989), have shown a big difference between enzymes operating in
isolation (test tube, in vitro) and how enzymes operate within a
pathway (in a cell, in vivo). Gaining insight into how sets of enzymes
interact in a cell can therefore only be obtained through the
introduction of mathematical models and in engineering discip-
lines,mathematicalmodels play an important role in the design and
development of new or improved products and processes and for
analyzing data. Biological systems are inherently hard to engineer
and describe mathematically using different models, especially as
we do not know most of the components of the system, their roles
and functions, as well as inherent redundancies, inefficiencies, and
complexity. Even for the simplest cell we still have a challenge to
know all the “parts”, their individual functions and how they
interact, as well as the unique features of that system. However,
as we progress towards a complete overview of metabolism it is
possible to build comprehensive models with remarkably wide
applications for studying and designing cellular metabolism, with
the objective of developing new cell factories, for biomarker dis-
covery, drug discovery, and design of healthy diets for humans.

History of engineering metabolism

In 1973 Herbert W. Boyer and Stanley N. Cohen invented genetic
engineering, which laid the foundation for a multibillion-dollars
industry, underlying everything we do today in modern molecular
biology, both in academia and industry. Through the expression of
a heterologous gene in a host cell like the bacterium Escherichia coli
or Baker’s yeast Saccharomyces cerevisiae their invention enabled
scalable production of human proteins like insulin and growth
hormone (Nielsen, 2013). Following the successful with expression
of a single gene encoding a protein of commercial interest, genetic
engineering was also exploited for expressing heterologous

enzymes to reconstruct heterologous biosynthetic pathways in
various hosts. In 1991 this led to the coining of the term Metabolic
Engineering by James E. Bailey and Gregory N. Stephanopoulos
(Bailey, 1991; Stephanopoulos and Vallino, 1991), and over the last
30 years Metabolic Engineering has been established as an active
research field with a dedicated textbook (Stephanopoulos et al.,
1998), dedicated journals, and several conference series.

Despite many successes in using Metabolic Engineering to
develop new cell factories (see below), it has often been difficult
to meet the techno-economic requirements for establishing com-
mercial processes (Konzock and Nielsen, 2024). Amajor reason for
this has been that it is often difficult to engineer the host metabol-
ism in a way that ensures the conversion of most of the carbon
atoms from the substrate towards the production of the chemical/
compound of interest. The main reason for this is the trade-off
between growth and product formation where most microorgan-
isms have evolved to maximize growth. Re-directing flux towards
the product of interest is therefore difficult for two main reasons:
(1) metabolism is not organized into linear pathways but is a web
(hairball) of interactions between metabolites and enzymes
(Figure 1a), and the conversion of substrate to the product therefore
often engages a very large number of reactions not directly involved
in this conversion; and (2) flux through the different enzymes
(Figure 1b) is extensively regulated at multiple levels, including
the genome, transcriptome, proteome, and fluxome. This often
results in the diversion of flux from the path between the substrate
and the product. An approach of engineering specific enzymes at a
time is therefore often failing, and even though automation has in
recent years enabled rapid evaluation ofmany different engineering
targets, it has become clear that a more holistic design approach
needs to be applied, using mathematical models.

In 1979 Aiba andMatsuoka presented a simple model of citric
acid production by the yeast Candida lipolytica (today renamed
as Yarrowia lipolytica) and they were the first to use simple
mass balancing around intracellular metabolites to calculate
fluxes through metabolic pathways (Aiba and Matsuoka, 1979)
(Figure 1c). In the 1980s and 90s, more mass-balance models of
the central metabolism of various bacteria and fungi were made.
Pioneers of developing bacterial models were Bernhard Palsson
(Varma and Palsson, 1994) and Gregory N. Stephanopoulos
(Vallino and Stephanopoulos, 1993), whereas Jens Nielsen pion-
eered the development of models for eukaryal organisms, that is,
S. cerevisiae (Nissen et al., 1997) and Penicillium chrysogenum
(Jørgensen et al., 1995). With the availability of genome
sequences, it became possible to identify most of the enzymatic
capabilities of a cell and hereby develop comprehensive math-
ematical models for metabolism. This led to the development of
so-called genome-scale metabolic models (GEMs) for different
bacteria by the Palsson group (Edwards and Palsson, 1999;
Edwards and Palsson, 2000; Schilling et al., 2002) and the first
eukaryal cell (the yeast S. cerevisiae) by the Nielsen group
(Förster et al., 2003). S. cerevisiae is a widely used model organ-
ism in molecular and cell biology, as well as in industry where it
is the most widely used cell factory for the production of food,
beverages, chemicals, fuels, and pharmaceuticals (Nielsen,
2019). Its wide use as a model organism is well illustrated by
the fact that several Nobel Prizes in Physiology or Medicine have
been given to researchers who used yeast in their fundamental
studies (Hohmann, 2016), for example, to Leland Hartwell, Paul
Nurse, and Tim Hunt in 2001 for their discoveries of key regu-
lators of the cell cycle, to James Rothman, Randy Scheckman,
and Thomas Südhof in 2013 for their discovery of the protein
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secretory pathway in eukaryal cells, and Yoshinori Ohsumi
in 2016 for elucidating the mechanisms for autophagy.

