GENERALIZED CESARO MEANS OF ORDER -1 by I. J. MADDOX

(Received 18 September, 1964; and in revised form 11 January, 1965)

A series $\sum a_n$ is said to be summable (C, -1) to s if it converges to s and $na_n = o(1)$ [8]. It is well known that this definition is equivalent to $t_n \to s$ $(n \to \infty)$, where $t_n = s_n + na_n$, $s_n = a_0 + \ldots + a_n$. The series is summable |C, -1| to s if the sequence $t = \{t_n\}$ is of bounded variation $(t \in B.V.)$, i.e. $\sum |\Delta t_n| = \sum |t_n - t_{n-1}| < \infty$, and $\sum \Delta t_n = \lim t_n = s.\dagger$ An equivalent condition is $\sum |a_n| < \infty$, $\sum a_n = s$ and $\sum |\Delta (na_n)| < \infty$. For, suppose that $\sum a_n = s |C, -1|$. Since $\{s_n\}$ is the sequence of (C, 1)-means of $\{t_n\}$ and since $|C, 0| \subset |C, 1|$, we have $\sum |a_n| < \infty$ and $\sum a_n = s$, whence $\sum |\Delta (na_n)| < \infty$. Conversely, $\sum |a_n| < \infty$, $\sum a_n = s$ and $\sum |\Delta (na_n)| < \infty$. But $\lim na_n = 0$, since $\sum |a_n| < \infty$.

Now let $\sum a_n$ be a given series, with $s_n = a_0 + \ldots + a_n$, and define the sequence $\{t_n\}$ so that s_n is the discontinuous Riesz mean of order 1 of t_n :

$$s_n = \frac{1}{\lambda_{n+1}} \sum_{k=0}^n (\lambda_{k+1} - \lambda_k) t_k$$

where $0 \leq \lambda_0 < \lambda_1 < ... < \lambda_n \to \infty$. Then we have

$$t_n = s_n + \mu_n a_n$$
, with $\mu_n = \frac{\lambda_n}{\lambda_{n+1} - \lambda_n}$. (1)

We shall say that $\sum a_n = s(C, \lambda_n, -1)$ if and only if $t_n \to s$ $(n \to \infty)$. By the regularity of $(\overline{R}, \lambda_n, 1)$ summability it is easily seen that an equivalent definition is that $\sum a_n$ converges to s and $\mu_n a_n = o(1)$. If $\lambda_n = n$, $(C, \lambda_n, -1)$ reduces to (C, -1), so that the new method generalizes the Cesàro method of order -1.

We have used the notation $(C, \lambda_n, -1)$ rather than $(\overline{R}, \lambda_n, -1)$ since a definition[‡] of discontinuous $(\overline{R}, \lambda_n, -1)$ summability is already available. Now it is known [5], that (C, k)and (\overline{R}, n, k) are equivalent for -1 < k < 2, and Dr Kuttner has shown me a proof, similar to that of [5], that $(\overline{R}, n, -1)$ implies (C, -1) but that the converse implication is false. Thus $(C, \lambda_n, -1)$ is not equivalent to $(\overline{R}, \lambda_n, -1)$ even when $\lambda_n = n$.

Using (1) we define $\sum a_n = s \mid C, \lambda_n, -1 \mid \text{if and only if } t \in B.V.$ and $t_n \to s$. Thus we have the inclusion $\mid C, \lambda_n, -1 \mid \subset (C, \lambda_n, -1)$. We now give an equivalent condition for $\mid C, \lambda_n, -1 \mid$ summability.

