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Abstract

Let U be an affine smooth curve defined over an algebraically closed field of positive
characteristic. The Abhyankar conjecture (proved by Raynaud and Harbater in 1994)
describes the set of finite quotients of Grothendieck’s étale fundamental group πét

1 (U).
In this paper, we consider a purely inseparable analogue of this problem, formulated in
terms of Nori’s profinite fundamental group scheme πN (U), and give a partial answer
to it.

1. Introduction

1.1 Nori’s fundamental group scheme
Let X be an algebraic variety over a field k. In [SGA1], Grothendieck defined the étale
fundamental group πét

1 (X) as a generalization of the fundamental group of a topological space. It
is the smallest profinite group classifyingG-coverings overX, whereG is a finite group. In the case
where k is an algebraically closed field of characteristic zero with k ↪→ C, it is known that πét

1 (X)
is isomorphic to the profinite completion of the topological one πtop

1 (X(C)). For example, as the
complex line A1(C) is simply connected, we have πét

1 (A1
C) = 0. On the other hand, in the case

where k is of positive characteristic p > 0, the situation is quite different. This can be seen even in
the case where X = A1

k is the affine line. Indeed, it is known that dimFp Hom(πét
1 (A1

k),Fp) =∞.
On the other hand, if X = U is a smooth affine curve, the Abhyankar conjecture [Abh57], proved
by Raynaud and Harbater [Har94, Ray94], gives us another estimate of the difference between
πét

1 (U) and the topological one of a Riemann surface of the same type. The conjecture describes
the set

πét
A (U)

def
= {finite quotients of πét

1 (U)} (1.1)

for any smooth affine curve U . Here, more precisely, πét
A (U) is the set of isomorphism classes of

finite groups which appears as a finite quotient of πét
1 (U). For example, it says for any integers

n > 0 and r > 0, there exists a surjective homomorphism πét
1 (A1

k) � SLn(Fpr) (cf. [Kam86,
Nor94, Ser92]).

In [Nor76], [Nor82, ch. II], Nori defined the fundamental group scheme πN (X) as a
generalization of Grothendieck’s étale geometric fundamental group of an algebraic variety X
over a field k (cf. [SGA1]). It is a profinite k-group scheme classifying G-torsors over X with
G a finite k-group scheme. In [Nor76], he first constructed it under the assumption that X is
proper over k by using the theory of Tannakian categories. On the other hand, in [Nor82], he
also proved that such a profinite one πN (X) exists also for arbitrary (not necessarily proper) X
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without relying on a Tannakian construction (cf. § 2.1). Note that, if k is an algebraically closed

field, then Grothendieck’s étale fundamental group πét
1 (X) classifies all finite étale torsors over

X and is universal for this property. Hence, there exists a homomorphism of πN (X) into the

pro-constant k-group scheme, denoted by πét(X), associated with πét
1 (X). In fact πét(X) gives

the maximal pro-étale quotient of πN (X), called the étale fundamental group scheme. In the case

where k is of characteristic zero, then the surjective homomorphism πN (X)� πét(X) is in fact

an isomorphism. This is valid because under the assumption that k is an algebraically closed field

of characteristic zero, any finite G-torsor P → X with G a finite k-group scheme is nothing but

a G(k)-covering over X. On the other hand, in the case where k is of positive characteristic p > 0,

then πN (X) is strictly larger than πét(X), in general. Indeed, finite local (‘purely inseparable’)

torsors make a contribution to occur the difference between these fundamental group schemes.

Here a finite k-group scheme G is said to be local if it is connected, i.e., if G0 denotes the

connected component of the identity 1 ∈ G, then G0 = G. For example, G = αp, or µp.

1.2 Main results

In the present paper, we will attempt to estimate the difference between πN (U) and πét(U) for a

smooth affine curve U defined over an algebraically closed field k of positive characteristic p > 0

from the viewpoint of the inverse Galois problem. We will study a purely inseparable analogue

of the Abhyankar conjecture for affine curves U (cf. [Abh57, Abh92]; see also § 1.3), i.e., we will

try to describe the set

πloc
A (U)

def
= {finite local quotients of πN (U)}.

More precisely, πloc
A (U) is the set of isomorphism classes of finite local k-group schemes which

appears as a finite quotient of πN (U).

Now let us explain the contents of the present paper. In § 2, we will briefly review the definition

of Nori’s profinite fundamental group scheme and the maximal linearly reductive quotient of it.

In § 3, we will see the maximal local linearly reductive quotient of πN (U) provides a necessary

condition for a finite local k-group scheme G to belong to the set πloc
A (U) (cf. Proposition 3.1).

