GENERALIZED CESARO MEANS OF ORDER - 1

by I. J. MADDOX

(Received 18 September, 1964; and in revised form 11 January, 1965)
A series $\sum a_{n}$ is said to be summable $(C,-1)$ to s if it converges to s and $n a_{n}=o(1)[8]$. It is well known that this definition is equivalent to $t_{n} \rightarrow s(n \rightarrow \infty)$, where $t_{n}=s_{n}+n a_{n}$, $s_{n}=a_{0}+\ldots+a_{n}$. The series is summable $|C,-1|$ to s if the sequence $t=\left\{t_{n}\right\}$ is of bounded variation ($t \in \mathrm{~B} . \mathrm{V}$.), i.e. $\sum\left|\Delta t_{n}\right|=\sum\left|t_{n}-t_{n-1}\right|<\infty$, and $\sum \Delta t_{n}=\lim t_{n}=s . \dagger \quad$ An equivalent condition is $\sum\left|a_{n}\right|<\infty, \sum a_{n}=s$ and $\sum\left|\Delta\left(n a_{n}\right)\right|<\infty$. For, suppose that $\sum a_{n}=s|C,-1|$. Since $\left\{s_{n}\right\}$ is the sequence of $(C, 1)$-means of $\left\{t_{n}\right\}$ and since $|C, 0| \subset|C, 1|$, we have $\sum\left|a_{n}\right|<\infty$ and $\sum a_{n}=s$, whence $\sum\left|\Delta\left(n a_{n}\right)\right|<\infty$. Conversely, $\sum\left|a_{n}\right|<\infty$, $\sum a_{n}=s$ and $\sum\left|\Delta\left(n a_{n}\right)\right|<\infty$ imply $t \in \mathrm{~B} . \mathrm{V}$. and $\sum \Delta t_{n}=s+\lim n a_{n}$. But $\lim n a_{n}=0$, since $\sum\left|a_{n}\right|<\infty$.

Now let $\sum a_{n}$ be a given series, with $s_{n}=a_{0}+\ldots+a_{n}$, and define the sequence $\left\{t_{n}\right\}$ so that s_{n} is the discontinuous Riesz mean of order 1 of t_{n} :

$$
s_{n}=\frac{1}{\lambda_{n+1}} \sum_{k=0}^{n}\left(\lambda_{k+1}-\lambda_{k}\right) t_{k},
$$

where $0 \leqq \lambda_{0}<\lambda_{1}<\ldots<\lambda_{n} \rightarrow \infty$. Then we have

$$
\begin{equation*}
t_{n}=s_{n}+\mu_{n} a_{n}, \quad \text { with } \mu_{n}=\frac{\lambda_{n}}{\lambda_{n+1}-\lambda_{n}} . \tag{1}
\end{equation*}
$$

We shall say that $\sum a_{n}=s\left(C, \lambda_{n},-1\right)$ if and only if $t_{n} \rightarrow s(n \rightarrow \infty)$. By the regularity of ($\bar{R}, \lambda_{n}, 1$) summability it is easily seen that an equivalent definition is that $\sum a_{n}$ converges to s and $\mu_{n} a_{n}=o(1)$. If $\lambda_{n}=n,\left(C, \lambda_{n},-1\right)$ reduces to $(C,-1)$, so that the new method generalizes the Cesàro method of order -1 .

We have used the notation $\left(C, \lambda_{n},-1\right)$ rather than $\left(\bar{R}, \lambda_{n},-1\right)$ since a definition \ddagger of discontinuous $\left(\bar{R}, \lambda_{n},-1\right)$ summability is already available. Now it is known [5], that (C, k) and (\bar{R}, n, k) are equivalent for $-1<k<2$, and Dr Kuttner has shown me a proof, similar to that of [5], that $(\bar{R}, n,-1)$ implies $(C,-1)$ but that the converse implication is false. Thus ($C, \lambda_{n},-1$) is not equivalent to ($\bar{R}, \lambda_{n},-1$) even when $\lambda_{n}=n$.