THEOREM 1.
$$\sum a_n = s \mid C, \lambda_n, -1 \mid \text{if and only if } \sum \mid a_n \mid < \infty, \sum a_n = s \text{ and } \sum \mid \Delta(\mu_n a_n) \mid < \infty.$$

† All summations run from 0 to ∞ , and we take $t_{-1} = 0$.

$$\ddagger \sum a_n = s(\bar{R}, \lambda_n, -1) \quad \text{if} \quad \sum_{k=0}^n \left(1 - \frac{\lambda_k}{\lambda_{n+1}} \right)^{-1} a_k \to s \quad (n \to \infty).$$

Proof. By the absolute regularity of $(\overline{R}, \lambda_n, 1)$, $\sum a_n = s \mid C, \lambda_n - 1 \mid \text{implies } \sum |a_n| < \infty$ and $\sum a_n = s$, whence $\sum |\Delta(\mu_n a_n)| < \infty$. Conversely, $\sum |a_n| < \infty$, $\sum a_n = s$ and $\sum |\Delta(\mu_n a_n)| < \infty$ imply $t \in B.V$. and $\sum \Delta t_n = s + \lim \mu_n a_n$. Now suppose, if possible, that $\lim \mu_n a_n = l \neq 0$. We first note that

$$\sum_{n=1}^{\infty} \frac{1}{\mu_n} = \infty.$$
 (2)

For the infinite product

$$\prod_{n=1}^{\infty} \left(1 + \frac{1}{\mu_n} \right) = \prod_{1}^{\infty} \frac{\lambda_{n+1}}{\lambda_n}$$

diverges to $+\infty$, which implies that (2) holds. Since $a_n \sim l/\mu_n$, (2) implies that $\sum a_n$ diverges, a contradiction. Hence $\mu_n a_n = o(1)$, so that $\sum a_n = s \mid C, \lambda_n, -1 \mid .$

Our next theorem gives the class of sequences $\{\lambda_n\}$ for which the generalized methods are equivalent to convergence (or absolute convergence). It is known [3, Theorem 21] that a sufficient condition for (R, λ_n, k) summability (k > 0) to be equivalent to convergence is

$$\Lambda_n = \frac{\lambda_{n+1}}{\lambda_{n+1} - \lambda_n} = O(1).$$

Since $\Lambda_n = \mu_n + 1$, $\mu_n = O(1)$ is also a sufficient condition. Theorem 2 shows that $\mu_n = O(1)$ is necessary as well as sufficient for $(C, \lambda_n, -1)$ to be equivalent to (C, 0) and for $|C, \lambda_n, -1|$ to be equivalent to |C, 0|, where (C, 0)(|C, 0|) denotes convergence (absolute convergence).

THEOREM 2. $(C, \lambda_n, -1)(|C, \lambda_n, -1|)$ is equivalent to (C, 0)(|C, 0|) if and only if $\mu_n = O(1)$, or what amounts to the same thing, if and only if $\Lambda_n = O(1)$.

Proof. The inclusions $(C, \lambda_n, -1) \subset (C, 0)$ and $|C, \lambda_n, -1| \subset |C, 0|$ follow immediately from the equivalent definitions of $(C, \lambda_n, -1)$ and $|C, \lambda_n, -1|$. Suppose then that $\sum a_n$ converges to s and $\mu_n = O(1)$. Then $\mu_n a_n = O(1) \cdot o(1) = o(1)$, whence $(C, 0) \subset (C, \lambda_n, -1)$. Also it is clear that, if $\sum a_n = s$ implies $\mu_n a_n = o(1)$, then $\mu_n = O(1)$. Also it is clear that, if $\sum a_n = s$ implies $\mu_n a_n = o(1)$. This gives the first result of the theorem. Now let $\sum |a_n| < \infty$ and $\mu_n = O(1)$. Then

$$\sum |\Delta(\mu_n a_n)| = O(1) \sum |a_n| < \infty,$$

so that $|C, 0| \subset |C, \lambda_n, -1|$. Finally, suppose that $\sum |a_n| < \infty$ implies $\sum |\Delta(\mu_n a_n)| < \infty$, i.e. that $\sum |x_n| < \infty$, where

$$x_n = \sum_{k=0}^{\infty} c_{n,k} a_k,$$

and $c_{n,n} = \mu_n$, $c_{n,n-1} = -\mu_{n-1}$, $c_{n,k} = 0$ ($k \neq n-1$, n). By a theorem of Knopp and Lorentz [4], $\sum |x_n| < \infty$ if and only if

$$\sup_{k}\sum_{n=0}^{\infty}|c_{n,k}|<\infty.$$

https://doi.org/10.1017/S2040618500035292 Published online by Cambridge University Press

120

121

Using the necessity of this condition in our case we see that $\mu_n = O(1)$. This proves the theorem.

