THE MINIMUM AND THE PRIMITIVE REPRESENTATION OF POSITIVE DEFINITE QUADRATIC FORMS

YOSHIYUKI KITAOKA

Let M, N be positive definite quadratic lattices over \mathbb{Z} with rank(M) = mand rank(N) = n respectively. When there is an isometry from M to N, we say that M is represented by N (even in the local cases). In the following, we assume that the localization M_p is represented by N_p for every prime p. Let us consider the following assertion $A_{m,n}(N)$:

 $A_{m,n}(N)$: There exists a constant c(N) dependent only on N so that M is represented by N if $\min(M) > c(N)$, where $\min(M)$ denotes the least positive number represented by M.

We know that this is true if $n \ge 2m + 3$, and a natural problem is whether the condition $n \ge 2m + 3$ is the best or not. It is known that this is the best if m = 1. But in the case of $m \ge 2$, what we know at present, is that there is an example N so that $A_{m,n}(N)$ is false if n - m = 3. We do not know such examples when n - m = 4. Anyway, analyzing the counter-example, we come to the following two assertions $APW_{m,n}(N)$ and $R_{m,n}(N)$.

 $APW_{m,n}(N)$: There exists a constant c'(N) dependent only on N so that M is represented by N if $\min(M) > c'(N)$ and M_p is primitively represented by N_p for every prime p.

 $R_{m,n}(N)$: There is a lattice M' containing M such that M'_p is primitively represented by N_p for every prime p and $\min(M')$ is still large if $\min(M)$ is large.

If the assertion $\mathbf{R}_{m,n}(N)$ is true, then the assertion $\mathbf{A}_{m,n}(N)$ is reduced to the apparently weaker assertion $\operatorname{APW}_{m,n}(N)$. If the assertion $\mathbf{R}_{m,n}(N)$ is false, then it becomes possible to make a counter-example to the assertion $\mathbf{A}_{m,n}(N)$. As a matter of fact, the assertion $\mathbf{R}_{m,m+3}(N)$ is false in a certain kind of lattices N and it yields examples of N such that the assertion $\mathbf{A}_{m,m+3}(N)$ is false. Note that $\operatorname{APW}_{1,4}(N)$ is true for every N although $A_{1,4}(N)$ is false in general.

We proved in [4] that the assertion $R_{m,2m+2}(N)$ is true if $m \ge 2$. The aim of this paper is to show that the assertion $R_{m,2m+1}(N)$ is also true if $m \ge 3$ (Theorem

Received June 15, 1993.

in §2).

To what extent is the assertion $R_{m,n}(N)$ is true?

In §3, we give some remarks on the asymptotic formula for the number of isometries from M to N.

We denote by \mathbf{Z} , \mathbf{Q} , \mathbf{Z}_{p} and \mathbf{Q}_{p} the ring of integers, the field of rational numbers and their p-adic completions.

Terminology and notation on quadratic forms are those from [5], [6]. For a lattice M on a quadratic space V over \mathbf{Q} , the scale s(M) denotes $\{B(x, y) \mid x, y \in M\}$. Even for the localization M_p it is similarly defined. dM, dM_p denote the discriminant of M, M_p respectively.

For a subset S of a positive definite quadratic space V, we put

$$\min(S) = \min_{Q}(S) := \min\{Q(x) \mid 0 \neq x \in S\}.$$

For a matrix A, 'A denotes the transposed matrix of A.

For square matrices
$$A_1, \ldots, A_n$$
, diag (A_1, \ldots, A_n) means $\begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_n \end{pmatrix}$.

§1

The aim of this section is to prove the following preparatory theorem.

THEOREM. Let *m* be a natural number (≥ 3) , *p* a prime number and *M* a lattice on a positive definite quadratic space *V* over **Q** with dim V = m, $s(M) \subset \mathbf{Z}$ and $s(M_p) = \mathbf{Z}_p$. Suppose that there is a basis $\{w_1, \ldots, w_m\}$ of *M* such that

$$(B(w_i, w_i)) \equiv \operatorname{diag}(\varepsilon, B_1 p^{a_1}, \dots, B_n p^{a_n}) \mod p^{2a_n},$$

where $\varepsilon \in \mathbf{Z}_{p}^{\times}$, B_{i} is even unimodular for $1 \leq i \leq u$ with (1,1)-entry not divisible by 2p and $2 < a_{1} < \cdots < a_{u}$. Put $s := [a_{1}/2]$ where [x] is the largest integer not exceeding x. Let κ be a real number with $0 < \kappa < 1/7$. Then there is a positive constant C independent of M but dependent on m, κ and p, which satisfies the following: If we have the inequality

$$\min(M) > C,$$

then there is an element w of M so that $w = \sum_{i=2}^{m} f_i w_i \in M$ with $f_2 \not\equiv 0 \mod p$, and $f_3 \equiv \cdots \equiv f_m \equiv 0 \mod p$, and w satisfies the followings:

- (i) $\min(M + p^{-s}\mathbf{Z}[w]) \ge \min(M)^{\kappa}$.
- (ii) $s(M + p^{-s}\mathbf{Z}[w]) \subset \mathbf{Z}.$

(iii)
$$\operatorname{ord}_{p}(d(\mathbf{Z}[w_{1}, p^{-s}w])) \leq 2.$$

The assertions (ii) and (iii) are satisfied for every f of the above form and so the rest of this section is devoted to prove the assertion (i).

Throughout this section, m, p, κ , s and M denote those given in Theorem.

DEFINITION For a real number x, we define the decimal part $\lceil x \rceil$ by the conditions

$$-1/2 \le [x] < 1/2$$
 and $x - [x] \in \mathbb{Z}$.

LEMMA 1. Let q_1 , q_2 and K be positive numbers. If an integer u satisfies the following inequalities (1) and (2):

(1)
$$\min_{p^{s} \neq b} (\lceil bp^{-s} \rceil^{2} q_{1} + \lceil bup^{-s} \rceil^{2} q_{2}) < K,$$

where b runs over the set of integers not divisible by p^s ,

(2)
$$\frac{1}{4}\sqrt{q_1/K} < |u| < \frac{1}{2}\sqrt{q_1/K},$$

then we have

(3)
$$q_1 q_2 \le 16K^2 p^{2s}$$
.

Proof. We note that $\lceil bp^{-s} \rceil$ depends only on $b \mod p^s$. So we may suppose that an integer b with $0 \neq |b| \leq p^s/2$ gives the minimum of the left-hand side of the inequality (1). Then we have $K > \lceil bp^{-s} \rceil^2 q_1 = b^2 p^{-2s} q_1$ and so the inequality $|b| < \sqrt{K/q_1} p^s$. The condition (2) implies, then the inequality $|bu| < p^s/2$ and so $K > \lceil bup^{-s} \rceil^2 q_2 = b^2 u^2 p^{-2s} q_2 \geq u^2 q_2 p^{-2s} \geq q_1 q_2 / (16K) \cdot p^{-2s}$, which is nothing but the inequality (3).

LEMMA 2. Let q_1 , q_2 and K be positive numbers and u_0 an integer. Suppose that a natural number e satisfies an inequality

$$p^e < \frac{1}{4}\sqrt{q_1/K}.$$

If the inequality (1) holds for every integer u with $u \equiv u_0 \mod p^e$, then we have the inequality (3).

Proof. By the inequality $\frac{1}{2}\sqrt{q_1/K} - \frac{1}{4}\sqrt{q_1/K} > p^e$, we can take an integer u so that $\frac{1}{4}\sqrt{q_1/K} < u < \frac{1}{2}\sqrt{q_1/K}$ and $u \equiv u_0 \mod p^e$. The assertion follows immediately from Lemma 1.

LEMMA 3. Let $\{v_1, \ldots, v_m\}$ be a basis of M. Suppose $(B(v_i, v_j)) = \text{diag}(q_1, \ldots, q_m) > 0$. For an element $w := \sum_{i=1}^m r_i v_i \in M$, we have

$$\min(M + p^{-s}\mathbf{Z}[w]) = \min_{\substack{b \in \mathbf{Z} \\ bw \notin p^{s}M}} (\sum_{i=1}^{m} \left\lceil br_{i}p^{-s} \right\rceil^{2}q_{i})$$

if $\min(M + p^{-s}\mathbf{Z}[w]) < \min(M)$.

Proof. Suppose that $y = x + p^{-s}bw$ ($x \in M$, $b \in \mathbb{Z}$) gives the minimum $\min(M + p^{-s}\mathbb{Z}[w])$. If $bw \in p^s M$, then $y \in M$ follows and this contradicts $\min(M + p^{-s}\mathbb{Z}[w]) < \min(M)$. Thus we have $bw \notin p^s M$. Moreover putting $x = \sum_{i=1}^m x_i v_i$ ($x_i \in \mathbb{Z}$), the minimality implies

$$Q(y) = \sum_{i=1}^{m} (x_i + br_i p^{-s})^2 q_i = \sum_{i=1}^{m} [br_i p^{-s}]^2 q_i,$$

which completes the proof.

DEFINITION. For a positive numbers a, b, we write

 $a \ll b$

if there is a positive number c dependent only on $m = \operatorname{rank} M$ such that a/b < c. If both $a \ll b$ and $b \ll a$ hold, then we write

 $a \simeq b$.