Following these initial models, the Nielsen group reconstructed
GEMs for many other important microorganisms, such as Strepto-
myces coelicolor used for antibiotics production (Borodina et al.,
2005), Aspergillus niger used for the production of citric acid and
many industrial enzymes (Andersen et al., 2008),A. oryzae used for
the production of many fermented food products and industrial
enzymes (Vongsangnak et al., 2008), and P. chrysogenum is used for
the production of penicillin and other antibiotics (Agren et al.,
2013). Since this early reconstruction of metabolic networks there
have been developed GEMs for many other organisms (Gu et al.,
2019). Many models have been updated regularly as new biochem-
ical information becomes available. For example, our yeast GEMs
have had many different updates of the original model, with the
most comprehensive model Yeast8 comprising almost 4,000 meta-
bolic reactions linked to more than 1,100 enzymes and genes
(Lu et al., 2019). Yeast8 also represented a breakthrough in terms
of engaging the scientific community as the model was made
available open-source via GitHub. Hereby researchers from around
the world could contribute with annotation, curation, and propose
model updates and this has resulted in a recent update of the model
(Yeast9), that contains information on 30 additional genes, 203 new
reactions, and 140 new metabolites (Zhang et al., 2024). These
comprehensive models not only represent an extensive database
of cellular metabolism, but also find application in metabolic
engineering, basic science, and biomedical research as we will
discuss below. Despite their scale, these models, still cover only
the core of metabolism, as demonstrated in our discussion on using
artificial intelligence to gainnew insights into metabolism.

Engineering metabolism for industrial production

Building a new (biotech) industry

The invention of genetic engineering resulted in the establishment
of an industry for the production of recombinant proteins used as
therapeutics exceeding USD100B (Nielsen, 2013). Human insulin
was launched as the first product by Ely Lilly in 1982, with the
second being human growth hormone launched by Genentech

in 1985. Today, there are more than 300 different recombinant
proteins approved as therapeutics with manymore in clinical trials,
and among the top 10 selling pharmaceuticals 9 are biopharma-
ceuticals, which is a significant change from 20 years agowhenmost
top-selling pharmaceuticals were small molecules.

Many different cell factories are being used for the production of
recombinant proteins. The bacterium E. coli is used for small
proteins such as interleukins and insulin, but even though this
organism enables high expression levels a disadvantage is that the
recombinant protein accumulates intracellularly in so-called inclu-
sion bodies, which makes the purification process more cumber-
some and costly. S. cerevisiae is characterized by having a fully
functional protein secretion pathway, and it can therefore secrete
recombinant proteins to the extracellular medium, which facilitates
purification. This yeast is therefore widely used for recombinant
protein production, for example, for insulin, human serum albumin,
and glucagon-like peptide 1 receptor agonists (GLP1) (Huang et al.,
2014). The latter group of molecules mimics the action of the
endogenous incretin hormone GLP1 that is released after eating,
stimulating satiety. These molecules have therefore formed the basis
for the active ingredient in the recently launched type-2 diabetes and
obesity drugs Ozempic and Wegowy by Novo Nordisk.

The methylotrophic yeast Komagataella phaffii (formerly
known as Pichia pastoris), is also a relevant cell factory as it ensures
very high productivity due to a very efficient methanol-induced
expression system and the ability for the yeast to grow to very high
cell densities. We developed a GEM for K. phaffii (Caspeta et al.,
2012) and expanded this model to describe how metabolism could
be engineered to enable humanized glycosylation of recombinant
proteins (Irani et al., 2015). This enabled the identification of
metabolic engineering targets for improved production of a range
of different recombinant proteins having industrial relevance. For
the production of more complex proteins such as antibodies,
erythropoietin, and blood coagulation factors, for example, Factor
VII and Factor VIII, that require proper glycosylation it is necessary
to apply a more advanced cell factory that can ensure that the
protein is produced with the proper human glycosylation pattern.
The Chinese Hamster Ovary (CHO) cells are often used but the
original productivity of the CHO cells was relatively low and there
were issues with strain stability. However, there has been significant
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Figure 1.Metabolic networks and how their fluxes can be regulated. (a) Illustration of a typical hairballmetabolic network. Green dots are enzymes and the dotswith different colors
are metabolites interacting with the enzymes. The metabolites are color-coded according to their cellular compartment. Most metabolites are in the cytosol (yellow dots) and the
mitochondria (red dots). (b) Simple representation of the different layers of regulation of flux through a reaction that converts metabolite A to B. The reaction is catalyzed by the
enzyme Ei and the flux is a function of the catalytic capacity (turnover number) of this enzyme, that is, kcat,I, the concentration of the enzyme (Ei), and a function of the different
metabolites in the network (f). In the simplemodel, there is feedback inhibition of the enzymebymetabolite C, and the flux is therefore determined by the concentration of the three
metabolites A, B, and C. The enzyme concentration is determined by transcriptional regulation of the corresponding gene and by translational regulation of the corresponding
mRNA. (c) Simple illustration of the concept of flux balancing. In this simple network, the three fluxes are constrained by a simple mass balance around the metabolite B. For most
intracellularmetabolites the turnover is so high that an assumption of steady state, resulting in the simple algebraic constraint equation, is reasonable. If the cells are experiencing a
significant environmental change there will be a short period of timewhere the steady state assumption does not apply, but as the characteristic time constant formostmetabolite
concentrations, that is, the concentration of the metabolite divided by the flux through the metabolite, is in the order of seconds (rarely minutes), a new steady state level of the
metabolites will rapidly be obtained. Therefore, the simple balance equation is in practice always valid.
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advancement in developing detailedmathematicalmodels for CHO
cells and our focus was to model the secretory pathway as this is
crucial for ensuring efficient protein secretion by this cell factory
(Gutierrez et al., 2020). At the same time, through advancement in
ability to engineer CHO cells, it has been possible to improve
productivity significantly, and CHO cells have therefore become
the cell factory of choice for proteins that require proper human
glycosylation.

