
GENERALIZED CESARO MEANS OF ORDER -1
by I. J. MADDOX

(Received 18 September, 1964; and in revised form 11 January, 1965)

A series £a n is said to be summable (C, — 1) to s if it converges to 5 and nan = o(l) [8].
It is well known that this definition is equivalent to tn^s (n->oo), where tn — sn+nan,
sn = <*o + ••• +an- The series is summable | C, — 1 | to s if the sequence t = {tn} is of bounded
variation (t e B.V.), i.e. £ | Atn | = £ | ?„-/„_! | < oo, and £Afn = lim tn = j . t An equiva-
lent condition is £ | an | < oo, £a,, = s and £ | A(wan) | < oo. For, suppose that
Yfin — s | C, — 11. Since {̂ n} is the sequence of (C, l)-means of {;„} and since | C, 0 | c | C, 1 |,
we have £ | an | < oo and Yfln = s> whence £ I A(«an) | < oo. Conversely, £ | an | < oo,
Yfln = s a n d S I ^(wfln) I < °o imply t e B.V. and £Afn = j+l im «an. But lim nan = 0, since
Z I On I < 00-

Now let Yfln be a given series, with sn = ao+ ... +an, and define the sequence {tn} so that
s. is the discontinuous Riesz mean of order 1 of t.:

where 0 ^ Xo < Xy < ... < Xn-* oo. Then we have

= - n—. (1)

We shall say that £)*„ = i(C, Xn, — 1) if and only if tn -+ 5 (n -»oo). By the regularity of
(£, An, 1) summability it is easily seen that an equivalent definition is that £a n converges to s
and Hnan = °(1)- If ^n = «»(C, «̂> ~ 1) reduces to (C, - 1 ) , so that the new method generalizes
the Cesaro method of order — 1.

We have used the notation (C, kn, — 1) rather than (R, An, — 1) since a definition? of dis-
continuous (R, Xn, — 1) summability is already available. Now it is known [5], that (C, k)
and (R, n, k) are equivalent for — 1 < k < 2, and Dr Kuttner has shown me a proof, similar to
that of [5], that (R, n, -1) implies (C, - 1 ) but that the converse implication is false. Thus
(C, Xn, - 1 ) is not equivalent to (R, Xn, - 1 ) even when Xn = n.

Using (1) we define £a n = 5 | C, Xn, — 1 | if and only if / e B.V. and tn -> s. Thus we have
the inclusion | C, Xn, — 11 c (C, Xn, - 1 ) . We now give an equivalent condition for | C, Xn, -1 |
summability.

THEOREM 1. Y.an = s\C,Xn,-l\ if and only ifZ \ an\ < oo, £aB = J a«^Z | AOyO | < oo.

t All summations run from 0 to oo, and we take /_ i =0.

JIon=5(^,An, -1) if i n - j - M ak^s (n^oo).

https://doi.org/10.1017/S2040618500035292 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035292


120 I. J. MADDOX

Proof. By the absolnte regularity of (R, An, 1), £a n = s\ C, Xn -I \ implies £ | an | < oo
and Yfln = •*, whence £ I A(/inan) | < oo. Conversely, £ | an | < oo, £an = s and £ | A(/yO |
< oo imply t e B.V. and £A?n = s+lim finan. Now suppose, if possible, that lim p.nan = / ¥= 0.
We first note that

CO 1

Z-=oo. (2)
1 ^

For the infinite product

» = 1

diverges to + oo, which implies that (2) holds. Since an~ ljnn, (2) implies that £a n diverges, a
contradiction. Hence finan = o(l), so that £an = s\C,Xa,—l\.

Our next theorem gives the class of sequences {An} for which the generalized methods are
equivalent to convergence (or absolute convergence). It is known [3, Theorem 21] that a
sufficient condition for (/?, Xn, k) summability {k. > 0) to be equivalent to convergence is

A. = 5 - ^ = 0(1).

Since An = / i n +1 , \in = 0(1) is also a sufficient condition. Theorem 2 shows that \in = 0(1)
is necessary as well as sufficient for (C, Xn, - 1 ) to be equivalent to (C, 0) and for | C, kn, -1 |
to be equivalent to | C, 0 | , where (C, 0)(| C, 0 |) denotes convergence (absolute convergence).