LEMMA 4. Let $\{v_1, \ldots, v_m\}$ and $\{w_1, \ldots, w_m\}$ be bases of M such that $(B(v_i, v_j))$ is reduced in the sense of Minkowski. We define an element $A \in GL_m(\mathbb{Z})$ by

$$(w_1,\ldots,w_m) := (v_1,\ldots,v_m)A.$$

For an element $w := \sum_{i=1}^{m} f_i w_i \in M$, we define integers r_i by

$$(r_1,\ldots,r_m) := A^t(f_1,\ldots,f_m).$$

Then there is a positive constant c_1 dependent only on m so that

$$\min(M + \mathbf{Z}[p^{-s}w]) \simeq \min_{\substack{b \in \mathbf{Z} \\ bw \notin p^{s}M}} (\sum_{i=1}^{m} [br_{i}p^{-s}]^{2}Q(v_{i}))$$

if

(4)
$$\min(M + \mathbf{Z}[p^{-s}w]) < c_1 \min(M).$$

Proof. By reduction theory, we know that there exist positive constant c_2 , c_3 which depend only on m so that

(5)
$$c_2 \sum_{i=1}^m x_i^2 Q(v_i) \le Q(\sum_{i=1}^m x_i v_i) \le c_3 \sum_{i=1}^m x_i^2 Q(v_i) \text{ for } x_i \in \mathbf{R}.$$

We introduce a new quadratic form Q' on M defined by

$$Q'(\sum_{i=1}^{m} x_i v_i) := \sum_{i=1}^{m} x_i^2 Q(v_i).$$

Putting $c_1 := c_2/c_3$, the assumption (4) and the inequalities (5) imply

$$\min_{Q'}(M + \mathbf{Z}[p^{-s}w]) \le c_2^{-1} \min_Q(M + \mathbf{Z}[p^{-s}w]) \le c_3^{-1} \min_Q(M) \\ \le \min_{Q'}(M).$$

Because of $w = \sum_{i=1}^{m} r_i v_i$, Lemma 3 implies

$$\min_{Q'}(M+p^{-s}\mathbf{Z}[w]) = \min_{\substack{b \in \mathbf{Z} \\ bw \notin p^{s}\mathbf{Z}}} \left(\sum_{i=1}^{m} \left\lceil br_{i}p^{-s}\right\rceil^{2}Q(v_{i})\right).$$

Moreover the inequalities (5) yield

$$\min_{Q}(M+p^{-s}\mathbf{Z}[w]) \simeq \min_{Q'}(M+p^{-s}\mathbf{Z}[w]),$$

which completes the proof with the above equality.

LEMMA 5. Let a matrix $A = (a_{ij})$ be an element of $GL_m(\mathbf{Z})$. Suppose $a_{\alpha 2} \neq 0 \mod p$ $(1 \leq \alpha \leq m)$. Then there is an integer β with $1 \leq \beta \leq m$ and $\beta \neq \alpha$ so that for given integers k_i $(1 \leq i \leq m)$ with $k_{\alpha} = 0$, there exists a vector $x = {}^t(x_1, \ldots, x_m) \in \mathbf{Z}^m$ $(x_1 = 0)$ satisfying

$$g_i \equiv k_i \mod p^{s-1}$$
 for $i \neq \beta$,

where we put ${}^{t}(g_1,\ldots,g_m) := Ax$.

 \square

Proof. If s = 1, then the assertion is clear and so we may assume $s \ge 2$. Denote by A_i the *i*-th column vector of A and take integers b_i so that $a_{\alpha i} \equiv b_i a_{\alpha 2} \mod p^{s-1}$. The equation

$$A\begin{pmatrix} 1 & 0 & 0 & 0 & \cdots & 0\\ 0 & 1 & -b_3 & -b_4 & \cdots & -b_m\\ 0 & 0 & 1 & 0 & \cdots & 0\\ \vdots & & \ddots & & \vdots\\ 0 & & \cdots & & 1 \end{pmatrix} = (A_1, A_2, A_3 - b_3 A_2, \dots, A_m - b_m A_2)$$

implies that there is an $(m-2) \times (m-2)$ submatrix of

$$\tilde{A} := (A_3 - b_3 A_2, \dots, A_m - b_m A_2)$$

whose determinant is not divisible by p. Since the α -th row of \tilde{A} is congruent to 0 modulo p^{s-1} , there is an integer $\beta \ (\neq \alpha)$ such that the determinant of the submatrix of \tilde{A} which misses α and β -th rows from the matrix \tilde{A} is not divisible by p. Let $T \in GL_m(\mathbb{Z})$ be a matrix so that its multiplication from the left induces the interchange of α (resp. β)-th row and the first (resp. second) row. Then the lower $(m-2) \times (m-2)$ submatrix C of $T\tilde{A}$ is regular modulo p. Now we define integers x_3, \ldots, x_m by

$$C^{t}(x_{3},\ldots,x_{m}) \equiv {}^{t}(k_{3}^{\prime},\ldots,k_{m}^{\prime}) \mod p^{s-1},$$

where we put ${}^{t}(k'_{1},\ldots,k'_{m}) := T{}^{t}(k_{1},\ldots,k_{m})$. Then we have

$$T(\sum_{i=3}^{m} x_i(A_i - b_i A_2)) = T\tilde{A}^{t}(x_3, \dots, x_m)$$
$$\equiv \begin{pmatrix} 0 \cdots 0 \\ \mathbf{*} \cdots \mathbf{*} \\ C \end{pmatrix} \begin{pmatrix} x_3 \\ \vdots \\ x_m \end{pmatrix} \equiv \begin{pmatrix} 0 \\ \mathbf{*} \\ k'_3 \\ \vdots \\ k'_m \end{pmatrix} \mod p^{s-1}.$$

Hence, putting $x_2 := -\sum_{i=3}^m b_i x_i$, $x_1 = 0$ and $x := (x_1, ..., x_m)$, we obtain $Ax = \sum_{i=2}^m x_i A_i = \sum_{i=3}^m x_i (A_i - b_i A_2)$ and so

$$TAx \equiv \begin{pmatrix} 0 \\ * \\ k'_3 \\ \vdots \\ k'_m \end{pmatrix} \mod p^{s-1}.$$

Then TAx and ${}^{t}(k'_{1}, \ldots, k'_{m}) = T {}^{t}(k_{1}, \ldots, k_{m})$ are congruent modulo p^{s-1} except for first and second coordinates, and so Ax and ${}^{t}(k_{1}, \ldots, k_{m})$ are congruent modulo p^{s-1} except for α , β -th coordinates. Since the first coordinate of TAx is congruent to 0 mod p^{s-1} , so is the α -th coordinate of Ax. This completes the proof.

LEMMA 6. Let $\{v_1, \ldots, v_m\}$ be a basis of M so that $(B(v_i, v_j))$ is reduced in the sense of Minkowski, and $\{w_1, \ldots, w_m\}$ a basis of M given in Theorem. Defining a matrix $A = (a_{ij})$ in $GL_m(\mathbb{Z})$ by $(w_1, \ldots, w_m) = (v_1, \ldots, v_m)A$, we put

$$S := \left\{ Af \mod p^s \middle| \begin{array}{l} {}^t f = (f_1, f_2, \dots, f_m), f_1 \equiv 0 \mod p^s, \\ f_2 \not\equiv 0 \mod p, f_3 \equiv \dots \equiv f_m \equiv 0 \mod p \end{array} \right\}.$$

Choosing a coordinate α by the condition $a_{\alpha 2} \neq 0 \mod p$, there is a coordinate $\beta \ (\neq \alpha)$ which satisfies:

For an integral vector $h = {}^{t}(h_1, \ldots, h_m) \in \mathbb{Z}^m$ with $h_{\alpha} \neq 0 \mod p$, there exists an element $r = {}^{t}(r_1, \ldots, r_m) \in S$ so that

$$r_{\alpha} \equiv h_{\alpha} \mod p^{s} \text{ and } |r_{i} - h_{i}| \leq p/2 \quad \text{if } i \neq \beta.$$

Proof. We take integers b_i $(1 \le i \le m)$ so that $a_{\alpha i} \equiv b_i a_{\alpha 2} \mod p^{s-1}$. It is easy to see

$$S = \{f_2A_2 + pAx \mod p^s \mid f_2 \neq 0 \mod p, \ {}^tx = (0, x_2, \dots, x_m) \in \mathbf{Z}^m\},\$$

where A_2 is the second column vector of A. We define an integer $f_2 \ (\neq 0 \mod p)$ by $h_{\alpha} \equiv f_2 a_{\alpha 2} \mod p^s$, and take integers k_1, \ldots, k_m so that $k_{\alpha} = 0$, and $|h_i - f_2 a_{i2} - pk_i| \leq p/2$ if $i \neq \alpha$. Applying Lemma 5, there is an integer $\beta \ (\neq \alpha)$ dependent only on A so that there is an integral vector $x = {}^t (x_1, \ldots, x_m)$ with $x_1 = 0$ satisfying

$$g_i \equiv k_i \mod p^{s-1}$$
 for $i \neq \beta$,

putting ${}^{t}(g_1,\ldots,g_m) := Ax$. Thus we have

$$(h - (f_2A_2 + pAx))_i \equiv \begin{cases} 0 \mod p^s & \text{if } i = \alpha, \\ h_i - f_2a_{i2} - pk_i \mod p^s & \text{if } i \neq \beta, \alpha. \end{cases}$$

Hence $r := f_2 A_2 + pAx$ is a required vector in S.

LEMMA 7. Keep the situation in Lemma 6. Then we have

$$a_{12} \not\equiv 0 \mod p$$
 and $a_{i2} \equiv 0 \mod p$ for $i > 1$

if (i) $m \ge 4$, (ii) $\min(M + \mathbb{Z}[p^{-s}w]) < \min(M)^{\kappa}$ for every $w = \sum_{i=2}^{m} f_i w_i \in M$ with $f_2 \not\equiv 0 \mod p$ and $f_3 \equiv \cdots \equiv f_m \equiv 0 \mod p$, and (iii) $\min(M)$ is larger than some constant dependent on m, κ and p.