As the secretory pathway is of such critical importance for many
processes in engineering, we also focused on developing detailed
mathematical models for the protein secretory pathway in
S. cerevisiae. In one study the protein secretory pathway was
completely mapped, with 162 proteins in this pathway engaged in
processing 1,190 proteins (Feizi et al., 2013). Very few of the
endogenous proteins being processed by the pathway are eventually
secreted, whereas the remainder is processed through this pathway
to be directed to the cell membrane where they function as trans-
porters or receptors. Production of a heterologous protein will
therefore compete with the capacity of this pathway, and if a
heterologous protein is expressed at a very high level, it will there-
fore drain the capacity for processing membrane proteins, which
will impact overall cellular functions. To quantify the demand for
resources in the complex protein secretory pathway a detailed
enzyme-constrained mathematical model was established
(Li et al., 2022a), and using this model it was possible to quantify
the impact of producing different recombinant proteins. It was
further possible to use the model to design how the protein secre-
tory pathway could be improved for the production of a specific
protein, and many of these designs could be experimentally valid-
ated (Li et al., 2022a). Furthermore, the design strategies proposed
by the model matched many earlier targets that had been identified
through sequencing of different mutant strains with naturally
varying secretion capacities (Huang et al., 2015; Huang et al.,
2017; Huang et al., 2018).

Transforming the old (chemical) industry

With the current wide use of microbial fermentation for the pro-
duction of recombinant proteins used as advanced medicines, it is
interesting to note that the use of microbial fermentation for the
production of chemicals dates to the mid-19th century, when
ethanol produced through yeast fermentation was used as a lighting
fuel. In 1908 the demand for ethanol increased as it was used to fuel
Henry Ford’s Model T. With the oil boom gasoline took the lead,
but in the 1920s and 1930s ethanol was used as an octane booster,
and it was in high demand duringWorldWar II (WWII) due to fuel
shortages. In the 1970s, with the rise in oil prices, ethanol was
gaining renewed interest as a blend-in fuel, and this resulted in the
establishment of the current very large ethanol industry; for
example, in 2023 more than 110 billion liters of ethanol were
produced through yeast fermentation. In 1908 there was another
landmark in microbial production of chemicals, namely the devel-
opment of acetone-butanol production by Chaim Weismann, a
lecturer at Manchester University and later the first president of
Israel, who developed a process based on fermentation with the
bacterium Clostridium acetobutylicum. During World War I there
was a large demand for acetone to be used in gunpowder. Acetone
had earlier been produced from calcium acetate imported from
Germany, and theWeismann process therefore became an import-
ant new route to obtain acetone for the United Kingdom. Produc-
tion of ethanol and the Weismann process are both anaerobic
processes, that is, there is no need for the provision of oxygen to

the cells. A key landmark was therefore the production of citric acid
through fermentation with the filamentous fungus Aspergillus
niger, which was introduced in 1919. This fungus is extremely
tolerant to low pH, and the fermentation process can therefore be
operated at pH 2–3, which reduces the demand for maintenance of
aseptic conditions as very few other microorganisms can survive at
these conditions. Following the discovery of penicillin byAlexander
Flemming in 1928, there were extensive attempts to chemically
synthesize this new bioactive to be used as an antibiotic, but during
WWII it was decided to start fermentation-based production using
the filamentous fungus Penicillium chrysogenum. This resulted in
the development of the first aerobic fermentation process that
required a supply of large amounts of aseptic air to the fermentation
process, and the establishment of this process therefore laid the
basis for the production of many different chemicals using micro-
bial aerobic fermentation. Retrospectively it turned out to be a wise
decision to choose the fermentation route for the production of
penicillin as it was first demonstrated possible to chemically syn-
thesize penicillin in 1956, and the chemical synthesis route cannot
compete with the fermentation route. Todaymost antibiotics in the
world are being produced by microbial fermentation.

Today microbial fermentation represents an industry exceeding
USD100 billion, and many different chemicals are being produced
through this route. Many new processes have been developed, and
the application of Metabolic Engineering can be categorized into
four main applications: (1) Engineering central metabolism to
improve titers, rates, and yields (TRYs); (2) Extension of substrate
range of the cell factory; (3) Improving tolerance of the cell factory;
and (4) Expression of heterologous pathways for the production of
valuable chemicals.