The next result involves a change in the type of summability. We take sequences $\{\lambda_n\}$ and $\{\lambda'_n\}$, with the corresponding sequences $\{\mu_n\}$ and $\{\mu'_n\}$.

THEOREM 3. $(C, \lambda_n, -1) \subset (C, \lambda'_n, -1)$ if and only if $\Lambda'_n = O(\Lambda_n)$.

Proof. If $\sum a_n = s(C, \lambda_n, -1)$, then $a_n = o(1)$ and $\mu_n a_n = o(1)$; and $\Lambda'_n = O(\Lambda_n)$ then gives

$$\mu'_n a_n = (\Lambda'_n - 1)a_n = O((\Lambda_n + 1) \mid a_n \mid) = O((\mu_n + 2) \mid a_n \mid) = o(1),$$

whence $\sum a_n = s(C, \lambda'_n, -1)$. Now suppose that $(C, \lambda_n, -1) \subset (C, \lambda'_n, -1)$, i.e. that $t_n = s_n + \mu_n a_n \to s \ (n \to \infty)$ implies $t'_n = s_n + \mu'_n a_n \to s \ (n \to \infty)$. Then

$$t'_n = \sum_{k=0}^n c_{n,k} t_k \quad (c_{n,n} = \Lambda'_n / \Lambda_n)$$

converges to s whenever t_n does. By the Toeplitz theorem it is necessary that $c_{n,n} = O(1)$, i.e. that $\Lambda'_n = O(\Lambda_n)$. This completes the proof.

With the restriction $\lambda_{n+1} = O(\lambda_n)$ we note that $\mu'_n = O(\mu_n)$ is also necessary and sufficient. Specializing λ_n and λ'_n in Theorem 3 we have the inclusion $(C, \log n, -1) \subset (C, n, -1)$, which may be contrasted with a typical "second theorem of consistency" for Riesz means [3, Theorem 18], in which $(R, n, k) \subset (R, \log n, k)$ for k > 0.

In the next theorem we give some results on summability factors for the methods $(C, \lambda_n, -1)$ and $|C, \lambda_n, -1|$, which extend and generalize some known theorems on Cesàro summability factors ([2], [7]). If A, B are any summability methods, we use the notation $\{\varepsilon_n\} \in (A, B)$ to mean that the A-summability of $\sum a_n$ implies the B-summability of $\sum a_n \varepsilon_n$.

THEOREM 4. (a) $\{\varepsilon_n\} \in ((C, k), | C, \lambda_n, -1 |)$ for $k \ge -1$, if and only if

$$\sum_{1}^{\infty}\Lambda_{n}n^{k}\mid\varepsilon_{n}\mid<\infty.$$

(b) $\{\varepsilon_n\} \in ((C, \lambda_n, -1), | C, \lambda_n, -1 |)$ if and only if

$$\sum |\varepsilon_n| < \infty.$$

(c) $\{\varepsilon_n\} \in (|C, 0|, |C, \lambda_n, -1|)$ if and only if

(i)
$$\mu_n \varepsilon_n = O(1)$$
, (ii) $\varepsilon_n = O(1)$.

(d) $\{\varepsilon_n\} \in (|C, -1|, |C, 0|)$ if and only if

$$\sum_{n=k}^{\infty} n^{-2} |\varepsilon_n| = O(k^{-1}).$$

Proof. (a) For the sufficiency, the well-known limitation theorem for the (C, k)-summability of $\sum a_n$ gives $a_n = o(n^k)$. Hence, since $1 < \Lambda_n$, $\sum_{1}^{\infty} |a_n \varepsilon_n| = O(1) \sum_{1}^{\infty} n^k |\varepsilon_n| < \infty$, and since $\mu_n < \Lambda_n$,

$$\sum_{1}^{\infty} |\Delta(\mu_n a_n \varepsilon_n)| = O(1) \sum_{1}^{\infty} \mu_n n^k |\varepsilon_n| < \infty.$$