Proof. We put $K := \min(M)^{\kappa}$. By making $\min(M)$ large so that

$$\frac{1}{4}\sqrt{Q(v_{\alpha})/K} \geq \frac{1}{4}\min(M)^{(1-\kappa)/2} > p,$$

Lemma 6 yields that there is an integral vector $\mathbf{r} = {}^{t}(\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}) \in S$ so that $\mathbf{r}_{\alpha} \equiv 1 \mod p^{s}$ and $\frac{1}{4}\sqrt{Q(v_{\alpha})/K} < \mathbf{r}_{i} < \frac{1}{2}\sqrt{Q(v_{\alpha})/K}$ for $i \neq \alpha, \beta$. Defining an element $w = \sum_{i=1}^{m} f_{i}w_{i} \in M$ by ${}^{t}(f_{1}, \ldots, f_{m}) = A^{-1}\mathbf{r}, \mathbf{r} \in S$ yields $f_{1} \equiv 0 \mod p^{s}$, $f_{2} \neq 0 \mod p, f_{3} \equiv \cdots \equiv f_{m} \equiv 0 \mod p$, and then the assumption implies $\min(M + \mathbf{Z}[p^{-s}w]) < \min(M)^{\kappa} < c_{1}\min(M)$ for a sufficiently large $\min(M)$, and then Lemma 4 implies that

$$\min(M + \mathbf{Z}[p^{-s}w]) \simeq \min_{\substack{b \in \mathbf{Z} \\ p^{s} \neq b}} (\sum_{i=1}^{m} [br_{i}p^{-s}]^{2}Q(v_{i})).$$

Hence, from the assumption $\min(M + \mathbb{Z}[p^{-s}w]) < \min(M)^{*}$ follows

$$\min_{\substack{b \in \mathbf{Z} \\ p^{s} \neq b}} \left(\sum_{i=1}^{m} \left[br_{i} p^{-s} \right]^{2} Q(v_{i}) \right) \ll \min(M)^{\kappa}.$$

Taking out α and γ -th coordinates for $\gamma \neq \alpha$, β , Lemma 1 gives

 $Q(v_{\alpha})Q(v_{\gamma}) \ll \min(M)^{2\kappa}p^{2s},$

which implies

$$Q(v_1)^2 Q(v_\alpha) Q(v_\gamma) = (Q(v_1) Q(v_\alpha)) (Q(v_1) Q(v_\gamma))$$

$$\ll (Q(v_\alpha) Q(v_\gamma))^2 \ll \min(M)^{4\kappa} p^{4\kappa}.$$

If $1 \notin \{\alpha, \gamma\}$, then it is easy to see, by the assumption on the basis $\{w_i\}$ in Theorem

$$Q(v_1)Q(v_{\alpha})Q(v_{\gamma}) \simeq d\mathbf{Z}[v_1, v_{\alpha}, v_{\gamma}] \ge p^{4s}.$$

Hence the above two inequalities imply $Q(v_1) \ll \min(M)^{4\kappa} < \min(M)^{4/7}$. This is a contradiction if $\min(M)$ is sufficiently large. Thus we have $1 \in \{\alpha, \gamma\}$. By the assumption $m \ge 4$, there is a number γ' with $\gamma' \ne \alpha, \beta, \gamma$ and $1 \le \gamma' \le m$. Similarly we have $1 \in \{\alpha, \gamma'\}$ and so $\alpha = 1$. Since the number α is given only by the

condition $a_{\alpha 2} \not\equiv 0 \mod p$, we have $a_{i2} \equiv 0 \mod p$ if $i \neq 1$.

Proof of Theorem in the case of $m \ge 4$.

We define bases $\{v_i\}$, $\{w_i\}$ of M, a matrix A and others as in Lemma 6. If there is an element $w = \sum_{i=2}^{m} f_i w_i \in M$ with $f_2 \not\equiv 0 \mod p$ and $f_3 \equiv \cdots \equiv f_m \equiv 0 \mod p$ such that the inequality (i) in Theorem is true, then there is nothing to do. Hence we may assume

$$\min\left(M + \mathbf{Z}[p^{-s}w]\right) < \min\left(M\right)^{\kappa}$$

for every $w = \sum_{i=2}^{m} f_i w_i$ with $f_2 \not\equiv 0 \mod p$ and $f_3 \equiv \cdots \equiv f_m \equiv 0 \mod p$. We will show that this leads us to a contradiction. Assuming that $\min(M)$ is sufficiently large, we have $\min(M)^{\kappa} < c_1 \min(M)$. Now Lemma 4 implies, for such a vector w

$$\min_{\substack{b \in \mathbf{Z} \\ p^s \neq b}} \left(\sum_{i=1}^m \left\lceil br_i p^{-s} \right\rceil^2 Q(v_i) \right) \simeq \min(M + \mathbf{Z}[p^{-s}w]) < \min(M)^{\kappa},$$

where ${}^{t}(r_1,\ldots,r_m) = A^{t}(0, f_2,\ldots,f_m)$. Now Lemma 7 implies

$$a_{12} \not\equiv 0 \mod p$$
 and $a_{i2} \equiv 0 \mod p$ for $i \ge 2$.

We will show that $a_{ji} \neq 0 \mod p$ implies $j \leq 2$ if $i \geq 3$. Take a natural number i with $3 \leq i \leq m$ and let f_i be an integer with $f_i \equiv 0 \mod p$. Then the above inequality implies, for $(r_1, \ldots, r_m) = A_2 + f_i A_i$

$$\min(M)^{\kappa} \gg \min_{\substack{b \in \mathbf{Z} \\ p^{s} \times b}} \left(\sum_{i=1}^{m} \left[b(a_{i2} + f_{i}a_{ji})p^{-s} \right]^{2}Q(v_{j}) \right)$$
$$\geq \min_{\substack{b \in \mathbf{Z} \\ p^{s} \times b}} \left(\left[b(a_{12} + f_{i}a_{1i})p^{-s} \right]^{2}Q(v_{1}) + \left[b(a_{j2} + f_{i}a_{ji})p^{-s} \right]^{2}Q(v_{j}) \right)$$

for every integer $j \ge 1$. Suppose that $a_{ji} \ne 0 \mod p$ and $j \ge 3$. We will show a contradiction. Let us consider the equation in $x \in \mathbb{Z}$

$$a_{j_2} + f_i a_{j_i} \equiv (a_{12} + f_i a_{1i}) x \mod p^s.$$

It is equivalent to

$$f_i(a_{ji} - a_{1i}x) \equiv a_{12}x - a_{j2} \mod p^s.$$

We note $a_{j_2} \equiv 0 \mod p$ and $a_{j_i} \not\equiv 0 \mod p$. Hence the equation has a solution

 \square

 $f_i \ (\equiv 0 \mod p)$ if $x \equiv 0 \mod p$. So we have, replacing $b(a_{12} + f_i a_{12})$ by b

$$\min(M)^{\times} \gg \min_{\substack{b \in \mathbf{Z} \\ p^{s} \neq b}} ([bp^{-s}]^{2}Q(v_{1}) + [bxp^{-s}]^{2}Q(v_{j}))$$

for every integer $x (\equiv 0 \mod p)$.

The inequality $\frac{1}{4}\sqrt{Q(v_1)/\min(M)^{\kappa}} \ge \frac{1}{4}\min(M)^{(1-\kappa)/2} > p$ and Lemma 2 imply

$$Q(v_1) Q(v_j) \ll \min(M)^{2\kappa} p^{2s}.$$

The assumption $j \ge 3$ and $d\mathbf{Z}[v_1, v_2, v_3] \equiv 0 \mod p^{4s}$ imply

$$Q(v_1)p^{4s} \le Q(v_1) d\mathbf{Z}[v_1, v_2, v_3] \ll Q(v_1)^2 Q(v_2) Q(v_3)$$

$$\ll (Q(v_1) Q(v_2))^2 \ll \min(M)^{4x} p^{4s}$$

and hence $\min(M) \leq Q(v_1) \ll \min(M)^{4\kappa}$. Hence if $\min(M)$ is sufficiently large, this inequality does not hold. Thus we have shown $a_{ji} \equiv 0 \mod p$ if $i \geq 3$ and $j \geq 3$. Hence Lemma 7 yields

$$A \equiv \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & 0 & 0 & \cdots & 0 \\ & & \ddots & & \\ * & 0 & 0 & \cdots & 0 \end{pmatrix} \mod p.$$

This contradicts $A \in GL_m(\mathbb{Z})$ if $m \ge 4$. Thus the theorem has been proved if $m \ge 4$.

Next we must prove the case of m = 3. Let $\{v_i\}, \{w_i\}, A, s$ and others be as above. Assume for every integer $f (\equiv 0 \mod p)$

$$\min(M + \mathbf{Z}[p^{-s}(w_2 + fw_3)]) < \min(M)^{\kappa}.$$

We will show that this leads us to a contradiction, making $\min(M)$ sufficiently large. For an integer $f \equiv 0 \mod p$, Lemma 4 yields

$$\min(M + \mathbf{Z}[p^{-s}(w_2 + fw_3)]) \simeq \min_{p^s \neq b} \left(\sum_{i=1}^3 \left[br_i p^{-s}\right]^2 Q(v_i)\right)$$

for ${}^{t}(r_1, r_2, r_3) = A^{t}(0, 1, f)$, if the left-hand side is less than $c_1 \min(M)$. Hence we have

$$\min_{p^s \not\sim b} \left(\sum_{i=1}^{3} \left\lceil br_i p^{-s} \right\rceil^2 Q(v_i) \right) < \min(M)^{\kappa}$$

for every integer $f (\equiv 0 \mod p)$, assuming that $\min(M)$ is sufficiently large. Putting $A = \begin{pmatrix} * & S_1 & T_1 \\ * & S_2 & T_2 \\ * & S_3 & T_3 \end{pmatrix}$, we have

$$r_i = S_i + fT_i.$$

LEMMA 8. Put $d_{ij} = S_i T_j - S_j T_i$, and take any coordinates α , β such that $S_{\alpha} \neq 0 \mod p$ and $d_{\alpha,\beta} \neq 0 \mod p$. Denote by \overline{a} an integer which satisfies $a\overline{a} \equiv 1 \mod p^s$ if $a \neq 0 \mod p$. If $x \equiv \overline{S_{\alpha}} S_{\beta} \mod p$ holds for an integer x, then there is an integer $f (\equiv 0 \mod p)$ so that $r_{\beta} \equiv r_{\alpha}x \mod p^s$. The condition $r_{\beta} \equiv r_{\alpha}x \mod p^s$ implies for $\gamma \neq \alpha$, β

$$r_{\gamma} \equiv r_{\alpha} \overline{d_{\alpha\beta}} (d_{\gamma\beta} + d_{\alpha\gamma} x) \mod p^{s}.$$

Proof. Suppose $x \equiv \overline{S_{\alpha}} S_{\beta} \mod p$. The equation $r_{\beta} \equiv r_{\alpha}x \mod p^s$ is equivalent to