Improvement of titers, rates, and yields is essential for the
establishment of an industrially viable process (Konzock and Niel-
sen, 2024). Even though it may be possible to extend endogenous
pathways with a few enzymatic steps leading to the product of
interest, the yield of product from the feedstock, typically glucose,
and the rate of production, may often be low and it is therefore
necessary to engineer the central carbon metabolism of the cell
factory to ensure that carbon is directed from glucose to the product
at a high rate. This is well illustrated in work on engineering
Escherichia coli for the production of 1,3 propanediol (Nakamura
and Whited 2003) and 1,4 butanediol (Yim et al., 2011). In both
cases, the bacterium was heavily engineered with more than 10
different genetic modifications that ensured a high rate and yield.
Today these two chemicals are being produced commercially and
used in the production of various plastics. Lactic acid has been
commercially produced through fermentation with lactic acid bac-
teria since the early 20th century for use in the food industry, but
with the development of technology for polymerization of lactic
acid to polylactate (PLA), that is a polymer with valuable properties
such as biodegradability, good layer adhesion, and high strength,
there was a need for large volumes of pure lactic acid and not the
lactate salt. Lactic acid bacteria require supplementation of complex
feedstocks, and this makes it expensive and difficult to obtain pure
lactic acid from these fermentations. The companyCargill therefore
developed a new process based on an engineered yeast that can
tolerate low pH for the production of lactic acid, and this process
resulted in a significant expansion of lactic acid production. More
recently the company Corbion developed a process for purification
of lactic acid from a traditional lactic acid bacterial fermentation
process, and hereby enabled supply to production of PLA. Engin-
eering of the central metabolism has also been shown to enable the
improvement of ethanol production and reduction of production of
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the by-product glycerol. Production of ethanol from glucose is
completely balanced in terms of redox potential as there is also
onemolecule of carbon dioxide permolecule of ethanol formed, but
part of the glucose is used for the production ofmore yeast cells that
are more reduced than glucose, there is a need for an electron sink,
and converting part of the glucose to glycerol represents such an
electron sink (glycerol is more reduced than glucose). Cells use
different co-factors to balance electron flows within metabolism,
and based on metabolic modeling it was identified that by engin-
eering pathways for ammonia assimilation, it should be possible to
reduce the requirement for glycerol production and hereby increase
ethanol production by 5–8%, which was experimentally validated
(Nissen et al., 2000). Also, mathematical modeling of the central
carbon metabolism guided how changing the co-factor usage in
glycolysis could give a similar effect (Bro et al., 2006). GEMs have
also played an important role in the identification of targets for
engineering yeast for over-production and secretion of free fatty
acids by engineering both the central carbon metabolism and the
fatty acid metabolism (Zhou et al., 2016). Through pursuing add-
itional model-guided targets it was further possible to engineer the
central carbon metabolism such that yeast could be transformed
from alcoholic fermentation leading to ethanol production to effi-
cient conversion of glucose to free fatty acids (Yu et al., 2018). As the
conversion of glucose to free fatty acids is redox im-balanced the
yield was, however, found to be relatively low, but through recon-
struction of completely synthetic glycolysis identified through
modeling it was possible to overcome this challenge and hereby
an even better-producing strain was obtained (Qin et al., 2023).

Many cell factories have a limited range of carbon sources they
can use efficiently. Thus, yeast, the most widely used cell factory, is
not very efficient in using galactose and it cannot use xylose and
arabinose as carbon and energy sources. This is important in the
context of using lignocellulosic materials as feedstock for the pro-
duction of fuels and chemicals, as galactose, xylose, and arabinose
are abundant sugars in these feedstocks. Galactose is metabolized
via the Leloir pathway, and even though this pathway only involves
a few additional steps comparedwith themetabolism of glucose, the
pathway is quite inefficient, and the growth rate of yeast on galact-
ose is less than 50% compared with glucose (Ostergaard et al.,
2000). The Leloir pathway is tightly regulated, but through engin-
eering the regulatorymachinery rather than simply over-expressing
the enzymes it was possible to significantly increase the growth rate
of yeast on galactose (Ostergaard et al., 2000). Using mathematical
modeling we later found that this was due to a requirement for
balanced expression of the individual enzymes in the pathway as the
pathway intermediates can inhibit enzymes in the pathway
(de Jongh et al., 2008). This led to the identification of a down-
stream enzyme, phosphoglucomutase (Pgm2) that converts glu-
cose-1-phosphate to glucose-6-phosphate and has traditionally not
been considered part of the Leloir pathway, as a flux controlling
enzyme, and by over-expressing this single enzyme it was also
found possible to significantly increase the specific growth rate
(Bro et al., 2005). In a later study where we used adaptive laboratory
evolution, we found that by combined over-expression of Pgm2 and
engineering of a pathway engaged in glucose regulation, it was
possible to further enhance the growth rate on galactose as this
ensured balancing of flux through all the individual reactions and
therefore no accumulation of intermediates (Hong et al., 2011).
Engineering yeast to efficiently use xylose and arabinose has been
attempted since the 1980s, but the discovery of a fungal xylose
isomerase that converts xylose to xylulose, that yeast can metabol-
ize, in a single step represented a breakthrough (Kuyper et al.,

2005). This also opened for engineering yeast to use arabinose
(Wisselink et al., 2007). However, yeast has not evolved to use
xylose efficiently and the central carbon metabolism is therefore
not well balanced to handle this carbon source. Usingmathematical
modeling to guide extensive engineering of the central carbon
metabolism, it was possible to pinpoint key targets among more
than 100 different genetic modifications, and hereby engineer yeast
metabolism to efficiently grow on xylose as the sole carbon source
(Li et al., 2021).

Tolerance towards environmental stress is an important feature
of cell factories, and it is therefore interesting to find strategies to
improve tolerance of cell factories towards chemicals present in the
medium, chemicals produced by the cell factory, low/high pH, and
low/high temperature. Often a cell factory is chosen for its tolerance
towards specific environmental conditions, for example, A. niger is
a well-suited cell factory for the production of citric acid as it can
tolerate low pH and S. cerevisiae is a well-suited cell factory for the
production of ethanol as it is very tolerant towards this chemical.
However, in the current ethanol industry, it is desirable to operate
at a higher temperature than the optimum temperature for
S. cerevisiae, but the biology associated with ensuring temperature
tolerance is not known in detail. Here the concept of adaptive
laboratory evolution was shown to be efficient as it enabled,
through a sequential selection of yeast clones, to identification
of clones that could grow faster at elevated temperatures, that is,
40°C versus the optimum for the yeast of 35°C (Caspeta et al.,
2014). Through genome sequencing combined with metabolic
modeling of isolated clones, it was then possible to identify causal
mutations, and in particular, one mutation was identified to cause
a loss of function of an enzyme involved in the biosynthesis of the
membrane component ergosterol. The loss of function of this
enzyme caused the production of another sterol, namely fecos-
terol, and this resulted in a slightly stiffer membrane property that
could enable the cells to better function at higher temperatures
(Caspeta et al., 2014). A similar approach has been applied to
make yeast more tolerant to lactic acid at low pH (Fletcher et al.,
2016) and more tolerant to dicarboxylic acids (Pereira et al.,
2019), but it has also been used to improve the tolerance of
E. coli to various toxic chemicals (Lennen et al., 2023).