Using (1) we define $\sum a_{n}=s\left|C, \lambda_{n},-1\right|$ if and only if $t \in B$.V. and $t_{n} \rightarrow s$. Thus we have the inclusion $\left|C, \lambda_{n},-1\right| \subset\left(C, \lambda_{n},-1\right)$. We now give an equivalent condition for $\left|C, \lambda_{n},-1\right|$ summability.

Theorem 1. $\sum a_{n}=s\left|C, \lambda_{n},-1\right|$ if and only if $\sum\left|a_{n}\right|<\infty, \sum a_{n}=s$ and $\sum\left|\Delta\left(\mu_{n} a_{n}\right)\right|<\infty$.
\dagger All summations run from 0 to ∞, and we take $t_{-1}=0$.

$$
\ddagger \Sigma a_{n}=s\left(\bar{R}, \lambda_{n},-1\right) \text { if } \sum_{k=0}^{n}\left(1-\frac{\lambda_{k}}{\lambda_{n+1}}\right)^{-1} a_{k} \rightarrow s \quad(n \rightarrow \infty) .
$$

Proof. By the absolate regularity of $\left(\bar{R}, \lambda_{n}, 1\right), \sum a_{n}=s\left|C, \lambda_{n}-1\right|$ implies $\sum\left|a_{n}\right|<\infty$ and $\sum a_{n}=s$, whence $\sum\left|\Delta\left(\mu_{n} a_{n}\right)\right|<\infty$. Conversely, $\sum\left|a_{n}\right|<\infty, \sum a_{n}=s$ and $\sum\left|\Delta\left(\mu_{n} a_{n}\right)\right|$ $<\infty$ imply $t \in$ B.V. and $\sum \Delta t_{n}=s+\lim \mu_{n} a_{n}$. Now suppose, if possible, that $\lim \mu_{n} a_{n}=l \neq 0$. We first note that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{\mu_{n}}=\infty \tag{2}
\end{equation*}
$$

For the infinite product

$$
\prod_{n=1}^{\infty}\left(1+\frac{1}{\mu_{n}}\right)=\prod_{1}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}}
$$

diverges to $+\infty$, which implies that (2) holds. Since $a_{n} \sim l / \mu_{n}$, (2) implies that $\sum a_{n}$ diverges, a contradiction. Hence $\mu_{n} a_{n}=o(1)$, so that $\sum a_{n}=s\left|C, \lambda_{n},-1\right|$.

Our next theorem gives the class of sequences $\left\{\lambda_{n}\right\}$ for which the generalized methods are equivalent to convergence (or absolute convergence). It is known [3, Theorem 21] that a sufficient condition for (R, λ_{n}, k) summability $(k>0)$ to be equivalent to convergence is

$$
\Lambda_{n}=\frac{\lambda_{n+1}}{\lambda_{n+1}-\lambda_{n}}=O(1)
$$

Since $\Lambda_{n}=\mu_{n}+1, \mu_{n}=O(1)$ is also a sufficient condition. Theorem 2 shows that $\mu_{n}=O(1)$ is necessary as well as sufficient for $\left(C, \lambda_{n},-1\right)$ to be equivalent to $(C, 0)$ and for $\left|C, \lambda_{n},-1\right|$ to be equivalent to $|C, 0|$, where $(C, 0)(|C, 0|)$ denotes convergence (absolute convergence).

Theorem 2. $\left(C, \lambda_{n},-1\right)\left(\left|C, \lambda_{n},-1\right|\right)$ is equivalent to $(C, 0)(|C, 0|)$ if and only if $\mu_{n}=O(1)$, or what amounts to the same thing, if and only if $\Lambda_{n}=O(1)$.