(6)
$$f(T_{\beta} - T_{\alpha}x) \equiv S_{\alpha}x - S_{\beta} \mod p^{s}.$$

Substituting $x = \overline{S_{\alpha}}S_{\beta} + py$, it becomes

$$f(T_{\beta} - T_{\alpha}\overline{S_{\alpha}}S_{\beta} - pT_{\alpha}y) \equiv pS_{\alpha}y \mod p^{s}$$

and so

$$f(d_{\alpha\beta}-pS_{\alpha}T_{\alpha}y)\equiv pS_{\alpha}^{2}y \mod p^{s}.$$

Since $d_{\alpha\beta} \neq 0 \mod p$, this is indeed soluble for $f (\equiv 0 \mod p)$. Supposing $r_{\beta} \equiv r_{\alpha}x \mod p^s$, we have

$$d_{\gamma\beta} + d_{\alpha\gamma}x \equiv S_{\gamma}T_{\beta} - S_{\beta}T_{\gamma} + (S_{\alpha}T_{\gamma} - S_{\gamma}T_{\alpha})x$$

$$\equiv (S_{\alpha}x - S_{\beta})T_{\gamma} + S_{\gamma}(T_{\beta} - T_{\alpha}x) \equiv (T_{\beta} - T_{\alpha}x)(fT_{\gamma} + S_{\gamma}) \text{ by (6)}$$

$$\equiv r_{\gamma}(T_{\beta} - T_{\alpha}x) \equiv r_{\gamma}\overline{r_{\alpha}}(r_{\alpha}T_{\beta} - T_{\alpha}r_{\alpha}x)$$

$$\equiv r_{\gamma}\overline{r_{\alpha}}\{(S_{\alpha} + fT_{\alpha})T_{\beta} - T_{\alpha}(S_{\beta} + fT_{\beta})\} \equiv r_{\gamma}\overline{r_{\alpha}}d_{\alpha\beta} \mod p^{s},$$

which yields $r_{\gamma} \equiv r_{\alpha} \overline{d_{\alpha\beta}} (d_{\gamma\beta} + d_{\alpha\gamma}x) \mod p^s$,

LEMMA 9. We have

 \square

(7)
$$\min_{\substack{p^{s} \neq b}} (\lceil bp^{-s} \rceil^{2} Q(v_{\alpha}) + \lceil bxp^{-s} \rceil^{2} Q(v_{\beta}) + \lceil \overline{bd_{\alpha\beta}}(d_{\gamma\beta} + d_{\alpha\gamma}x)p^{-s} \rceil^{2} Q(v_{\gamma})) < \min(M)^{\kappa}$$

for every integer $x \ (\equiv \overline{S_{\alpha}}S_{\beta} \mod p)$.

Proof. This follows directly from Lemma 8, replacing b by $\overline{br_{\alpha}}$.

 \square

LEMMA 10. If the constant C in Theorem is sufficiently large, then we have $\{\alpha, \beta\} = \{1,2\}$ and $\gamma = 3$, and $S_3 \equiv T_3 \equiv 0 \mod p$ and

(8)
$$Q(v_1)Q(v_2) \leq 16 \min(M)^{2\kappa} p^{2s}$$
.

Proof. Put $K := \min(M)^{*}$. Since we may assume

$$\frac{1}{4}\sqrt{Q(v_{\alpha})/K}\geq \frac{1}{4}\min(M)^{(1-\kappa)/2}>p,$$

applying Lemma 2 to the partial sum on α , β in (7), we have

$$Q(v_{\alpha})Q(v_{\beta}) \leq 16K^2 p^{2s}$$

If α or $\beta = 3$, then it implies

$$\begin{aligned} Q(v_1) dM &\ll (Q(v_1) Q(v_2)) (Q(v_1) Q(v_3)) \ll (Q(v_\alpha) Q(v_\beta))^2 \\ &\leq 16^2 K^4 p^{4s}. \end{aligned}$$

Now $dM \ge p^{4s}$ yields $\min(M) \le Q(v_1) \ll K^4 < \min(M)^{4/7}$. This is a contradiction if $\min(M)$ is larger than constant dependent on m = 3. Thus we have $\{\alpha, \beta\} = \{1, 2\}$. Since α is taken under the condition $S_{\alpha} \not\equiv 0 \mod p$ only, we have $S_3 \equiv 0 \mod p$, and since β is taken under the condition $d_{\alpha\beta} \not\equiv 0 \mod p$, we have $d_{\alpha3} = S_{\alpha}T_3 - S_3T_{\alpha} \equiv 0 \mod p$, which yields $T_3 \equiv 0 \mod p$ by $S_3 \equiv 0 \mod p$ and $S_{\alpha} \not\equiv 0 \mod p$.

LEMMA 11. Let e be the least integer such that

(9)
$$p^{e+1} \ge \frac{1}{4} \min(M)^{(1-\kappa)/2}.$$

Then we have

$$S_3 \equiv T_3 \equiv 0 \mod p^e.$$

Proof. Put $K := \min(M)^{\kappa}$. If $p^{1+\operatorname{ord}_{p^{d_{\alpha_{3}}}}} < \frac{1}{4}\sqrt{\min(M)/K}$, then we have $p^{1+\operatorname{ord}_{p^{d_{\alpha_{3}}}}} < \frac{1}{4}\sqrt{Q(v_{\alpha})/K}$, and applying Lemma 2 to the partial sum on α , γ (= 3) in (7), we have

$$Q(v_{\alpha})Q(v_{3}) \leq 16K^{2}p^{2s}.$$

This is the contradiction as in the proof of the previous lemma. Thus we have $p^{1+\operatorname{ord}_p d_{\alpha 3}} \geq \frac{1}{4} \sqrt{\min(M)/K}$ and hence $\operatorname{ord}_p d_{\alpha 3} \geq e$.

Let us see the inequality $\operatorname{ord}_p d_{\beta 3} \ge e$. If $S_\beta \not\equiv 0 \mod p$, then replacing b by $b\bar{x}$ in (7), we get

$$\min_{p^{s} \neq b} \left(\left\lceil bp^{-s} \right\rceil^{2} Q(v_{\beta}) + \left\lceil \overline{d_{\alpha\beta}}(d_{3\beta}\bar{x} + d_{\alpha3})p^{-s} \right\rceil^{2} Q(v_{3}) \right) < K$$

for every integer $\bar{x} \equiv S_{\alpha}\overline{S_{\beta}} \mod p$. Similarly to the case of α , we have the inequality $\operatorname{ord}_{p}d_{\beta 3} \geq e$.

Next suppose $S_{\beta} \equiv 0 \mod p$. Then the inequality (7) holds for every integer $x \equiv 0 \mod p$. Suppose that the minimum of the left-hand side is attained by b with $0 \neq |b| \leq p^{s}/2$ and $b \equiv 0 \mod p^{s-1}$. Putting $b = Bp^{s-1}$, we have

$$K \ge \lceil Bp^{-1} \rceil^2 Q(v_{\alpha}) = B^2 p^{-2} Q(v_{\alpha}) \ge p^{-2} Q(v_{\alpha})$$

and so $\min(M) \leq Q(v_{\alpha}) < Kp^2 = p^2 \min(M)^{\kappa}$, which is a contradiction if $\min(M)$ is sufficiently large. Thus the minimum is attained by an integer *b* with $b \neq 0 \mod p^{s-1}$ and so (7) implies

$$\min_{p^{s-1} \neq b} \left(\left\lceil bxp^{-s} \right\rceil^2 Q(v_{\beta}) + \left\lceil b\overline{d_{\alpha\beta}}(d_{\beta\beta} + d_{\alpha\beta}x)p^{-s} \right\rceil^2 Q(v_{\beta}) \right) < K$$

for every $x \equiv 0 \mod p$. Letting x = py with $y \not\equiv 0 \mod p$ and replacing b by $b\bar{y}$, we have

$$\min_{p^{s-1}\neq b} \left(\left\lceil bp^{1-s} \right\rceil^2 Q(v_\beta) + \left\lceil b\overline{d_{\alpha\beta}}(d_{3\beta}p^{-1}\overline{y} + d_{\alpha3})p^{1-s} \right\rceil^2 Q(v_3) \right) < K$$

for every integer $\bar{y} \neq 0 \mod p$. Here we note $d_{3\beta} \equiv 0 \mod p$ by $S_3 \equiv T_3 \equiv 0 \mod p$. mod p. Hence if $p^{\operatorname{ord}_p(d_{3\beta})} \leq \frac{1}{4} \sqrt{Q(v_\beta)/K}$, then Lemma 2 implies

$$Q(v_{\beta})Q(v_{3}) \leq 16K^{2}p^{2(s-1)}$$

This is a contradiction as in the case of α . Hence we have $p^{\operatorname{ord}_p(d_{3\beta})} >$

 $\frac{1}{4}\sqrt{Q(v_{\beta})/K} > \frac{1}{4}\sqrt{\min(M)/K} \text{ and so } \operatorname{ord}_{p}(d_{3\beta}) \ge e+1 > e. \text{ Thus we have obtained } d_{3\alpha} \equiv d_{3\beta} \equiv 0 \mod p^{e}, \text{ and so}$

$$S_3T_{\alpha} \equiv S_{\alpha}T_3 \mod p^e$$
 and $S_3T_{\beta} \equiv S_{\beta}T_3 \mod p^e$.

Hence we have $S_3 d_{\alpha\beta} = S_3 (S_\alpha T_\beta - S_\beta T_\alpha) \equiv S_\alpha S_\beta T_3 - S_\beta S_\alpha T_3 \equiv 0 \mod p^e$ and so $S_3 \equiv 0 \mod p^e$ and $T_3 \equiv \overline{S_\alpha} S_3 T_\alpha \mod p^e \equiv 0 \mod p^e$.