Finally, engineering metabolism has been used to recruit differ-
ent cell factories such as yeast for the expression of heterologous
pathways, hereby enabling the production of complex natural
products. Thus, yeast has been recruited to produce complex plant
chemicals such as opioids (Gelanie et al., 2015), monoindole alkal-
oids that can be used as anti-cancer drugs (Zhang et al., 2022),
celastrol that has anti-obesity properties (Zhao et al., 2023), ber-
berine that has anti-diabetic properties (Jiao et al., 2024), polya-
mines and polyamine conjugates (Qin et al., 2021), and iso-
flavenoids such as puerarin and daidzin that have cardioprotective
properties (Liu et al., 2021). Yeast is a well-suited cell factory for the
production of these complex plant natural products as biosynthesis
of many of these molecules involves complex oxidation reactions
catalyzed by so-called P450 enzymes. These enzymes contain a
heme group in the catalytic core and both heme and iron can often
become limited for the function of these enzymes. However, through
the engineering of the heme biosynthetic pathway, it was shown
possible to enable elevated activity of P450 enzymes (Michener et al.,
2012). By expanding an enzyme-constrained yeast GEM to include
the incorporation ofmetals it was possible to predict the effect of iron
supplementation on the biosynthesis of coumaric acid, which
involves a single P450 enzyme (Chen et al., 2021). Hereby it was
shown how GEMs can enable the advancement of all the efforts on
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engineering yeast for the production of natural products towards
commercial production.

The above examples show that even though there have been
many successful examples of engineering metabolism without the
guidance ofmathematical models, thesemodels have today come to
a stage where they can significantly impact cell factory design
(Domenzain et al., 2024). The field is therefore aligning more with
traditional engineering disciplines where mathematical models are
actively used in design, and the design-build-test-learn cycle is
therefore becoming well integrated into biology research (Nielsen
and Keasling, 2016). Here it is interesting to note that even though
cell factory development is generally carried out with a clear object-
ive, that is, to develop a cell factory that has improved properties,
analysis of newly engineered cell factories often results in a new
understanding of cellular metabolism, and the border between
engineering and basic biological research is therefore disappearing.

Systems biology of metabolism

Systems biology is the mathematical analysis and modeling of
complex biological systems. It has two historical roots
(Westerhoff and Palsson, 2004): (1) from theoretical biology, and
(2) from genome-sequencing. The root from theoretical biology is
often referred to as a bottom-up approach as it is based on detailed
mathematical modeling of specific molecular processes whereas the
root from genome-sequencing is often referred to as a top-down
approach (Nielsen, 2017). Theoretical biology developed together
with a new understanding of molecular mechanisms in biology, as
illustrated by the classical discovery of the mechanism on how the
expression of genes encodes enzymes is involved in the metabolism
of lactose inE. coli, present in the so-called Lac-operon. This genetic
system was discovered by Francois Jacob and Jacques Monod, who
received the Nobel Prize in Physiology or Medicine in 1965. The
molecular understanding of the Lac-operon has formed the basis
for the development of detailed mathematical models (Lee and
Bailey, 1984), and these pioneering studies led to an expansion of
the field of mathematical models of biological systems. However,
most of these models only describe a specific process within the cell
and do not capture overall cellular metabolism. There have been
attempts to develop whole-cell models, for example, a comprehen-
sive model for E. coli (Karr et al., 2012), but these models are often
relying on descriptions of several processes through empirical
expressions rather than detailed molecular, mechanistic models.
GEMs are in principle a merger of bottom-up and top-down

approaches as these models are capturing individual enzymatic
reactions, but by doing it genome-scale the model is relying on
genome information. The models do, however, deviate from many
mechanistic bottom-up models as they do not rely on mechanistic
models describing the kinetics of each enzymatic reaction, and the
models therefore only have very few parameters that need to be
estimated based on fitting to experimental data. This feature makes
them attractive for wide use as it is hereby relatively easy to build
models based only on the genome sequence and stoichiometry of
reactions.

Whereas the first GEMs were reconstructed in a bottom-up
fashion, the availability of GEMs from many different organisms
and extremely well-curated models like Yeast8 (Lu et al., 2019), it
has become possible to almost automatically generate GEMs for
different organisms, that is, more than 350 different yeast species
were reconstructed by using Yeast8 as a template (Lu et al., 2021).
These models were used to gain insight into many different aspects
of fundamental knowledge of metabolism and evolution, that is,
how metabolism has evolved in different yeast species to adapt to
various ecological niches. A similar approach was taken in using the
well-curated GEM for human metabolism, Human1, as a template
model for generating GEMs for different model organisms like
mice, rats, zebrafish, fruit flies, and nematode (Wang et al., 2021).
The hereby generated GEMs were used for the identification of
differences and commonalities in terms of metabolism between
these very diverse species that are all used as model organisms for
studying the biology of human cells, tissues, and organs. Specific-
ally, our mouse GEM was used to analyze data from mice to gain
new insight into how the development of Alzheimer’s disease is
associated with dramatic metabolic alterations in neuronal cells
(Wang et al., 2021).