Proof. The inclusions $\left(C, \lambda_{n},-1\right) \subset(C, 0)$ and $\left|C, \lambda_{n},-1\right| \subset|C, 0|$ follow immediately from the equivalent definitions of $\left(C, \lambda_{n},-1\right)$ and $\left|C, \lambda_{n},-1\right|$. Suppose then that $\sum a_{n}$ converges to s and $\mu_{n}=O(1)$. Then $\mu_{n} a_{n}=O(1) . o(1)=o(1)$, whence $(C, 0) \subset\left(C, \lambda_{n},-1\right)$. Also it is clear that, if $\sum a_{n}=s$ implies $\mu_{n} a_{n}=o(1)$, then $\mu_{n}=O(1)$. Also it is clear that, if $\sum a_{n}=s$ implies $\mu_{n} a_{n}=o(1)$, then $\mu_{n}=O(1)$. This gives the first result of the theorem.

Now let $\sum\left|a_{n}\right|<\infty$ and $\mu_{n}=O(1)$. Then

$$
\sum\left|\Delta\left(\mu_{n} a_{n}\right)\right|=O(1) \sum\left|a_{n}\right|<\infty
$$

so that $|C, 0| \subset\left|C, \lambda_{n},-1\right|$. Finally, suppose that $\sum\left|a_{n}\right|<\infty$ implies $\sum\left|\Delta\left(\mu_{n} a_{n}\right)\right|<\infty$, i.e. that $\sum\left|x_{n}\right|<\infty$, where

$$
x_{n}=\sum_{k=0}^{\infty} c_{n, k} a_{k}
$$

and $c_{n, n}=\mu_{n}, c_{n, n-1}=-\mu_{n-1}, c_{n, k}=0(k \neq n-1, n)$. By a theorem of Knopp and Lorentz [4], $\sum\left|x_{n}\right|<\infty$ if and only if

$$
\sup _{k} \sum_{n=0}^{\infty}\left|c_{n, k}\right|<\infty
$$

Using the necessity of this condition in our case we see that $\mu_{n}=O(1)$. This proves the theorem.
The next result involves a change in the type of summability. We take sequences $\left\{\lambda_{n}\right\}$ and $\left\{\lambda_{n}^{\prime}\right\}$, with the corresponding sequences $\left\{\mu_{n}\right\}$ and $\left\{\mu_{n}^{\prime}\right\}$.

Theorem 3. $\left(C, \lambda_{n},-1\right) \subset\left(C, \lambda_{n}^{\prime},-1\right)$ if and only if $\Lambda_{n}^{\prime}=O\left(\Lambda_{n}\right)$.
Proof. If $\sum a_{n}=s\left(C, \lambda_{n},-1\right)$, then $a_{n}=o(1)$ and $\mu_{n} a_{n}=o(1)$; and $\Lambda_{n}^{\prime}=O\left(\Lambda_{n}\right)$ then gives

$$
\mu_{n}^{\prime} a_{n}=\left(\Lambda_{n}^{\prime}-1\right) a_{n}=O\left(\left(\Lambda_{n}+1\right)\left|a_{n}\right|\right)=O\left(\left(\mu_{n}+2\right)\left|a_{n}\right|\right)=o(1),
$$

whence $\sum a_{n}=s\left(C, \lambda_{n}^{\prime},-1\right)$. Now suppose that $\left(C, \lambda_{n},-1\right) \subset\left(C, \lambda_{n}^{\prime},-1\right)$, i.e. that $t_{n}=s_{n}+\mu_{n} a_{n} \rightarrow s(n \rightarrow \infty)$ implies $t_{n}^{\prime}=s_{n}+\mu_{n}^{\prime} a_{n} \rightarrow s(n \rightarrow \infty)$. Then

$$
t_{n}^{\prime}=\sum_{k=0}^{n} c_{n, k} t_{k} \quad\left(c_{n, n}=\Lambda_{n}^{\prime} / \Lambda_{n}\right)
$$

converges to s whenever t_{n} does. By the Toeplitz theorem it is necessary that $c_{n, n}=O(1)$, i.e. that $\Lambda_{n}^{\prime}=O\left(\Lambda_{n}\right)$. This completes the proof.