LEMMA 12. Let f be the least integer such that $p^{f} > c_{5} \min(M)^{\kappa}$, where c_{5} is some absolute constant. Then we have

$$d_{a3} \equiv 0 \mod p^{s-f-1}.$$

Proof. Put $K := \min(M)^{\kappa}$. Suppose that an integer b with $0 \neq |b| \leq p^{s}/2$ gives the minimum of the left-hand side of the equality (7). Suppose $b(d_{3\beta} + d_{\alpha 3}x) \neq 0 \mod p^{s}$; since $d_{3\beta} + d_{\alpha 3}x \equiv 0 \mod p^{e}$ by Lemma 11, the denominator of $b(d_{3\beta} + d_{\alpha 3}x)p^{-s}$ divides p^{s-e} . Thus the inequality (7) gives

$$K > \left\lceil b\overline{d}_{\alpha\beta}(d_{3\beta} + d_{\alpha3}x)p^{-s}\right\rceil^2 Q(v_3) \ge p^{-2(s-e)}Q(v_3),$$

which implies $Q(v_3) < Kp^{2(s-e)}$. Thus the inequality (8) in Lemma 10 gives

$$p^{4s} \le dM \simeq Q(v_1) Q(v_2) Q(v_3) < 16K^3 p^{4s-2e}$$

$$\ll 16K^3 p^{4s} \frac{16p^2}{\min(M)^{1-\kappa}} \quad \text{by (9)}$$

$$= 16^2 \min(M)^{4\kappa-1} p^{4s+2}.$$

Thus we have $\min(M)^{1-4x} \ll p^2$, and so making the constant C in Theorem larger, we have a contradiction. Hence we may assume that b runs over integers such that

(10)
$$b(d_{3\beta} + d_{\alpha 3}x) \equiv 0 \mod p^s \text{ and } p^s \not\prec b$$

in the left-hand side of the inequality (7). By $\frac{1}{4}\sqrt{Q(v_{\alpha})/K} \ge \frac{1}{4}\min(M)^{(1-\kappa)/2} > 3p$ for a sufficiently large *C*, there is an integer *y* such that $y \equiv \overline{S_{\alpha}}S_{\beta} \mod p$ and

(11)
$$\frac{1}{4}\sqrt{Q(v_{\alpha})/K} < y < y + p < \frac{1}{2}\sqrt{Q(v_{\alpha})/K}.$$

Put x = y or = y + p, and suppose that an integer b with $0 \neq |b| \leq p^s/2$ gives the minimum of the left-hand side of the inequality (7). Then we have

$$K > \lceil bp^{-s} \rceil^2 Q(v_{\alpha}) = b^2 p^{-2s} Q(v_{\alpha}),$$

which yields

Since this is true

$$|bxp^{-s}| < \sqrt{K/Q(v_{\alpha})} p^{s} \cdot \frac{1}{2} \sqrt{Q(v_{\alpha})/K} p^{-s} = 1/2.$$

Hence the inequality (7) gives

$$\begin{split} K &> [bxp^{-s}]^2 Q(v_{\beta}) = b^2 x^2 p^{-2s} Q(v_{\beta}) \\ &> b^2 \frac{Q(v_{\alpha})}{16K} p^{-2s} Q(v_{\beta}) \quad \text{by (11)} \\ &= b^2 \frac{Q(v_{\alpha}) Q(v_{\beta})}{16K} p^{-2s} \gg \frac{b^2}{16K}, \end{split}$$

where we used the inequality $Q(v_{\alpha})Q(v_{\beta}) \simeq d\mathbf{Z}[v_{\alpha}, v_{\beta}] \ge p^{2s}$. Thus we have obtained $|b| < c_5 K$ for some absolute constant c_5 . Then the way of choice of f implies $p^f > c_5 K > |b|$ and we have $f \ge \operatorname{ord}_p b$. The equality (10) implies

$$d_{3\beta} + d_{\alpha 3} x \equiv 0 \mod p^{s - \operatorname{ord}_p b} \equiv 0 \mod p^{s - f}.$$

for $x = y$ and $= y + p$, we have $d_{\alpha 3} \equiv 0 \mod p^{s - f - 1}$

LEMMA 13. Let g be the least integer such that $p^{g} > c_{6} \min(M)^{x}$, where c_{6} is some absolute constant. Then we have

$$d_{\beta 3} \equiv 0 \mod p^{s-g-1}.$$

Proof. Put $K := \min(M)^{x}$. Since α is determined only by the condition $S_{\alpha} \neq 0 \mod p$, replacing α by β , we get the assertion from Lemma 12 if $S_{\beta} \neq 0 \mod p$. Hence we may assume $S_{\beta} \equiv 0 \mod p$. So the inequality (7) holds for every integer $x \ (\equiv 0 \mod p)$. Letting x = py with $y \neq 0 \mod p$ and replacing b by $b\bar{y}$, we have, replacing \bar{y} by y again

(12)
$$\min_{p^{s} \neq b} \left(\left\lceil byp^{-s} \right\rceil^{2} Q(v_{\alpha}) + \left\lceil bp^{1-s} \right\rceil^{2} Q(v_{\beta}) + \left\lceil b\overline{d_{\alpha\beta}}(d_{3\beta}y + d_{\alpha3}p)p^{-s} \right\rceil^{2} Q(v_{3}) \right) < K$$

for every integer $y \ (\neq 0 \mod p)$. If the minimum of the left-hand side is given by an integer b with $0 \neq |b| \leq p^s/2$ and $b \equiv 0 \mod p^{s-1}$, then we have

$$K > Q(v_{\alpha}) / p^2,$$

noting that the denominator of byp^{-s} is equal to p. It implies $Kp^2 > Q(v_{\alpha}) \ge$

min(*M*) and so min(*M*)^{1-*} $< p^2$, which is a contradiction if *C* is a sufficiently large number. Thus the minimum of the left-hand side of (12) is attained by $b \neq 0$ mod p^{s-1} . Let an integer *b* with $0 \neq |b| \leq p^s/2$ give the minimum of the left-hand side of (12) and put

$$b = a_1 + a_2 p^{s-1}$$
 with $0 \neq |a_1| \leq p^{s-1}/2$.

Now we claim both $a_2 = 0$ and $|by| < p^{s-1}/2$ if $\sqrt{K/Q(v_\beta)} |y| \le 1/2$. First, let us see

$$(13) |a_2| \le p/2.$$

If p is odd, then we have

$$|a_{2}| = |a_{1} - b|/p^{s-1} \le (|a_{1}| + |b|)/p^{s-1}$$

$$\le ((p^{s-1} - 1)/2 + (p^{s} - 1)/2)/p^{s-1} = p/2 + 1/2 - p^{-(s-1)}$$

and by virtue of the integrality of a_2 , we have $|a_2| \le p/2$. If p = 2, then we have

$$|a_2| \le (|a_1| + |b|)/2^{s-1} \le (2^{s-2} + 2^{s-1})/2^{s-1} = 3/2,$$

and hence $|a_2| \le 1 = p/2$. Next, we put

$$by \equiv a_1y + a_2'p^{s-1} \mod p^s$$

with $a'_2 \equiv a_2 y \mod p$ and $|a'_2| \leq p/2$. Then we will see that

(14)
$$|a_1y| < p^{s-1}/2 \text{ and } |a_1y + a_2'p^{s-1}| \le p^s/2,$$

taking a'_2 with $(a_1y)a'_2 \leq 0$ if p = 2. The inequality (12) implies

$$K > \lceil bp^{1-s} \rceil^2 Q(v_{\beta}) = (a_1 p^{1-s})^2 Q(v_{\beta})$$

and so $|a_1| < \sqrt{K/Q(v_\beta)} p^{s-1}$, which yields $|a_1y| < p^{s-1}/2$ if $\sqrt{K/Q(v_\beta)} |y| \le 1/2$. Hence we have, for $p \ne 2$

$$|a_1y + a_2'p^{s-1}| < p^{s-1}/2 + \frac{p-1}{2}p^{s-1} = p^s/2.$$

If p = 2 and $a'_2 \neq 0$, then we have $|a_1y + a'_2 2^{s-1}| = 2^{s-1} - |a_1y| \le 2^{s-1}$. If p = 2 and $a'_2 = 0$, then $|a_1y| \le 2^{s-1}$ is clear. Thus the inequalities in (14) have been shown, and then the inequalities (12) and (14) yield

$$K > [byp^{-s}]^2 Q(v_{\alpha}) = (a_1 y + a'_2 p^{s-1})^2 p^{-2s} Q(v_{\alpha})$$

and hence

(15)
$$|a_1y + a'_2p^{s-1}| \le \sqrt{K/Q(v_\alpha)} p^s.$$

Suppose $a_2 \neq 0$; then we have $a_2 \neq 0 \mod p$ by (13) and so $a'_2 \neq 0$. Thus the left-hand side of (15) is larger than

$$p^{s-1} - |a_1y| > p^{s-1} - p^{s-1}/2 = p^{s-1}/2,$$

and hence we have $p^{s-1}/2 < \sqrt{K/Q(v_a)} p^s \leq \min(M)^{(\kappa-1)/2}p^s$, which yield the contradiction $\min(M)^{(1-\kappa)/2} < 2p$. Thus we have shown the claim $a_2 = 0$ and $b = a_1$, that is, an integer b which gives the minimum of the left-hand side of (12), satisfies two inequalities

$$|by| < p^{s-1}/2$$
 and $0 \neq |b| \le p^{s-1}/2$ if $\sqrt{K/Q(v_{\beta})} |y| \le 1/2$.

Because of $\frac{1}{4}\sqrt{Q(v_{\beta})/K} \ge \frac{1}{4}\min(M)^{(1-\kappa)/2} \ge p$, we can take $y \ne 0 \mod p$ so that $\frac{1}{4}\sqrt{Q(v_{\beta})/K} < |y| < \frac{1}{2}\sqrt{Q(v_{\beta})/K}$,

then letting an integer
$$b$$
 with $0 \neq |b| \leq p^s/2$ give the minimum of the left-hand side of (12), we have $|b| \leq p^{s-1}/2$ and then the inequality (12) and the above claim $|by| < p^{s-1}/2$ imply

$$K > \lceil byp^{-s} \rceil^2 Q(v_{\alpha}) = b^2 y^2 p^{-2s} Q(v_{\alpha}) \ge b^2 \frac{Q(v_{\alpha}) Q(v_{\beta})}{16K} p^{-2s}$$

$$\gg b^2 / K \quad \text{because of} \quad Q(v_{\alpha}) Q(v_{\beta}) \gg p^{2s}.$$

Thus we have

$$|b| < c_6 K$$
 if $\frac{1}{4} \sqrt{Q(v_\beta) / K} < |y| < \frac{1}{2} \sqrt{Q(v_\beta) / K}$

where c_6 is an absolute constant. Now we take the least integer g so that $p^g > c_6 K$, which implies $|b| < p^g$. Taking an integer z so that $\frac{1}{4}\sqrt{Q(v_\beta)/K} < z < z + p < \frac{1}{2}\sqrt{Q(v_\beta)/K}$, we put y = z or = z + p, and let b give the minimum of the left-hand side of (12). Suppose $b(d_{3\beta}y + d_{\alpha 3}p) \neq 0 \mod p^s$; then the denominator of $b\overline{d_{\alpha\beta}}(d_{3\beta}y + d_{\alpha 3}p)p^{-s}$ is at most p^{s-e} for the integer e in Lemma 11. Hence the inequality (12) implies $K > p^{-2(s-e)}Q(v_3)$ and hence a contradiction as in the proof of Lemma 12. Therefore we have $b(d_{3\beta}y + d_{\alpha 3}p) \equiv 0 \mod p^s$. Noting $|b| < p^g$ as

above, we have $d_{3\beta}y + d_{\alpha 3}p \equiv 0 \mod p^{s-g}$ for y = z or z + p. Thus we have $d_{3\beta}p \equiv 0 \mod p^{s-g}$ and so $\operatorname{ord}_p d_{3\beta} \ge s - g - 1$.