THEOREM 2. (C, AB, - 1 ) ( | C, Xn, - 1 |) w equivalent to (C, 0)(| C, 0 |) if and only if
Hn = 0(1), or what amounts to the same thing, if and only ifAn = 0(1).

Proof. The inclusions (C, Xn, -1) c (C, 0) and | C, An, - 1 | c | C, 0 | follow immedi-
ately from the equivalent definitions of (C, kn, -1) and | C, An, - 1 | . Suppose then that £a n

converges to s and nn = 0(1). Then finan = 0 (1 ) . o(l) = o(l), whence (C, 0) <= (C, Xn, -1).
Also it is clear that, if Yfin = s implies \inan = o(l), then //„ = 0(1). Also it is clear that, if
Yan = s implies \inan = o(l), then //„ = 0(1). This gives the first result of the theorem.

Now let £ | an \ < oo and fin = 0(1). Then

) £ | n | < oo,

so that | C, 0 | c | C, An, - 1 | . Finally, suppose that £ | an \ < oo implies £ | A(/inon) | < oo,
i.e. that £ | xn \ < oo, where

^ n - l ,n ) . ByatheoremofKnoppandLorentz[4],
*„ | < oo if and only if

CO

SUP £ l C n , * l < 00-
* n = 0

https://doi.org/10.1017/S2040618500035292 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500035292


GENERALIZED CESARO MEANS OF ORDER - 1 121

Using the necessity of this condition in our case we see that nn = 0(1). This proves the theorem.
The next result involves a change in the type of summability. We take sequences {Xn} and

{X'n}, with the corresponding sequences {//„} and {n'n}.

THEOREM 3. (C, Xn, -1) c (C, X'n, -1) if and only if K = 0(An).

Proof. If £a n ~ s(c> n̂» - 1 ) . t n e n an = o(l) and \inan = o(l); and A; = O(AJ then gives

H'nan = (A; - l ) a n = O((An + l) I an |) = 0 ((/<„ +2) | an |) = o(l),

whence £a n = ,y(C, X'n, - 1 ) . Now suppose that (C, An, - 1 ) <= (C, Â , - 1 ) , i.e. that
tn = sn+finan ->• s (n -• oo) implies ^ = sn + n'nan - » s (n -> oo). Then

converges to s whenever tn does. By the Toeplitz theorem it is necessary that cn „ = 0(1), i.e.
that A^ = 0(An). This completes the proof.

With the restriction An+1 = 0(An) we note that n'n = 0 ( /O is also necessary and sufficient.
Specializing An and X'n in Theorem 3 we have the inclusion (C, log «, — 1) <= (C, n, -1),

which may be contrasted with a typical " second theorem of consistency " for Riesz means
[3, Theorem 18], in which (R, n, k) a (R, log n, k) for k > 0.

In the next theorem we give some results on summability factors for the methods
(C, Xn, — 1) and | C, An, - 1 |, which extend and generalize some known theorems on Cesaro
summability factors ([2], [7]). If A, B are any summability methods, we use the notation
{£„} e (A, B) to mean that the ^-summability of Y,an implies the 5-summability of £/*„£„.

THEOREM 4. (a) {en} e ((C, k), \ C, Xn, -1 \)for k ^ - 1, if and only if

£ Ann" | £„ | < oo.
I

(b) {en} e ((C, An, - 1 ) , | C, Xn, -1 |) if and only if

E I £n I < 00-

(c) {£„} e (I C, 0 I, I C, Xn, -1 |) i/anrf only if

(i) ^ 8 n = 0(1), (ii) en = 0(1).

(d){sn}e(\C,-l\,\C,0\)ifandonlyif

Proof, (a) For the sufficiency, the well-known limitation theorem for the (C, fc)-summa-
00 OO

bility of Yan gives an = o(nk). Hence, since 1 < Am £ | anen | = 0(1) £ nk | en | < oo, and
I I

since ^ < An,

£ I AOi.a.aJ | = 0(1) £/i.n* | e j < oo.
I I
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For the necessity, define
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^ f cjS (fc>-i),

where C* is the Cesaro mean of £an . If {eB} e ((C, A:), | C, Xn, -1 |), then £ I Arn | < oo, when-
ever {<7*} converges. Now,

for real a, then

= Ananen-Un-

it

5 = 0
- 1 ) ,

s = O

where

<„ = Anen

n + 1

Hence by a slight modification of a theorem of Chow [2, Lemma 6t] , £ I aj,n | < oo,
which is equivalent to the condition in (a).