Even though GEMs have a remarkable predictive strength, it is
required to impose key constraints on the model for predicting a
relevant phenotype. For example, to predict the growth rate of a cell
it is necessary to constrain the nutrient uptake rate or vice versa
(Figure 2a). Furthermore, GEMs can predict very large fluxes
through pathways that in practice may have very little capacity,
either due to low concentrations of the enzymes or due to low
catalytic efficiency of the enzymes, that is, low enzyme turnover
numbers. To overcome this problem we developed the concept of
enzyme-constrained GEMs (ecGEMs) using the modeling frame-
work we call GECKO (Sanchez et al., 2017). In ecGEMs, the flux
through each individual enzyme is constrained by the turnover
number and the enzyme concentration (Figure 2b). This enables
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Figure 2. Constraints of GEMs and how they impact flux estimation. (a) In simple flux balance analysis wheremodel simulation is based on themass balances illustrated in Figure 1c
it is necessary to constrain either one input or one output flux combinedwith an objective function, here illustrated bymaximizing the specific growth rate μ. This is often one of two
options: (1) the substrate uptake rate is defined and there is optimized for growth rate, or (2) the growth rate is defined and there is minimized for substrate uptake rate. If rs is given
and there is maximized for μ then the model will obviously not predict any product formation, that is, rp is zero. (b) By constraining the flux through each of the reactions by the
enzyme turnover number (kcat) and the enzyme concentration (Ei) it is not necessary to constrain any input or output flux and the model therefore has better predictive strength.
Either the enzyme concentrations can be given as input, or the sum of all enzyme concentrations is capped at a constant value that is consistent with experimental measurements.
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significant improvement in the predictive strength of these models,
both in terms of flux distribution, growth on different carbon
sources, and prediction of overflow metabolism, that is, the Crab-
tree effect (Sanchez et al., 2017). A trade-off with these models is,
however, that they require information about the turnover numbers
for all the enzymes, that is, kcat’s, and information about the enzyme
levels. For well-studied organisms like S. cerevsisiae and E. coli,
there are extensive databases, for example, BRENDA, of kcat values,
and if there are no values available for some enzymes kcat values
determined for similar enzymes in other organisms can be used as
default. For many well-studied enzymes, there are even several
different kcat values reported, and in some cases, these values even
vary by an order of magnitude. In these cases, GECKO selects the
largest values in order not to over-constrain flux through the
reaction (Sanchez et al., 2017). The GECKO framework has been
further developed to automatically sample kcat values from data-
bases, and this has enabled faster reconstruction of ecGEMs for
different microorganisms (Domenzain et al., 2022). There is less
information about the enzyme concentrations, and even though
quantitative proteomics has advanced significantly, in particular for
S. cerevisiae (Lahtvee et al., 2017; Yu et al., 2020; Di Bartolomeo
et al., 2020), it is still laborious to obtain high-quality proteome
data, but in these cases there can be used a constraint about a total
proteome allocation to metabolic enzymes (Figure 2b), and it turns
out that this allocation is remarkable constant across strains and
different environmental conditions (Sanchez et al., 2017).

ecGEMs have been shown to have strong predictive strength,
most likely as they are rooted in a biological constraint that is deeply
rooted in evolution, namely a constraint on protein synthesis rate
by the ribosomes. For many organisms, there is a linear correlation
between ribosomal RNA content and specific growth rate, and
quantitative proteomics has confirmed this for ribosomal protein
content (Xia et al., 2022). If the cell can reduce the proteome
required for a certain part of metabolism, for example, for the
biosynthesis of amino acids if these are supplied to the medium,
this proteome mass can be allocated to ribosomes, and hereby the
cell can grow faster (Björkeroth et al., 2020). This clearly shows that
proteome allocation within the cell is important and therefore also
imposes overall constraints on metabolism. ecGEMs can therefore
describe a phenomenon that has been a conundrum formany years,
why do fast-growing cells use metabolic pathways that provide less
energy per unit glucose, that is, overflow to ethanol in yeast cells
(the Crabtree effect), to acetate in E. coli cells and to lactic acid in
human cells, instead of using complete respiration that results in
the extraction of far more energy. In fact, ecGEMs can very well
describe this overflow metabolism (Sanchez et al., 2017), and using
quantitative proteomics data it has been shown that the underlying
reason is that overflow metabolism is more efficient in terms of
energy not per glucose but per proteome mass of the energy
generating pathway (Chen and Nielsen 2019). Thus, in nutrient
excess, at fast growth, the cells have evolved to prioritize proteome
allocation towards ribosomes rather than efficient energy gener-
ation, where fully respiratory metabolism is “proteome-expensive”.

GEMs are an excellent platform for integrative analysis of
so-called -omics data, that is, transcriptome, proteome, and meta-
bolome data. As these models are comprehensive in terms of
covering all enzymes in the metabolic network of a cell and as there
is a direct link to the encoding genes it is possible to directly overlay
different -omics data onto the metabolic networks. More import-
antly, it is even possible to combine this with statistical methods for
the identification of what we define as so-called reporter metabol-
ites (Figure 3a) (Patil andNielsen, 2005; Oliveira et al., 2008). These

are metabolites in the metabolic network for which there are
significant alterations in the expression of the enzymes that engage
in chemical reactions with the metabolite, either using the metab-
olite as a substrate or producing the metabolite. Altered expression
can be quantified by measuring gene expression, for example,
through mRNA sequencing, or through quantitative proteomics,
and reporter metabolites therefore identify spots within the meta-
bolic network where there are altered enzyme levels either to
maintain homeostasis of metabolism or to drive a metabolic
change. With the presence of high-quality metabolomics data, it
is also possible to identify reporter enzymes, that point to key
enzymes involved in handling altered metabolite levels within the
metabolic network (Cakir et al., 2006). The concept of reporter
metabolites has gainedmuch traction and led to the development of
PIANO, our platform that enables easy analysis of different types of
I data (Väremo et al., 2013).