With the restriction $\lambda_{n+1}=O\left(\lambda_{n}\right)$ we note that $\mu_{n}^{\prime}=O\left(\mu_{n}\right)$ is also necessary and sufficient.
Specializing λ_{n} and λ_{n}^{\prime} in Theorem 3 we have the inclusion $(C, \log n,-1) \subset(C, n,-1)$, which may be contrasted with a typical "second theorem of consistency" for Riesz means [3, Theorem 18], in which $(R, n, k) \subset(R, \log n, k)$ for $k>0$.

In the next theorem we give some results on summability factors for the methods ($C, \lambda_{n},-1$) and $\left|C, \lambda_{n},-1\right|$, which extend and generalize some known theorems on Cesaro summability factors ([2], [7]). If A, B are any summability methods, we use the notation $\left\{\varepsilon_{n}\right\} \in(A, B)$ to mean that the A-summability of $\sum a_{n}$ implies the B-summability of $\sum a_{n} \varepsilon_{n}$.

Theorem 4. (a) $\left\{\varepsilon_{n}\right\} \in\left((C, k),\left|C, \lambda_{n},-1\right|\right)$ for $k \geqq-1$, if and only if

$$
\sum_{1}^{\infty} \Lambda_{n} n^{k}\left|\varepsilon_{n}\right|<\infty
$$

(b) $\left\{\varepsilon_{n}\right\} \in\left(\left(C, \lambda_{n},-1\right),\left|C, \lambda_{n},-1\right|\right)$ if and only if

$$
\sum\left|\varepsilon_{n}\right|<\infty .
$$

(c) $\left\{\varepsilon_{n}\right\} \in\left(|C, 0|,\left|C, \lambda_{n},-1\right|\right)$ if and only if

$$
\text { (i) } \mu_{n} \varepsilon_{n}=O(1), \text { (ii) } \varepsilon_{n}=O(1)
$$

(d) $\left\{\varepsilon_{n}\right\} \in(|C,-1|,|C, 0|)$ if and only if

$$
\sum_{n=k}^{\infty} n^{-2}\left|\varepsilon_{n}\right|=O\left(k^{-1}\right)
$$

Proof. (a) For the sufficiency, the well-known limitation theorem for the (C, k)-summability of $\sum a_{n}$ gives $a_{n}=o\left(n^{k}\right)$. Hence, since $1<\Lambda_{n}, \sum_{1}^{\infty}\left|a_{n} \varepsilon_{n}\right|=O(1) \sum_{1}^{\infty} n^{k}\left|\varepsilon_{n}\right|<\infty$, and since $\mu_{n}<\Lambda_{n}$,

$$
\sum_{1}^{\infty}\left|\Delta\left(\mu_{n} a_{n} \varepsilon_{n}\right)\right|=O(1) \sum_{1}^{\infty} \mu_{n} n^{k}\left|\varepsilon_{n}\right|<\infty
$$

For the necessity, define

$$
\begin{aligned}
& r_{n}=\sum_{s=0}^{n} a_{s} \varepsilon_{s}+\mu_{n} a_{n} \varepsilon_{n}, \\
& q_{n}^{k}=\left\{\begin{array}{cc}
C_{n}^{k} & (k>-1), \\
s_{n}+n a_{n} & (k=-1),
\end{array}\right.
\end{aligned}
$$

where C_{n}^{k} is the Cesàro mean of $\sum a_{n}$. If $\left\{\varepsilon_{n}\right\} \in\left((C, k),\left|C, \lambda_{n},-1\right|\right)$, then $\sum\left|\Delta r_{n}\right|<\infty$, whenever $\left\{q_{n}^{k}\right\}$ converges. Now, if $A_{0}^{\alpha}=1$,

$$
A_{n}^{\alpha}=\frac{(\alpha+1)(\alpha+2) \ldots(\alpha+n)}{n!} \quad(n \geqq 1)
$$