If Xn = n we findt that {en} e ((C, k), \ C, -1 |), k ^ - 1 , if and only if £n*+ J | e j < oo.

(6) The necessity of £ | 8n | < oo follows by the argument used in part (a). For the
sufficiency, since Yfln converges and naan = o(l), we have

£ | anen | = O( l )£ | en | < oo, and £ I A(/inanen) | = 0 ( l ) £ | en | < oo.

(c) It is well known that (ii) is necessary and sufficient for en e (| C, 0 |, | C, 0 |). By the
theorem of Knopp and Lorentz referred to in Theorem 2, we find that (i) is necessary and
sufficient for £ I A(^nanen) | < oo whenever £ I an I < oo. Hence (i) and (ii) are necessary and
sufficient for (c).

t Chow's Lemma 6 still holds with o in place of O.
% This extends Chow's Theorem 2 [2].
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If {//„} is bounded away from zero, then (i) implies (ii). In particular, when Xn = n, we
have {£„} e (| C, 0 |, | C, — 1 |) if and only if nen = 0(1); a result which extends a theorem of
Peyerimhoff [7].

(d) Noting that

an = — — - t mAtm (n £ 1),
n(n + l)m=i

and again applying the Knopp-Lorentz theorem, we see that {en} 6 (| C, — 1 |, | C, 0 |) if and
only if

sup f; AIM. <

which is equivalent to the condition in (d).
This completes the proof of Theorem 5.
In our last theorem we consider matrix transformations of (C, An, — 1) summable series

!>„:
A (a) = Yfiniflk-

We give necessary and sufficient conditions for A = (ank) to be regular, i.e. for An -* s (n -*• oo)
whenever £a n = s(C, Xn, — 1). In a recently submitted note [6, Theorem 1], I have given
conditions for the regularity of A, where An-*s (n-*oo) whenever £a n = s(C, — 1). Thus,
Theorem 6 generalizes this result. Since the proof of Theorem 6 is essentially the same as that
in [6], I do no more than indicate the argument.

THEOREM 6. An(a) -* s(n -> oo) whenever £a n = s(C, An, — 1), if and only if there is a regular
series to sequence matrix B = (bnk) such that

ank = bnk + [ik(bnk-bn>k+1). (3)

Proof. Let (3) hold and Yfn = S(C> K> — 0- Since Yflk converges to s and B is regular,
the 2?-transform of YPk converges to s. Also the matrix {bnk — bnk+1) takes null sequences into
null sequences. Hence (3) is sufficient.

Now suppose that An(a) exists for each n and An(a) -> s (n -> oo) whenever

i.e. by (1), whenever tec (c being the space of convergent sequences t = {Q with norm
|| 11| = sup | tn |). If we express a = {«„} in terms of t we easily find that an = an(t) is a con-
tinuous linear functional on c. Since Yfinkak converges for each n, it follows that An(a) is a
continuous linear functional on c. Thus, for each n [1, p. 65],

An (a) = dn lim tk+£ dnktk, (4)

II4,| | = | 4 , | + I | < U , with £ | dnk | < co. (5)
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Taking a = em, e\k) = 0, J V k, e[k) = 1, we deduce from (4) the existence of a matrix B such
that (3) holds and bnk—bnk+1 = dnk. Also we see that ank -*\ (n ->• oo, k fixed). On applying
the Banach-Steinhaus theorem, (5) yields

s u p £ \bnk-bn>k+l | < oo. (6)
n k

Taking t = e(k) we have dnk -> 0 (« -»oo, k fixed), whence

bnk-+\ {n-+ oo, k fixed). (7)

But (6) and (7) are the conditions for B to be a regular series to sequence matrix, so the result is
proved.
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