Understanding metabolism for human health

GEMs have also been developed for human cells (Duarte et al., 2007;
Ma et al., 2007; Mardinoglu et al., 2013) and the consensus model
Human1 was established using the same concept as we used for
building the consensus Yeast8 (Robinson et al., 2020). These models
have been used extensively for mapping metabolic changes associ-
ated with disease development, for example, for analyzing the meta-
bolic changes in adipocytes in response to obesity (Mardinoglu et al.,
2013) andhow livermetabolismbecomes serine deficient in response
to development of non-alcoholic fatty liver disease (NAFLD)
(Mardinoglu et al., 2014). GEMs have also been used to analyze
metabolism during high-intensity exercise (Nilsson et al., 2019).
Besides enabling a new understanding of how metabolism responds
to disease development, human GEMs find wide applications for
biomarker identification and drug discovery.

Identification of reporter metabolites has shown to be very
useful for biomarker identification. In a study of how metabolism
is changing in 10 different cancers, we found thatmetabolism in the
different cancers is more similar to the tissue of origin than among
the different cancers (Gatto et al., 2014). The metabolism in one
cancer type, namely clear cell renal cellular carcinoma (ccRCC),

A B

Figure 3. Use of GEMs for integrative analysis of omics data. (a) Using the graphical
structure of GEMs it is possible to identify Reporter Metabolites, which are metabolites
in the metabolic network around which there are significant changes in transcript level
or protein level. The lines represent enzyme-catalyzed reactions and the circles are
metabolites. The thickness of the lines indicates the changes in enzyme levels, meas-
ured by transcripts or protein levels. Metabolites around which there are large changes
in enzyme levels become reporter metabolites and the significance is marked by the
greyness, with dark grey being very significant and light grey less significant. (b) The
graphical structure of GEMs can enable the identification of Reporter Networks, which
are sub-networks where there are significant changes in the transcription level or
protein level. Two sub-networks are marked with light grey circles.
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was found to be quite distinct, and through further analysis, a larger
number of reporter metabolites were identified to be associated
with glycosaminoglycan metabolism (Gatto et al., 2014). Through
measurements of 19 glycosaminoglycans in blood and urine in
patients with metastatic ccRCC and healthy controls, a systems
biomarker derived using machine learning from concentrations of
the 19 metabolites could be identified (Gatto et al., 2016). Further
analysis showed that the systems biomarker could be used to detect
early-stage solid tumors of ccRCC (Gatto et al., 2018). These
findings are now taken forward in clinical trials to validate a
biomarker approved for the detection of recurrence in ccRCC
patients from both urine and blood (clinical study AURORAX-
0087A; NCT04006405). We also found that the systems biomarker
has been shown to have much wider applicability as it has been
found possible to enable early detection of more than 14 different
cancer types from a blood sample (Bratulic et al., 2022). Cancer
detection using liquid biomarkers has become attractive with a
potential future market exceeding USD10B, much thanks to the
demonstration of early cancer detection through deep sequencing
of DNA in blood samples (Jamshidi et al., 2022). However, the
systems biomarker based on measurements of glycosaminoglycans
is attractive due to its lower cost and its combination of high
selectivity and sensitivity (Bratulic et al., 2022).

GEMs can also be used for drug discovery as was illustrated for
both cancer and disrupted metabolism associated with aging
(Folger et al., 2011; Yizhak et al., 2013). In one study we found that
fatty acid oxidation in mitochondria plays a central role in hepa-
tocellular carcinoma (HCC), the most dominant form of liver
cancer, and by blocking the transport of fatty acids to the mito-
chondria cancer cell growth could be blocked (Agren et al., 2014).
Another example is the identification of serine deficiency in
patients with NAFLD leading to the use of our GEMs for drug
discovery: serine deficiency, together with other metabolic alter-
ations, led to proposing a cocktail of metabolites, that is, serine,
L-carnitine, nicotinamide riboside and N-acetyl-L-cysteine, that
was found in clinical trials to aid the treatment of NAFLD (Zeybel
et al., 2021) and of mild-to-moderate COVID-19 (Altay et al., 2021).
The cocktail has also passed phase 2 in clinical trials for improving
cognitive function in patients with Alzheimer’s Disease (Yulug et al.,
2023). In the cocktail serine and N-acetyl-L-cysteine serve as pre-
cursors for biosynthesis of the important anti-oxidant glutathione,
L-carnitine ensures efficient transport of fatty acids to the mitochon-
dria for β-oxidation and nicotinamide riboside serves as a precursor
for the co-factor nicotinamide adenine dinucleotide (NAD+).

Besides our own human cells, tissues, and organs, we also have a
very important metabolic organ composed of the human gut
microbiome, which is a complex biological system comprising
more than 1,000 different microorganisms, that communicate
and exchange metabolites among each other and our human cells.
We have about asmanymicrobial cells as human cells in our bodies,
so it is no surprise that the quality and composition of this micro-
biome have been shown to impact human health in different ways
(Karlsson et al., 2013; Ji and Nielsen, 2015; Schmidt et al., 2018).
Most studies in this field are associative, but an increasing number
of studies have now identified causality between the human gut
microbiome composition and disease development, for example,
how the gut microbiome composition alters intestinal inflamma-
tion in colitis (Zhu et al., 2018) and in the field of cancer treatment
with immune therapies where we have shown that the presence of
specific bacteria increases the response to treatment with check-
point inhibitors (Limeta et al., 2020). The gut microbiome com-
position evolves based on dietary intake, but due to extensive