for real α, then

$$
\begin{aligned}
\Delta r_{n} & =a_{n} \varepsilon_{n}+\Delta\left(\mu_{n} a_{n} \varepsilon_{n}\right) \\
& =\Lambda_{n} a_{n} \varepsilon_{n}-\mu_{n-1} a_{n-1} \varepsilon_{n-1} \\
& = \begin{cases}\Lambda_{n} \varepsilon_{n} \sum_{s=0}^{n} A_{n-s}^{-k-2} A_{s}^{k} C_{s}^{k}-\mu_{n-1} a_{n-1} \varepsilon_{n-1} & (k>-1), \\
\frac{\Lambda_{n} \varepsilon_{n}}{n+1} \sum_{s=0}^{n} q_{s}^{-1}-\ldots & (k=-1)\end{cases} \\
& =\sum_{s=0}^{n} a_{n, s}^{k} q_{s}^{k},
\end{aligned}
$$

where

$$
a_{n, n}^{k}= \begin{cases}\Lambda_{n} \varepsilon_{n} A_{n}^{k} & (k>-1) \\ \frac{\Lambda_{n} \varepsilon_{n}}{n+1} & (k=-1)\end{cases}
$$

Hence by a slight modification of a theorem of Chow [2, Lemma 6†], $\sum\left|a_{n, n}^{k}\right|<\infty$, which is equivalent to the condition in (a).

If $\lambda_{n}=n$ we find \ddagger that $\left\{\varepsilon_{n}\right\} \in((C, k),|C,-1|), k \geqq-1$, if and only if $\sum n^{k+1}\left|\varepsilon_{n}\right|<\infty$.
(b) The necessity of $\sum\left|\varepsilon_{n}\right|<\infty$ follows by the argument used in part (a). For the sufficiency, since $\sum a_{n}$ converges and $\mu_{n} a_{n}=o(1)$, we have

$$
\sum\left|a_{n} \varepsilon_{n}\right|=O(1) \sum\left|\varepsilon_{n}\right|<\infty, \quad \text { and } \quad \sum\left|\Delta\left(\mu_{n} a_{n} \varepsilon_{n}\right)\right|=O(1) \sum\left|\varepsilon_{n}\right|<\infty
$$

(c) It is well known that (ii) is necessary and sufficient for $\varepsilon_{n} \in(|C, 0|,|C, 0|)$. By the theorem of Knopp and Lorentz referred to in Theorem 2, we find that (i) is necessary and sufficient for $\sum\left|\Delta\left(\mu_{n} a_{n} \varepsilon_{n}\right)\right|<\infty$ whenever $\sum\left|a_{n}\right|<\infty$. Hence (i) and (ii) are necessary and sufficient for (c).

If $\left\{\mu_{n}\right\}$ is bounded away from zero, then (i) implies (ii). In particular, when $\lambda_{n}=n$, we have $\left\{\varepsilon_{n}\right\} \in(|C, 0|,|C,-1|)$ if and only if $n \varepsilon_{n}=O(1)$; a result which extends a theorem of Peyerimhoff [7].
(d) Noting that

$$
a_{n}=\frac{1}{n(n+1)} \sum_{m=1}^{n} m \Delta t_{m} \quad(n \geqq 1)
$$

and again applying the Knopp-Lorentz theorem, we see that $\left\{\varepsilon_{n}\right\} \in(|C,-1|,|C, 0|)$ if and only if

$$
\sup _{k>0} \sum_{n=k}^{\infty} \frac{k\left|\varepsilon_{n}\right|}{n(n+1)}<\infty
$$

which is equivalent to the condition in (d).
This completes the proof of Theorem 5.
In our last theorem we consider matrix transformations of ($C, \lambda_{n},-1$) summable series $\sum a_{n}:$

$$
A_{n}(a)=\sum a_{n k} a_{k}
$$

We give necessary and sufficient conditions for $A=\left(a_{n k}\right)$ to be regular, i.e. for $A_{n} \rightarrow s(n \rightarrow \infty)$ whenever $\sum a_{n}=s\left(C, \lambda_{n},-1\right)$. In a recently submitted note [6, Theorem 1], I have given conditions for the regularity of A, where $A_{n} \rightarrow s(n \rightarrow \infty)$ whenever $\sum a_{n}=s(C,-1)$. Thus, Theorem 6 generalizes this result. Since the proof of Theorem 6 is essentially the same as that in [6], I do no more than indicate the argument.