Combining Lemma 12 with Lemma 13, we have

LEMMA 14. There is an absolute constant c_7 so that

$$d_{13} \equiv d_{23} \equiv 0 \mod p^{s-h-1},$$

where h is the least integer so that $p^h > c_7 \min(M)^{\kappa}$.

LEMMA 15. The inequality g < s and $d_{13} \equiv d_{23} \equiv 0 \mod p^g$ imply $p^g \leq 2 \min(M)^{\kappa/2} p^{s/2}$.

Proof. We recall

$$A = \begin{pmatrix} * & S_1 & T_1 \\ * & S_2 & T_2 \\ * & S_3 & T_3 \end{pmatrix}, \ d_{ij} = S_i T_j - S_j T_i, \ (B(w_i, w_j)) = (B(v_i, v_j)) [A].$$

Hence we have

$$(B(v_i, v_j)) = (B(w_i, w_j))[A^{-1}]$$

$$\equiv \operatorname{diag}(\varepsilon, 0, 0)[A^{-1}] \mod p^g$$

$$\equiv \operatorname{diag}(\varepsilon, 0, 0) \left[\begin{pmatrix} 0 & 0 & * \\ * & * & * \\ * & * & * \end{pmatrix} \right] \text{ by } d_{13} \equiv d_{23} \equiv 0 \mod p^g$$

$$\equiv \begin{pmatrix} 0 & * & * \\ 0 & * & * \\ * & * & * \end{pmatrix} \begin{pmatrix} 0 & 0 & * \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & * \end{pmatrix} \mod p^g.$$

Since $(B(w_i, w_j)) \neq 0 \mod p$ and hence $(B(v_i, v_j)) \neq 0 \mod p$ by the assumption $s(M_p) = \mathbb{Z}_p$, we have $Q(v_3) \neq 0 \mod p$. For i = 1 or 2, we put $Q(v_i) = ap^g$, $B(v_i, v_3) = bp^g$ $(a, b \in \mathbb{Z})$, which imply $ap^g Q(v_3) - b^2 p^{2g} = d\mathbb{Z}[v_i, v_3] \equiv 0 \mod p^{2s}$. Therefore s > g implies $a \equiv 0 \mod p^g$, and so $Q(v_i) \equiv 0 \mod p^{2g}$. Thus s > g yields $Q(v_1) \equiv Q(v_2) \equiv 0 \mod p^{2g}$, and hence $p^{4g} \leq Q(v_1)Q(v_2) \leq 16 \min(M)^{2g} p^{2s}$ by (8).

Now let us complete the proof of Theorem in the case of m = 3. If we put g = s - h - 1 (< s) for the number h in Lemma 14, we have $p^{s-h-1} \le 2\min(M)^{\kappa/2}p^{s/2}$, and hence

$$p^{s/2} \le 2 \min(M)^{\kappa/2} p^{h+1} < 2c_7 \min(M)^{3\kappa/2} p^2$$

by virtue of $p^{h-1} \leq c_7 \min(M)^{\kappa} < p^h$. Putting $\tilde{M} := M + \mathbb{Z}[p^{-s}w_2]$, \tilde{M} satisfies the conditions (ii) and (iii). $[\tilde{M}:M] = p^s$ yields $\min(p^s \tilde{M}) \geq \min(M)$ and hence we have

$$\min(\tilde{M}) \ge p^{-2s} \min(M) > 2^{-4} c_7^{-4} \min(M)^{1-6\kappa} p^{-8}$$
$$\ge 2^{-4} c_7^{-4} p^{-8} \min(M)^{1-7\kappa} \cdot \min(M)^{\kappa}.$$

Thus, if we take a sufficiently large number C which depends on p, c_7 , we have $\min(\tilde{M}) \ge \min(M)^{\kappa}$. This contradicts our assumption. Thus we have completed the proof in the case of m = 3.

§2

In this section we show that the assertion $R_{m,2m+1}(N)$ is true if $m \geq 3$.

THEOREM. Let m be a natural number ≥ 3 , and N a lattice on a positive definite quadratic space W over \mathbb{Q} with dim W = 2m + 1. Let M be a lattice on a positive definite quadratic space V over \mathbb{Q} with dim V = m and suppose that M_p is represented by N_p for every prime p. Let C_1 be a positive number. Then there is a positive number C_2 dependent only on C_1 and N so that if min $(M) > C_2$, then there is a lattice M' on Vso that

- (i) M' contains M,
- (ii) M'_{p} is primitively represented by N_{p} for every prime p,
- (iii) $\min(M') > C_1$.

Remark. In the case of m = 2, Theorem is false.

The following is immediate.

COROLLARY. The assertion $APW_{m,2m+1}(N)$ yields the assertion $A_{m,2m+1}(N)$ if $m \geq 3$.

The proof of the theorem is divided into several steps. Let M, N be lattices in Theorem. We may assume that $n(N) \subset 2\mathbb{Z}$ without loss of generality. Put

 $S := \{p \mid p \text{ is a prime which divides } 2dN\}.$

LEMMA 1. If a prime p is not in S, then M_p is primitively represented by N_p .

Proof. Since p is odd and N_p is unimodular, N_p is isometric to

$$\perp_{m} \langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle \perp \langle dN \rangle$$

and so M_p is primitively represented by N_p by Proposition 5.3.2 in [5].

LEMMA 2. If a prime p in S and $\operatorname{ind} W_p = m$, then there is a constant $c_p(N)$ dependent only on N_p so that there exists a lattice \tilde{M}_p on V_p which satisfies (i) $\tilde{M}_p \supset M_p$ and $[\tilde{M}_p: M_p] < c_p(N)$, (ii) \tilde{M}_p is primitively represented by N_p .

Proof. Let K be a submodule of N_p which is isometric to M_p ; then by Lemma 3 in [3], there exists a submodule L of N_p so that $L \cong K$ and $[N_p \cap \mathbf{Q}_p L : L] < c_p(N)$ for a constant $c_p(N)$ dependent only on N_p . By virtue of $L \cong K \cong M_p$, there is an isometry σ from M_p to L, and then we have only to put $\tilde{M}_p = \sigma^{-1}(N_p \cap \mathbf{Q}_p L)$.

LEMMA 3. Let p be a prime. There exist two constants $r_p(N)$, $c_p(N)$ so that there exists a lattice \tilde{M} ($\supset M$) on V which satisfies

- (i) $[\tilde{M}:M]$ is a power of the prime p,
- (ii) \tilde{M}_q is represented by N_q for every prime q,
- (iii) $\operatorname{ord}_{p} s(\tilde{M}) < r_{p}(N),$
- (iv) $\min(\tilde{M}) > c_p(N)p^{t/2}\min(T_0)$, where a positive definite matrix T_0 is defined by $M = \langle p^t T_0 \rangle$ with $n(T_0)\mathbf{Z}_p = 2\mathbf{Z}_p$ by identifying the corresponding matrix and a lattice.

Proof. Let N'_p be a $2p^r \mathbb{Z}_p$ -maximal lattice in N_p and we assume that r is the least positive integer. r is determined by N_p . Suppose $\operatorname{ord}_p s(M_p) \ge r + 13$. Write

$$M = \langle p^{r+10+2a+c} T_0 \rangle,$$

where T_0 satisfies $n(T_0)\mathbf{Z}_p = 2\mathbf{Z}_p$ and $a \ge 1$, c = 0 or 1. Putting b := 5 + a, we have $p^b \ge 2^6 > 36$ and then Lemma 2 in [4] implies the existence of a positive constant c(m, p) dependent only on m and p, and a matrix $H \in M_m(\mathbf{Z})$ so that det H is a power of p, $\min(p^{2b+c}T_0[H^{-1}]) > c(m, p)p^{b+c}\min(T_0), p^{2b+c}T_0[H^{-1}] \ne 0 \mod p^5$ and finally $n(p^{2b+c}T_0[H^{-1}]) \subset 2\mathbf{Z}$. Hence there exists a lattice \tilde{M}

 $(\supset M)$ such that $[\tilde{M}:M]$ is a power of $p, s(\tilde{M})\mathbf{Z}_p \supset p^{r+4}\mathbf{Z}_p, \min(\tilde{M}) > c(m, p) p^{r+b+c} \min(T_0) \ge c(m, p) p^{t/2} \min(T_0)$ and finally $n(\tilde{M}) \subset 2p^r \mathbf{Z}$. Thus the assertion (i) is clearly satisfied and then for every prime $q \neq p, \tilde{M}_q = M_q$ is represented by N_q . Since $n(\tilde{M})\mathbf{Z}_p \subset 2p^r \mathbf{Z}_p$, and $\mathbf{Q}_p \tilde{M} = \mathbf{Q}_p M$ is represented by $\mathbf{Q}_p N$ and moreover $N'_p (\subset \mathbf{Q}_p N)$ is a $2p^r \mathbf{Z}_p$ -maximal lattice, \tilde{M}_p is represented by N'_p and hence by N_p . Thus the assertion (ii) is satisfied. The assertion (iii) is satisfied for $r_p(N) = r + 13$. (iv) is satisfied for $c_p(N) := c(m, p)$.

Next suppose $\operatorname{ord}_p s(M_p) < r + 13$; then putting $\overline{M} := M$, the assertions (i), ..., (iv) are satisfied if $r_p(N) = r + 13$, $c_p(N) = 1$.

Thus the assertion are true for $r_p(N) := r + 13$ and $c_p(N) := \min\{1, c(m, p)\}$.