For the necessity, define

$$r_n = \sum_{s=0}^n a_s \varepsilon_s + \mu_n a_n \varepsilon_n,$$
$$q_n^k = \begin{cases} C_n^k & (k > -1), \\ s_n + n a_n & (k = -1), \end{cases}$$

where C_n^k is the Cesàro mean of $\sum a_n$. If $\{\varepsilon_n\} \in ((C, k), | C, \lambda_n, -1|)$, then $\sum |\Delta r_n| < \infty$, whenever $\{q_n^k\}$ converges. Now, if $A_0^{\alpha} = 1$,

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)\dots(\alpha+n)}{n!} \quad (n \ge 1),$$

for real α , then

$$\begin{split} \Delta r_n &= a_n \varepsilon_n + \Delta(\mu_n a_n \varepsilon_n) \\ &= \Lambda_n a_n \varepsilon_n - \mu_{n-1} a_{n-1} \varepsilon_{n-1} \\ &= \begin{cases} \Lambda_n \varepsilon_n \sum_{s=0}^n A_{n-s}^{-k-2} A_s^k C_s^k - \mu_{n-1} a_{n-1} \varepsilon_{n-1} & (k > -1), \\ \\ \frac{\Lambda_n \varepsilon_n}{n+1} \sum_{s=0}^n q_s^{-1} - \dots & (k = -1), \end{cases} \\ &= \sum_{s=0}^n a_{n,s}^k q_{s}^k, \end{split}$$

where

$$a_{n,n}^{k} = \begin{cases} \Lambda_{n} \varepsilon_{n} A_{n}^{k} & (k > -1), \\ \frac{\Lambda_{n} \varepsilon_{n}}{n+1} & (k = -1). \end{cases}$$

Hence by a slight modification of a theorem of Chow [2, Lemma 6[†]], $\sum |a_{n,n}^k| < \infty$, which is equivalent to the condition in (a).

If $\lambda_n = n$ we find \ddagger that $\{\varepsilon_n\} \in ((C, k), |C, -1|), k \ge -1$, if and only if $\sum n^{k+1} |\varepsilon_n| < \infty$.

(b) The necessity of $\sum |\varepsilon_n| < \infty$ follows by the argument used in part (a). For the sufficiency, since $\sum a_n$ converges and $\mu_n a_n = o(1)$, we have

$$\sum |a_n \varepsilon_n| = O(1) \sum |\varepsilon_n| < \infty, \text{ and } \sum |\Delta(\mu_n a_n \varepsilon_n)| = O(1) \sum |\varepsilon_n| < \infty.$$

(c) It is well known that (ii) is necessary and sufficient for $\varepsilon_n \in (|C, 0|, |C, 0|)$. By the theorem of Knopp and Lorentz referred to in Theorem 2, we find that (i) is necessary and sufficient for $\sum |\Delta(\mu_n a_n \varepsilon_n)| < \infty$ whenever $\sum |a_n| < \infty$. Hence (i) and (ii) are necessary and sufficient for (c).

 \dagger Chow's Lemma 6 still holds with o in place of O.

‡ This extends Chow's Theorem 2 [2].

122

If $\{\mu_n\}$ is bounded away from zero, then (i) implies (ii). In particular, when $\lambda_n = n$, we have $\{\varepsilon_n\} \in (|C, 0|, |C, -1|)$ if and only if $n\varepsilon_n = O(1)$; a result which extends a theorem of Peyerimhoff [7].

(d) Noting that

$$a_n = \frac{1}{n(n+1)} \sum_{m=1}^n m \Delta t_m \quad (n \ge 1),$$

and again applying the Knopp-Lorentz theorem, we see that $\{\varepsilon_n\} \in (|C, -1|, |C, 0|)$ if and only if

$$\sup_{k>0} \sum_{n=k}^{\infty} \frac{k |\varepsilon_n|}{n(n+1)} < \infty,$$

which is equivalent to the condition in (d).

This completes the proof of Theorem 5.