Now let us explain this. Let X be a smooth compactification of U . Let n
def
= #(X\U). Note

that the affineness assumption of U implies n > 0. Let γ be the p-rank of the Jacobian variety

of X, i.e., γ = dimFp Pic0
X [p](k). We will see that for any finite local k-group scheme G, if

G ∈ πloc
A (U), then the character group X(G)

def
= Hom(G,Gm) must be embeddable as a subgroup

into (Qp/Zp)⊕γ+n−1. Then we can ask whether or not the converse is true (cf. Question 3.3).

Question 1.1. Let U be a smooth affine curve and G a finite local k-group scheme. If there exists

an injective homomorphism X(G) ↪→ (Qp/Zp)⊕γ+n−1, then does G belong to the set πloc
A (U)?

The main purpose of the present paper is to give a partial affirmative answer to Question 1.1.

The main result is the following theorem (cf. Proposition 3.4; Corollaries 4.19; 4.15).

Theorem 1.2.

(1) For any smooth affine curve U over k and any finite local nilpotent k-group scheme G,

if there exists an injective homomorphism X(G) ↪→ (Qp/Zp)⊕γ+n−1, then there exists a

surjective homomorphism πN (U)� G.
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(2) Let Σ be a semi-simple simply connected algebraic group over k. Then for any integer r > 0,
there exists a surjective homomorphism

πN (A1
k)� Σ(r)

of πN (A1
k) onto the rth Frobenius kernel Σ(r)

def
= Ker(F (r) : Σ(−r)

→ Σ).

(3) Assume p = 2. Then for any integer r > 0, there exists a surjective homomorphism

πN (Gm)� GL2(r)

of πN (Gm) onto the rth Frobenius kernel GL2(r) of GL2.

Here, for each integer r > 0, Σ(−r) denotes the (−r)th Frobenius twist of Σ and F (r) :
Σ(−r)

→ Σ is the rth relative Frobenius morphism, which is a homomorphism of algebraic
groups. Furthermore, its kernel Σ(r) = Ker(F (r)) is a finite local k-group scheme.

Remark 1.3. (1) If Σ is a semi-simple simply connected algebraic group over k, it turns out
that X(Σ(r)) = 1 (cf. Remark 3.7(3)). Therefore, Theorem 1.2(2) gives an affirmative answer to
Question 1.1 for the affine line A1

k and for the Frobenius kernels Σ(r) (r > 0) of a semi-simple
simply connected algebraic group Σ.

(2) Since X(GL2(r)) = Z/2rZ ⊂ Q2/Z2 if p = 2, Theorem 1.2(3) gives an affirmative answer to
Question 1.1 for the multiplicative group U = Gm and for the Frobenius kernels GL2(r) (r > 0)
of GL2 in the case where k is of characteristic p = 2.

(3) Note that each homomorphism πN (U) → G of πN (U) into a finite k-group scheme
G corresponds bijectively to a (fpqc) G-torsor P → U (cf. Proposition 2.2). To prove
Theorem 1.2(2), we will show there exists a k-morphism f : A1

k → Σ such that the resulting
Σ(r)-torsor f∗Σ(−r)

→ A1
k realizes a surjective homomorphism πN (A1

k) � Σ(r). To prove the
existence of such a morphism f , we will first reduce the problem to the case where r = 1
(cf. Lemma 4.2). Next we will deduce the existence of such an f from a Bertini type theorem for
height one torsors (cf. Theorem 4.17).

(4) In particular, Theorem 1.2(1) (or Theorem 1.2(2)) implies that if p = 2, then SL2(1)

appears as a finite quotient of πN (A1
k) (cf. Example 3.6). On the other hand, it turns out that

any SL2(1)-torsor must be of the form f∗ SL
(−1)
2 → A1

k for some k-morphism f : A1
k→ SL2. In this

case, we can explicitly describe the subset of Mork(A1
k, SL2) consisting of k-morphisms f such that

the torsor f∗ SL
(−1)
2 realizes a surjective homomorphism πN (A1

k)� SL2(1) (cf. Corollary 4.13).

Remark 1.4. Considering recent developments of the theory of ‘tame stacks’ (cf. [AOV08, Mar12,
Gil12]), the author expects that the notion of linearly reductiveness might provide us with a good
analogy between the answer of Question 1.1 and the Abhyankar conjecture (cf. Theorem 1.5)
and that Question 1.1 might be affirmative for any smooth affine curve U and for any finite local
k-group scheme G. See also Remark 1.8.