LEMMA 4. There is a lattice \tilde{M} ($\supset M$) on V which satisfies

- (i) any prime number dividing $[\tilde{M}: M]$ is in S,
- (ii) there is a constant c(N) depending only on N such that

$$\min(\tilde{M}) > c(N) \min(M)^{1/2},$$

- (iii) \tilde{M}_p is primitively represented by N_p if $p \notin S$, or if both $p \in S$ and ind $W_p = m$,
- (iv) if $p \in S$ and ind $W_p = m 1$, then there is a number $r_p(N)$ dependent only on N_p such that $\operatorname{ord}_p s(\tilde{M}_p) < r_p(N)$ and \tilde{M}_p is represented by N_p .

Proof. By Lemma 1, M_p is primitively represented by N_p if $p \notin S$. Using Lemma 2 if $p \in S$ and ind $W_p = m$ and using Lemma 3 if $p \in S$ and ind $W_p = m - 1$, we have only to enlarge M.

SUBLEMMA. Let $0 < k \le m \le n$ be integers and N_p , K_1 regular quadratic lattices over \mathbb{Z}_p with rank $N_p = n$, rank $K_1 = k$. Moreover we assume that there is a quadratic space U over \mathbb{Q}_p such that $\mathbb{Q}_p N_p \cong \mathbb{Q}_p K_1 \perp U$ and ind $U \ge m - k$. Then there exists a constant $c = c(N_p, K_1, m, k)$ such that if $K = K_1 \perp K_2$ is a regular quadratic lattice of rank K = m and K is represented by N_p , then there is a submodule $K_0 \subseteq N_p$, which is isometric to K with $[N_p \cap \mathbb{Q}_p K_0 : K_0] < c$.

Proof. This is nothing but Theorem 2 in [3] (r, n, m and M there, are replaced by k, m, n and N respectively).

LEMMA 5. Let p be a prime. Assume that there is a decomposition $M_p = M_{p,1} \perp M_{p,2}$ with rank $M_{p,1} > 1$, then there is an isometry $\sigma: M_p \to N_p$ such that $[\mathbf{Q}_p \sigma(M_p) \cap N_p: \sigma(M_p)] < c_p(M_{p,1}, N_p)$, where $c_p(M_{p,1}, N_p)$ depends only on $M_{p,1}$

and N_{p} .

Proof. Put $k = \operatorname{rank} M_{p,1}$. By virtue of the sublemma, we have only to show ind $U \ge m - k$ where U is determined by $W_p \cong \mathbf{Q}_p M_{p,1} \perp U$. We know

dim
$$U = 2m + 1 - k = 2(m - k) + k + 1 \ge 2(m - k) + 3$$
.

If, hence the inequality ind U < m - k holds, then we have

dim $U \le 2$ ind $U + 4 \le 2(m - k - 1) + 4 = 2(m - k) + 2$. which contradicts dim $U \ge 2(m - k) + 3$. Thus we have ind $U \ge m - k$.

Proof of Theorem.

By virtue of Lemma 4, we may suppose

- (i) M_p is primitively represented by N_p if $p \notin S$ or if $p \in S$ and ind $W_p = m$,
- (ii) $\operatorname{ord}_p s(M_p) < r_p(N)$ if $p \in S$ and $\operatorname{ind} W_p = m 1$, where $r_p(N)$ is only dependent on p and N_p ,
- (iii) min(M) is sufficiently large.

We are assuming that $n(N) \subset 2\mathbb{Z}$ and M_p is locally represented by N_p . So we have $n(M) \subset 2\mathbb{Z}$. Let a prime $p \in S$ satisfy ind $W_p = m - 1$, and put $t_p := \operatorname{ord}_p s(M_p)$. By the assumption (ii), we have $0 \leq t_p \leq r_p(N)$. Let

$$X := \{x \in N_p \mid \operatorname{ord}_p Q(x) \le r_p(N)\}.$$

The orthogonal group $O(N_p)$ and \mathbf{Z}_p^{\times} act on X and the number of orbits is finite. Denote the set of representatives of orbits by \tilde{X} . Hence \tilde{X} is a finite set and if $\operatorname{ord}_p Q(x) < r_p(N)$ for $x \in N_p$, then there exist an isometry $\sigma \in O(N_p)$ and $\varepsilon \in \mathbf{Z}_p^{\times}$ such that $\varepsilon \sigma(x) \in \tilde{X}$. For $x \in \tilde{X}$, we take a maximal lattice $N_x (\subset x^{\perp} \text{ in } N_p)$, and put the norm $n(N_x) = p^{n_p(x)} \mathbf{Z}_p$. We take N_x so that $n_p(x)$ is minimal, and put

$$n_p = \max_{x \in \tilde{X}} n_p(x).$$

 n_p is determined by $r_p(N)$, and hence only by N_p .

Let $M_p = J_1 \perp \cdots \perp J_a$ be a Jordan decomposition, where J_i is $p^{b_i} \mathbb{Z}_p$ -modular and $0 \leq b_1 < b_2 < \cdots < b_a$. By virtue of $s(M_p) = s(J_1)$, we have $0 \leq b_1 = t_p$ $< r_p(N)$. If rank $(J_1) > 1$, then noting that the number of possibilities of isometry classes of J_1 is bounded by a number dependent only on $r_p(N)$ and m = $(\operatorname{rank} N - 1)/2$, Lemma 5 implies the existence of a lattice M' such that [M': $M] < c_p(N_p)$ and M'_p is primitively represented by N_p , where $c_p(N_p)$ depends only on N_p . $[M':M]M' \subset M$ implies $[M':M]^2 \min(M') \ge \min(M)$ and hence

 $\min(M') \ge [M':M]^{-2} \min(M) > c_p (N_p)^{-2} \min(M)$. Since $c_p (N_p)$ depends only on N_p , $\min(M')$ is still large if $\min(M)$ is sufficiently large. Next, we assume $\operatorname{rank}(J_1) = 1$. If $b_2 = \operatorname{ord}_p s(J_2) \le n_p$ holds, then applying Lemma 5 to $M_{p,1} := J_1 \perp J_2$, we can get the similar result. So we may assume

$$\operatorname{rank}(J_1) = 1$$
 and $b_2 > n_p$.

Now we take a basis $\{w_1, \ldots, w_m\}$ of M so that the matrix $(B(w_i, w_j))$ satisfies the congruence condition in Theorem in §1, making it sufficiently close to bases of J_1, \ldots, J_a . Put $z_1 := w_1, z_i := w_i - B(w_1, w_i)Q(w_1)^{-1}w_1$ $(i \ge 2)$; then we have M_p $= \mathbb{Z}_p[w_1] \perp \mathbb{Z}_p[z_2, \ldots, z_m]$. Put $s := [(\operatorname{ord}_p Q(w_2) - \operatorname{ord}_p Q(w_1))/2]$; by applying Theorem in §1 to the scaling of M_p by $p^{-\operatorname{ord}_p Q(w_1)} = p^{-t_p}$, there exists an element $w \in \mathbb{Z}[w_2, \ldots, w_m] (\subset M)$ such that

$$\min(M + p^{-s}\mathbf{Z}[w]) > \min(M)^{1/8}, \ s(M + p^{-s}\mathbf{Z}[w]) \subset p^{t_p}\mathbf{Z},$$
$$\operatorname{ord}_p(d\mathbf{Z}[w_1, p^{-s}w]) \le 2 + t_p.$$

Now we put

$$\tilde{M} := M + p^{-s+n_p} \mathbf{Z}[w].$$

Then we have

$$\tilde{M} \subset M + p^{-s} \mathbf{Z}[w],$$

$$\min(\tilde{M}) \ge \min(M + p^{-s} \mathbf{Z}[w]) > \min(M)^{1/8},$$

$$\operatorname{ord}_{p} d\mathbf{Z}[w_{1}, p^{-s+n_{p}}w] \le 2 + t_{p} + 2n_{p} \le 2 + r_{p}(N_{p}) + 2n_{p},$$

and $\mathbb{Z}[w_1, p^{-s+n_p}w] \subset \tilde{M}$ is clear. Hence if \tilde{M}_p is represented by N_p , there is a lattice $M' \supset \tilde{M}$ by Lemma 5 such that M'_p is primitively represented by N_p and $[M': \tilde{M}]$ is bounded by a number dependent only on N_p , and it completes the proof of the theorem. Since $B(w, w_1)$ is sufficiently close to 0, we have

$$\tilde{M}_{p} = \mathbf{Z}_{p}[z_{1}, \dots, z_{m}] + p^{-s+n_{p}}\mathbf{Z}_{p}[w - B(w, w_{1})Q(w_{1})^{-1}w_{1}]$$

= $\mathbf{Z}_{p}[z_{1}] \perp (\mathbf{Z}_{p}[z_{2}, \dots, z_{m}] + p^{-s+n_{p}}\mathbf{Z}_{p}[w - B(w, w_{1})Q(w_{1})^{-1}w_{1}]).$

Moreover we know that $\operatorname{ord}_{p}Q(z_{1}) = \operatorname{ord}_{p}Q(w_{1}) = t_{p} < r_{p}(N)$ and M_{p} is represented by N_{p} , and hence there is an isometry σ from M_{p} to N_{p} so that $\sigma(z_{1}) = \varepsilon x$ for $\varepsilon \in \mathbb{Z}_{p}^{\times}$ and $x \in \tilde{X}$.