In our last theorem we consider matrix transformations of $(C, \lambda_n, -1)$ summable series $\sum a_n$:

$$A_n(a) = \sum a_{nk} a_k.$$

We give necessary and sufficient conditions for $A = (a_{nk})$ to be regular, i.e. for $A_n \to s$ $(n \to \infty)$ whenever $\sum a_n = s(C, \lambda_n, -1)$. In a recently submitted note [6, Theorem 1], I have given conditions for the regularity of A, where $A_n \to s$ $(n \to \infty)$ whenever $\sum a_n = s(C, -1)$. Thus, Theorem 6 generalizes this result. Since the proof of Theorem 6 is essentially the same as that in [6], I do no more than indicate the argument.

THEOREM 6. $A_n(a) \rightarrow s(n \rightarrow \infty)$ whenever $\sum a_n = s(C, \lambda_n, -1)$, if and only if there is a regular series to sequence matrix $B = (b_{nk})$ such that

$$a_{nk} = b_{nk} + \mu_k (b_{nk} - b_{n,k+1}). \tag{3}$$

Proof. Let (3) hold and $\sum a_n = s(C, \lambda_n, -1)$. Since $\sum a_k$ converges to s and B is regular, the B-transform of $\sum a_k$ converges to s. Also the matrix $(b_{nk} - b_{n,k+1})$ takes null sequences into null sequences. Hence (3) is sufficient.

Now suppose that $A_n(a)$ exists for each n and $A_n(a) \rightarrow s \ (n \rightarrow \infty)$ whenever

$$\sum a_n = s(C, \lambda_n, -1),$$

i.e. by (1), whenever $t \in c$ (c being the space of convergent sequences $t = \{t_n\}$ with norm $||t|| = \sup |t_n|$). If we express $a = \{a_n\}$ in terms of t we easily find that $a_n = a_n(t)$ is a continuous linear functional on c. Since $\sum a_{nk}a_k$ converges for each n, it follows that $A_n(a)$ is a continuous linear functional on c. Thus, for each n [1, p. 65],

$$A_n(a) = d_n \lim t_k + \sum_k d_{nk} t_k, \tag{4}$$

$$||A_n|| = |d_n| + \sum_k |d_{nk}|, \text{ with } \sum_k |d_{nk}| < \infty.$$
 (5)

I. J. MADDOX

Taking $a = e^{(k)}$, $e_i^{(k)} = 0$, $i \neq k$, $e_k^{(k)} = 1$, we deduce from (4) the existence of a matrix B such that (3) holds and $b_{nk} - b_{n,k+1} = d_{nk}$. Also we see that $a_{nk} \to 1$ $(n \to \infty, k$ fixed). On applying the Banach-Steinhaus theorem, (5) yields

$$\sup_{n}\sum_{k}|b_{nk}-b_{n,k+1}|<\infty.$$
(6)

Taking $t = e^{(k)}$ we have $d_{nk} \to 0$ $(n \to \infty, k$ fixed), whence

$$b_{nk} \to 1 \quad (n \to \infty, k \text{ fixed}).$$
 (7)

But (6) and (7) are the conditions for B to be a regular series to sequence matrix, so the result is proved.

REFERENCES

1. S. Banach, Théorie des opérations linéaires (New York, 1955).

2. H. C. Chow, Note on convergence and summability factors, J. London Math. Soc. 29 (1954), 459-476.

3. G. H. Hardy and M. Riesz, The general theory of Dirichlet's series (Cambridge Tract No. 18, 1915).

4. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv. der Math. 2 (1949), 10-16.

5. B. Kuttner, On discontinuous Riesz means of type n, J. London Math. Soc. 37 (1962), 354-364.

6. I. J. Maddox, Matrix transformations of (C, -1) summable series, *Proc. Koninkl. Nederl. Akad.* van Wetenschappen A 68 (1965), 129–132.

7. A. Peyerimhoff, Summierbarkeitsfaktoren für absolut Cesàro-summierbare Reihen, Math. Z. 59 (1954), 417-424.

8. W. H. Young, On the convergence of the derived series of a Fourier series, *Proc. London Math. Soc.* (2) 17 (1918), 195-236.

THE UNIVERSITY LANCASTER

124