Theorem 6. $A_{n}(a) \rightarrow s(n \rightarrow \infty)$ whenever $\sum a_{n}=s\left(C, \lambda_{n},-1\right)$, if and only if there is a regular series to sequence matrix $B=\left(b_{n k}\right)$ such that

$$
\begin{equation*}
a_{n k}=b_{n k}+\mu_{k}\left(b_{n k}-b_{n, k+1}\right) . \tag{3}
\end{equation*}
$$

Proof. Let (3) hold and $\sum a_{n}=s\left(C, \lambda_{n},-1\right)$. Since $\sum a_{k}$ converges to s and B is regular, the B-transform of $\sum a_{k}$ converges to s. Also the matrix ($b_{n k}-b_{n, k+1}$) takes null sequences into null sequences. Hence (3) is sufficient.

Now suppose that $A_{n}(a)$ exists for each n and $A_{n}(a) \rightarrow s(n \rightarrow \infty)$ whenever

$$
\sum a_{n}=s\left(C, \lambda_{n},-1\right)
$$

i.e. by (1), whenever $t \in c$ (c being the space of convergent sequences $t=\left\{t_{n}\right\}$ with norm $\left.\|t\|=\sup \left|t_{n}\right|\right)$. If we express $a=\left\{a_{n}\right\}$ in terms of t we easily find that $a_{n}=a_{n}(t)$ is a continuous linear functional on c. Since $\sum a_{n k} a_{k}$ converges for each n, it follows that $A_{n}(a)$ is a continuous linear functional on c. Thus, for each $n[1, p .65]$,

$$
\begin{gather*}
A_{n}(a)=d_{n} \lim t_{k}+\sum_{k} d_{n k} t_{k}, \tag{4}\\
\left\|A_{n}\right\|=\left|d_{n}\right|+\sum_{k}\left|d_{n k}\right|, \quad \text { with } \sum_{k}\left|d_{n k}\right|<\infty \tag{5}
\end{gather*}
$$

Taking $a=e^{(k)}, e_{i}^{(k)}=0, i \neq k, e_{k}^{(k)}=1$, we deduce from (4) the existence of a matrix B such that (3) holds and $b_{n k}-b_{n, k+1}=d_{n k}$. Also we see that $a_{n k} \rightarrow 1$ ($n \rightarrow \infty, k$ fixed). On applying the Banach-Steinhaus theorem, (5) yields

$$
\begin{equation*}
\sup _{n} \sum_{k}\left|b_{n k}-b_{n, k+1}\right|<\infty \tag{6}
\end{equation*}
$$

Taking $t=e^{(k)}$ we have $d_{n k} \rightarrow 0(n \rightarrow \infty, k$ fixed $)$, whence

$$
\begin{equation*}
b_{n k} \rightarrow 1 \quad(n \rightarrow \infty, k \text { fixed }) \tag{7}
\end{equation*}
$$

But (6) and (7) are the conditions for B to be a regular series to sequence matrix, so the result is proved.

REFERENCES

1. S. Banach, Théorie des opérations linéaires (New York, 1955).
2. H. C. Chow, Note on convergence and summability factors, J. London Math. Soc. 29 (1954), 459-476.
3. G. H. Hardy and M. Riesz, The general theory of Dirichlet's series (Cambridge Tract No. 18, 1915).
4. K. Knopp and G. G. Lorentz, Beiträge zur absoluten Limitierung, Archiv. der Math. 2 (1949), 10-16.
5. B. Kuttner, On discontinuous Riesz means of type n, J. London Math. Soc. 37 (1962), 354-364.
6. I. J. Maddox, Matrix transformations of ($C,-1$) summable series, Proc. Koninkl. Nederl. Akad. van Wetenschappen A 68 (1965), 129-132.
7. A. Peyerimhoff, Summierbarkeitsfaktoren für absolut Cesàro-summierbare Reihen, Math. Z. 59 (1954), 417-424.
8. W. H. Young, On the convergence of the derived series of a Fourier series, Proc. London Math. Soc. (2) 17 (1918), 195-236.

The University
 Lancaster