Now $\operatorname{ord}_{p}s(w_{1}^{\perp}) = b_{2} > n_{p}$ implies $s(\mathbf{Z}_{p}[z_{2},\ldots,z_{m}]) \subset p^{n_{p}}\mathbf{Z}_{p}$ and $s(M_{p} + p^{-s}\mathbf{Z}_{p}[w]) \subset p^{t_{p}}\mathbf{Z}_{p}$ implies

$$B(\mathbf{Z}_{p}[z_{2},\ldots,z_{m}], p^{-s+n_{p}}(w-B(w, w_{1})Q(w_{1})^{-1}w_{1})) \subset p^{n_{p}+t_{p}}\mathbf{Z}_{p}.$$

YOSHIYUKI KITAOKA

Finally we have $Q(p^{-s+n_p}(w - B(w, w_1)Q(w_1)^{-1}w_1)) \in p^{2n_p+t_p}\mathbf{Z}_p$, since $B(w, w_1)$ is sufficiently close to 0 and $Q(p^{-s}w) \equiv 0 \mod p^{t_p}$ and hence we have

$$S(\mathbf{Z}_{p}[z_{2},...,z_{m}] + p^{-s+n_{p}}\mathbf{Z}_{p}[w - B(w, w_{1})Q(w_{1})^{-1}w_{1}]) \subset p^{n_{p}}\mathbf{Z}_{p}$$

Hence z_1^{\perp} in \tilde{M}_p is represented by the maximal lattice $N_x (\subseteq x^{\perp}$ in $N_p)$ of $\operatorname{ord}_p n(N_x) \leq n_p$ because of $\mathbf{Q}_p(z_1^{\perp} \text{ in } \tilde{M}_p) \hookrightarrow \mathbf{Q}_p x^{\perp}$ and $\operatorname{ord}_p n(z_1^{\perp} \text{ in } \tilde{M}_p) \geq n_p$. Thus \tilde{M}_p is represented by N_p , and hence we have completed the proof of the theorem.

§3

Let us see the behavior of the expected main term of the number of isometries from M to N when n = 2m + 1. The expected main term (= Siegel's weighted sum) is given by

$$c_m (dN)^{-m/2} (dM)^{m/2} \prod_p \alpha_p (M_p, N_p)$$

where c_m is a number independent of M and N, and $\alpha_p(M_p, N_p)$ is the local density. If a prime p is odd and both M_p and N_p are unimodular, then we know

$$\alpha_{p}(M_{p}, N_{p}) = \prod_{\substack{m+1 \leq e \leq 2m \\ 2|e}} (1 - p^{-e}) \times \begin{cases} 1 + \chi_{p}(-dNdM)p^{-(m+1)/2} & \text{if } 2 \neq m \\ 1 & \text{if } 2 \mid m, \end{cases}$$

where χ_p is the quadratic residue symbol. If we assume that m > 1 and M_p is primitively represented by N_p for every prime p, then

$$\prod_{p} \alpha_{p}(M_{p}, N_{p}) > c(N) \prod_{p} (1 + \varepsilon_{p} p^{-1})$$

where primes p in the left-hand side run all over the primes, and primes p in the right-hand side run over the set

 $\{p \mid p \neq 2 \text{ and } N_p \text{ is unimodular but } M_p \text{ is not so}\},\$

and $\varepsilon_p = 0$ or $= \pm 1$ and the number c(N) is only dependent on N. ε_p is defined as follows: When M_p/pM_p is isometric to R of dimension 1 and the radical over $\mathbf{Z}/p\mathbf{Z}$, ε_p is by definition $\chi_p(dRd(N_p/pN_p))$, where d denotes the discriminant and χ_p is the quadratic residue symbol. Otherwise we put $\varepsilon_p = 0$. The right-hand side can tend to the zero when M varies. Note that there is a constant c such that

$$\prod_{p|t} (1-p^{-1}) > c(\log \log t)^{-1}.$$

If we do not assume the existence of the primitive representation of M_p by N_p , then $\alpha_p(M_p, N_p)$ can tend to the zero for a single prime p when M varies. It is known (Corollary on p. 448 in [3]) that there is a constant $c(M_p, N_p)$ so that

$$\alpha_p(p^t M_p, N_p) > c(M_p, N_p) \begin{cases} 1 & \text{if ind } W_p = m, \\ p^{-t} & \text{if ind } W_p = m - 1. \end{cases}$$

In our case, i.e. rank $N_p = 2 \operatorname{rank} M_p + 1$, we have

$$\alpha_{p}(M_{p}, N_{p}) \geq [M'_{p}: M_{p}]^{-m}d_{p}(M'_{p}, N_{p})$$

for any lattice M'_p which contains M_p and is primitively represented by N_p , where $d_p(M'_p, N_p)$ denotes the primitive density. We expect $[M'_p: M_p] \ll p^{(a_1+a_2)/2}$, where p^{a_i} denotes the *i*-th elementary divisor of the matrix corresponding to M_p . When we are concerned with the asymptotic formula of the number of isometries from M to N, we need a stronger estimate for error terms than in the primitive representation case.

On the contrary, from the arithmetic view-point, the primitive representation problem $APW_{m,2m+1}$ yields automatically the representation problem $A_{m,2m+1}$ by virtue of the validity of $R_{m,2m+1}(N)$.

Appendix

PROPOSITION. Let M be a lattice on a positive definite quadratic space over \mathbf{Q} of dim V = m. Let M_i (i = 0, ..., r) be a lattice containing M on V, and let $x_i \in M_i$ give the minimum of M_i , i.e. $Q(x_i) = \min(M_i)$ and suppose that a module $K := \mathbf{Z}[x_1, ..., x_r]$ is of rank r and $x_0 \in \mathbf{Q}K$. Then we have

$$\prod_{i=0}^{'} \min(M_i) \geq d(K + \mathbf{Z}[x_0]) \left[\mathbf{Z}[x_0] \cap M : \mathbf{Z}[x_0] \cap K \cap M \right]^2$$

$$\times \left[\mathbf{Z}[x_0] \cap K : \mathbf{Z}[x_0] \cap K \cap M \right]^{-2} \min(M).$$

Moreover the index $[\mathbf{Z}[x_0] \cap K : \mathbf{Z}[x_0] \cap K \cap M]$ divides $[M_0 \cap (\sum_{i=1}^r M_i) : M]$.

Proof. It is easy to see

$$\prod_{i=1}^{r} Q(x_i) \ge \det(B(x_i, x_i))_{i,j\ge 1} = dK$$

= $d(K + \mathbf{Z}[x_0]) [K + \mathbf{Z}[x_0] : K]^2$

Moreover the index $[\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap M] x_0 \in M$ implies $[\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap M]^2 Q(x_0) \ge \min(M)$. Hence we have

https://doi.org/10.1017/S0027763000004773 Published online by Cambridge University Press

$$\prod_{i=0}^{r} Q(x_i) \geq d(K + \mathbf{Z}[x_0]) [K + \mathbf{Z}[x_0] : K]^2 [\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap M]^{-2} \min(M).$$

Here we have

$$[K + \mathbf{Z}[x_0] : K] [\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap M]^{-1}$$

= $[\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap K] [\mathbf{Z}[x_0] : \mathbf{Z}[x_0] \cap M]^{-1}$
= $[\mathbf{Z}[x_0] \cap M : \mathbf{Z}[x_0] \cap K \cap M] [\mathbf{Z}[x_0] \cap K : \mathbf{Z}[x_0] \cap K \cap M]^{-1},$

which implies the required inequality. Since the canonical mapping

$$(\mathbf{Z}[x_0] \cap K)/(\mathbf{Z}[x_0] \cap K \cap M) \to \left(M_0 \cap (\sum_{i=1}^r M_i)\right)/M$$

is injective, it completes the proof.

COROLLARY. Let M be a lattice on a positive definite quadratic space V over \mathbf{Q} of dim V = m. Let M_i (i = 0, ..., m) be a lattice containing M on V such that $s(M_i) \subset \mathbf{Z}$ for i = 0, ..., m and $[M_i: M]$ and $[M_i: M]$ are relatively prime if $i \neq j$. Then we have

$$\min(M) \leq \prod_{i=0}^{m} \min(M_i).$$

In particular, $\min(M_i) \ge (\min(M))^{1/(m+1)}$ for some *i*.

Proof. Let $x_i \in M_i$ give the minimum and may assume that $K := \mathbb{Z}[x_1, \ldots, x_r]$ is a module of rank r and $x_0 \in \mathbb{Q}K$ without loss of generality. Then Proposition yields

$$\begin{split} \prod_{i=0}^{\prime} \min(M_i) &\geq d(K + \mathbf{Z}[x_0]) \left[\mathbf{Z}[x_0] \cap M : \mathbf{Z}[x_0] \cap K \cap M \right]^2 \\ &\times \left[\mathbf{Z}[x_0] \cap K : \mathbf{Z}[x_0] \cap K \cap M \right]^{-2} \min(M) \\ &\geq d(K + \mathbf{Z}[x_0]) \left[\mathbf{Z}[x_0] \cap K : \mathbf{Z}[x_0] \cap K \cap M \right]^{-2} \min(M). \end{split}$$

On the other hand, the assumption implies $s(K + \mathbb{Z}[x_0]) \subset s(\sum_{i=0}^{m} M_i) \subset \mathbb{Z}$ and hence $d(K + \mathbb{Z}[x_0]) \geq 1$. Moreover $M_0 \cap (\sum_{i=1}^{m} M_i) = M$ implies $[\mathbb{Z}[x_0] \cap K : \mathbb{Z}[x_0] \cap K \cap M] = 1$, which completes the proof.

Remark. In the inequality, we need m + 1 lattices in general. For example, let $p_1 < \cdots < p_m$ be odd different primes, and $M = \mathbb{Z}[v_1, \dots, v_m]$ with $(B(v_i, v_j)) = \operatorname{diag}(p_1^2, \dots, p_m^2)$. We put

$$M_{i} = \mathbf{Z}[v_{1}, \ldots, v_{i-1}, p_{i}^{-1}v_{i}, v_{i+1}, \ldots, v_{m}].$$

Then $[M_i: M] = p_i$ and $\min(M_i) = 1$ are clear and $\min(M) \leq \prod_{i=1}^m \min(M_i)$ does not hold.

REFERENCES

- J. S. Hsia, Y. Kitaoka and M. Kneser, Representations of positive definite quadratic forms, J. reine angew. Math., 301 (1978), 132-141.
- [2] Y. Kitaoka, "Lectures on Siegel modular forms and representation by quadratic forms," Springer-Verlag, Heidelberg, 1986.
- [3] —, Local densities of quadratic forms, in "Investigations in Number theory (Advanced Studies in Pure Math.)," 1987 pp. 433-460.
- [4] —, Some remarks on representations of positive definite quadratic forms, Nagoya Math. J., 115 (1989), 23-41.
- [5] —, "Arithmetic of quadratic forms," Cambridge University Press, 1993.
- [6] O. T. O'Meara, "Introduction to quadratic forms," Springer-Verlag, 1963.

Department of Mathematics Nagoya University Chikusa-ku Nagoya 464-01 Japan