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A REMARK ON BASES IN HARDY SPACES

BY

PETER SIOGREN

ABSTRACT. The Franklin spline system in [0,1] has been
generalized by Stromberg to a system in R" which is an unconditional
basis in H?(R") for p>n/(n+ m + 1). Here the natural number m is the
order of the system. For some of these values of p, it was known that
the H” quasi-norm is equivalent to a certain expression containing the
coefficients of the function with respect to this basis. We prove this
equivalence for all p>n/(n+m+1).

1. Introduction. In [4] J.-O. StrOmberg constructs on orthonormal basis
(f®),., in L*(@R") which generalizes the Franklin system in L?[0, 1]. Here
v=_(j,k)=(, k,, ..., k,) ranges over Z"*' and w over a finite set. Each ¢ is a
tensor product of one-dimensional spline functions of order m and takes its
largest values near the cube

Q,={x:27k=x,=27"(k; +1), i=1,...,n}

whose characteristic function is denoted by ..

Stromberg proves that this system is an unconditional basis in the Hardy
space H?(R"), p>n/(n+m+1), and compares the quasinorm of f in HP to its
coefficients ¢¢ = (f, f2). For all p>n/(n+m+1) he shows that

. [(Z1ezp2n) 7], =

Here and in the sequel, C denotes various constants. At least in one dimen-
sion, (1.1) holds only for these values of p, see [3]. The converse inequality

(Ttesp ) .

is proved only for p>n/(n/2+m+2). We shall prove (1.2) for all p>
n/(n+m+1), by modifying Stromberg’s proof. This answers a question asked
at the end of [4]. It is enough to prove the following.

HP-

(1.2) Ifller =C

THEOREM. Let n/(n+m+1)<p=1. There is a constant C = C(n, m, p) such
that for any finite set of numbers c®

) CTf‘;’“Hp =C “ (Zw |z 2""xu)1/2“u.

Received by the editors June 11, 1983.
AMS(MOS) Subject Classifications. Primary 42C10; Secondary 42B30.

(1.3)
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We shall need some properties of f. Stromberg’s definition reads
(1.4) fo(x)=2""27r(2x — k)

with v=(j, k)eZ xXZ", where v is a tensor product
(%) =T w(x).
i=1

Here each w; is either of two fixed spline functions 7 and p in R, and at least
one is 7. These two functions are in C™(R) and they are polynomials in the
complementary intervals of a countable discrete set. Moreover,

(1.5) |D*r()|=Cr", k=0,...,m+1,

and similarly for p, for some r<1. The moments | 7(¢)t* dt vanish for o =
0,...,m+1.

2. Proof of the theorem. Choose a radial nonzero ¢ € C*(R") with support
in |x| =1 and vanishing moments up to order m. Writing 5, (x) = s "ys(x/s) and
G(x,s) =1, * f(x) for fe ¥, we define a Lusin function

AVG(Z)=( ” lG(x,S)PifﬁS)m‘

|x—z|<vys
Here z, x eR" and s >0. Then

(2.1) lA,G

e~ Hf HH":

in the sense that the quotient between these two quantities stays away from 0
and o, see [1, Theorems 6.6 and 6.9].

Let a be an atom in HP with vanishing moments up to order m. The
arguments on p. 492 of [4] show that ) +(a, f©)f¢ belongs to HP with
quasi-norm at most C, for any sign combination. Here molecules could also be
used. Hence, the operator which maps fe H” onto Y =(f, f&)f¢ is bounded in
HP, uniformly over all sign choices, and the H” quasi-norms of all these sums
are comparable.

We consider the probability measure on the set of all sign choices making the
signs independent and each sign of probability 1/2. Let E denote the corres-
ponding expectation. We conclude from (2.1) with y =1 that

) C‘J’ff‘ :,n~ E“Z :tc‘;’fﬁ" ;p~E jdz<lx:[)J;s b s T wcofoe) 2‘:’:_5113)"/2
= sz( JI E \Z £, * f(x) 2 %s‘)p/z’

Ix—zl<s
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by Holder’s inequality. But E Y +a,|>=Y |a;|?, so

Ters| =c el [ Tl noor GE)”

Ix—z|<s

(2.2)

We must thus estimate s * fo. Our inequalities are similar to those of [4,
p. 488-9].

LemMA. For each N>0 there exists C = C(N) such that for x eR"
[ F200] = C2Qsm 1 (142 [x =2 k) N, 5 =27
=C2"220s) ™ 2 (1+s x =27k N, s>27.

Proof. We let t>0 and estimate s * 7{’. Denote by P, the Taylor poly-
nomial of 7 at x of degree m. For s =t we use the vanishing moments of ¢ to

get
[ oo () n ()]

Because of (1.5), the parenthesis here is dominated by C(y|/t)™"'(1+

t7' |x|)~N. Thus,
I, = 7o) = Ct™ (f)m+1<1+|3:|)

For s>t, we use instead the Taylor polynomial Q, of ¢ at x of degree m+1.
Since 7*(x) contains at least one factor w;(x;) = 7(x;), its moments of order up
to m+1 vanish. Hence,

wen00 =5 [(6(E2) - 0u(-2) ) ay.

If |x|=2s, this is easily estimated by Cs "(¢/s)™ 2. If |x|>2s, then Q,,; =0 and
we may assume |y|>|x|/2 since otherwise |x —y|>s and the integrand vanishes.
Then (1.5) implies

| Ty (x)l =

I\
gy * ()| = Cs™ o(y)| dy = Cs~ (X
[y # 72(0)] = Cs ij el dy = cs ()

So for s>t and N>m +2,

v emor=er (7 (1)

The estimates obtained imply the lemma, as seen from (1.4).
Because of this lemma, (2.2) implies

p . p/2
Lerrs| =cfa(Zleporaem)”
o
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where

|x—2~ ’kl)‘ZN dx ds

2 i n+1

= [ (s !

Ix—z|<s=2"1

i1\ —2N
L= JJ (zjs)—z(n+m+2)( lx 2 kl) d):ﬁs.

N N

and

Ix—z|<s
s>271

It is easily seen that
- 2 ]k 2 Jk —2N
IlscL (2is)2om 0 & ( 222 K = l) _c( 227k = ')
and

12 = CL (2is)—2(n+m+2)(1 +

lz_z—ikl>—2Nd_SSC( lz 2~ ykl) 2(n+m+2),

s s 271

if N is large. Thus,
|z =277k 2 me 2\ pr2
v ‘: d ( “’22"'<1+————-) ) .
Tere| =c[ae(Tles =

Now define a function F in R} as in [2, p. 118], setting F=c2""? on

3Q, x[277, 277" for each v and F=0 elsewhere. Here 1 of course means

concentric scaling of the cube in R"*'. Then (2.3) implies

Y cofe

ex=([[(1557) TR o )

is a Littlewood-Paley function. Further,
lgX(Fll- =ClA,F

by [1, Theorem 3.5], since A>n/p here. But AF is dominated by
C(Y|c?? 2"y, )" if -y is small enough, and (1.3) and the theorem follow.

(2.3)

=ClgtF)lr, A=n+m+2,
-

where

LP> 'Y>0,
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