metabolic interactions between the many different microorgan-
isms, it is difficult to predict how the composition exactly changes
in response to diet. GEMs represent an excellent platform for the
analysis of metabolic interactions between the many different
bacteria and the host (Karlsson et al., 2011), and through recon-
structing GEMs for three dominant gut bacteria, we showed that it
is possible to simulate bacterial interactions, and how the growth of
the three bacterial species depends on the nutrients provided
(Shoaie et al., 2013). This concept further enabled simulation of
how bacteria in the human gut microbiome contribute to amino
acid biosynthesis in the human body, and hereby how the levels of
amino acids change in the blood when human subjects undergo
dietary interventions (Shoaie et al., 2015). In this study, a group of
overweight individuals was provided with a low-calorie diet for
6-weeks, and it was found that the response to the dietary change
was dependent on the gut microbiome composition. Modeling
showed that subjects with a less diverse microbiome responded
better to dietary intervention, that is, their health status measured
by several bloodmarkers, including amino acid levels, than subjects
with a very diverse microbiome (Shoaie et al., 2015). The findings
were later confirmed in a controlled mice study (Mardinoglu et al.,
2015). To predict how diet influences human gut microbiome
composition, microbiome modeling was combined with a detailed
mathematical model of the entire human gastrointestinal system,
and this enabled for the first time simulation of how the gut
microbiome evolves in infants when they change their diet from
breast milk to solid food (Geng et al., 2021). These modeling efforts
of the human gut microbiome will enable better design of dietary
interventions aimed at modulating microbiome. They will also
support for the identification of new probiotics that help maintain
a healthy gut microbiome composition thereby contribute to
improved human health. Currently, the worldmarket for probiotics
exceeds USD50B and this is likely going to increase significantly in
the future when it will be possible to design better products that
have clinically validated health claims.

AI for metabolism

Use of computational tools for the analysis and engineering of
biological complex systems, such as metabolism is at a breaking
point as standard mathematical modeling and GEMs have not fully
solved the three major challenges in current biotechnology:
(1) recombinant proteins used as pharmaceuticals (with an increas-
ing market share of the total pharmaceutical market, which in itself
is growing), are relatively expensive and it will be necessary to
reduce production costs in order to make the drugs more widely
available at fair price; (2) engineered microbes for production of
chemicals and new products need not only new cell factories but
also improved design processes in order to reduce the development
costs (Nielsen et al., 2022); and (3) finding biomarkers and drug
targets for improving human health needs faster validation, and as
new experimental platforms like human organoids are increasingly
more useful there is a need for holistic understanding of metabol-
ism in the whole human body. For all these challenges we have been
using modeling and GEMs, but the outcomes will significantly
improve when we combine them with the use of artificial intelli-
gence (AI).

GEMs developed for protein secretion in yeast (Li et al., 2022a),
CHO cells (Gutierrez et al., 2020), and human cells (Feizi et al.,
2017; Robinson et al., 2019) are already being used to design cell
factories that can produce produce a wide range of recombinant
proteins more efficiently and at low cost. However, even though we
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have considerable knowledge of the protein secretory pathway in
these organisms, there are significant gaps in our understanding:
the combinatorial space for engineering many target proteins
involved in this pathway makes it difficult to find optimal design
strategies but we predict that AI can improve the effectiveness in
target identification. With the development of ecGEMs, we have
already demonstrated optimal cell factory designs that can be used
for the production of a range of different chemicals. However,
ecGEMs rely on kinetic parameters, that is, turnover number, that
in many cases are unknown. Additionally, many enzymes are
catalytically promiscuous or reversible, resulting in reactions that
lead to undesirable by-products or degradation of the product of
interest. To address this challenge, we have built an AI model that
helped us obtain kcat values for all enzymes present inmore than 350
yeast species (Li et al., 2022b). These parameters could be then used
to populate functional ecGEMs for all these microbial species. We
have democratized this approach by establishing an open-access
database, GotEnzymes, that holds estimates of kcat values for more
than 25 million enzyme-compound pairs across 8,099 organisms
(Li et al., 2023). We also created an AI model to map the so-called
under-ground metabolism, that is, promiscuous functions of
enzymes. The model trained on known enzyme-compound inter-
actions, and we identified about 15,000 new reactions in yeast, that
produce 15,873 newmetabolites, of which the majority are engaged
in lipid metabolism (Wu et al., 2024). This demonstrated that
metabolism is much more diverse than captured by traditional
GEMs. Using the model, it was possible to identify many metabol-
ites that can be formed as by-products, and this can now be used to
guide the design of less promiscuous enzymes in metabolism that
will improve biotechnological-based production. In the future AI
could enable the development of better ecGEMs, but also enable the
combination of model simulations with large experimental data
obtained from large research programs using biofoundries, for even
stronger prediction for optimized cell factory designs.

In the area of human health AIwill also play an important role in
the future. So far, most applications have been for image processing
and more recently for protein structure predictions, provided by
AlphaFold (Jumper et al., 2021), for which Demis Hassabis and
John Jumper received half of the 2024 Nobel Prize in Chemistry.
Going further using AI for novel biologics design is, however, more
challenging as we are dealing with an almost infinite number of
combinations of amino acid sequences, with a desired targeted
structure and properties. Breakthroughs are initially likely going
to come through the design of smaller peptides or through the
evaluation of small molecule-protein interactions, where AI is very
well suited (Watson et al., 2023), and for which David Baker
received the other half of the 2024 Nobel Prize in Chemistry. For
analysis of human metabolism and identification of novel drugs
that target metabolism, the combination of GEMs with AI may be
useful as GEMs can be used to generate large datasets that can then
be used to train new AI models. For this there is a need for whole-
body metabolic models that are built based on GEMs for different
organs combined with a model describing blood circulation. With
such models, the use of GEMs will be integrated into any drug
development strategy as it will enable reduced experimental costs
and reduced use of experimental animals, and such comprehensive
models are very well suited to combine with AI for drug discovery.

In conclusion, we foresee that the application of GEMs, both
alone and in combination with AI, will enable the provision of
many new solutions that can improve both human and planetary
health.
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