1.3 The Abhyankar conjecture
All the ideas of our arguments in the present paper come from Serre’s work [Ser90] (the method
of embedding problems) or Nori’s one [Kam86, Nor94] in the pursuit of the Abhyankar conjecture
for the affine line. Hence, we would like to briefly review the conjecture.

First we will recall the precise statement of it (in a weak form). Let k be an algebraically
closed field of positive characteristic p > 0 and X a smooth projective curve over k of genus g > 0.
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Let ∅ 6= U ⊂X be a nonempty open subset with n
def
= #(X\U) > 0. Let Γg,n be the group defined

by

Γg,n
def
=

〈
a1, b1, . . . , ag, bg, γ1, . . . , γn

∣∣∣∣ g∏
i=1

[ai, bi]γ1 · · · γn = 1

〉
and Γ̂g,n by its profinite completion. Note that if n > 0, then Γg,n is a free group F2g+n−1 of
rank 2g + n− 1. A classical result due to Grothendieck [SGA1] implies:

πét
1 (U)(p′) ' Γ̂(p′)

g,n .

Here (−)(p′) means the maximal pro-prime to p quotient. In particular, if n > 0, i.e., U is affine,

then πét
1 (U)(p′) ' F̂

(p′)
2g+n−1. Hence, in this case, if a finite group G appears as a finite quotient

of πét
1 (U), then G(p′) must be generated by at most 2g + n − 1 elements. Here, the group G(p′)

is the quotient of G by the subgroup p(G) generated by all the p-Sylow subgroups of G. The
Abhyankar conjecture claims that the converse is also true.

Theorem 1.5 (The Abhyankar conjecture in a weak form [Ray94, Har94]). Assume that U is
affine. Let G be an arbitrary finite group. Then G ∈ πét

A (U) (cf. (1.1)) if and only if G(p′)

can be generated by at most 2g + n− 1 elements.

Raynaud proved the theorem for the case where U = A1
k [Ray94]. Soon after, Harbater

obtained the theorem for the general case [Har94].

Remark 1.6. (1) Theorem 1.5 implies that πét
A (U) is determined by the topological one πtop

1 (U0)
of a Riemann surface U0 of the same type (g, n) as U . An affirmative answer to our question
(Question 1.1) says that the set of finite local quotients of πN (U) might be determined by the étale
one πét

1 (U). Note that the number γ+n−1 can be reconstructed from πét
1 (U) group-theoretically

(cf. [Tam99]).
(2) The assumption that U is affine is essential. This is because if U = X is projective, then

πét
1 (X) is topologically finitely generated and the isomorphism class of πét

1 (X) can be completely
determined by the set πét

A (X) of finite quotients of it (cf. [FJ08, Proposition 5.4]). On the other
hand, it is known that πét

1 (X) itself has much information about the moduli of X (cf. [Tam99,
Tam04]) if the genus of X is g > 2. Therefore, such a simple answer as above (Theorem 1.5)
cannot be expected and the corresponding problem is much more challenging (cf. [PS00]).

In the particular case U = A1
k is the affine line, the Abhyankar conjecture states that a finite

group G belongs to the set πét
A (A1

k) if and only if G(p′) = 1. The latter condition is equivalent to
the one that G can be generated by p-Sylow subgroups of it, and such a group is called a quasi -p-
group. Obviously, any p-group is a quasi-p-group. In [Abh57, Abh92], Abhyankar found an explicit
equation defining a finite étale Galois covering over A1

k whose corresponding homomorphism
πét

1 (A1
k)→ G is surjective for various nontrivial quasi-p-groups G. In [Ser90], Serre approached

the conjecture for the affine line A1
k by the method of embedding problems. As a result, he proved

that the conjecture is ture for any solvable quasi-p-group. This result gives a first reduction step
in the proof due to Raynaud [Ray94]. On the other hand, although his result was not used in
Raynaud’s proof, Nori provided many examples of quasi-p-groups appearing as a finite quotient of
πét

1 (A1
k), which gave another evidence of the Abhyankar conjetcure for A1

k (cf. [Kam86, Nor94]).
Let Σ be a semi-simple simply connected algebraic group (for example, Σ = SLn) over Fpr .
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Let L : Σ→ Σ; g 7→ g−1F r(g) be the Lang map, where F is the absolute Frobenius morphism

of Σ. Note that L gives a Galois covering with group Σ(Fpr). Nori showed the existence of a

closed immersion ι : A1
Fpr

↪→ Σ such that ι∗Σ is geometrically connected, whence the Galois

covering (ι∗Σ)k → A1
k corresponds to a surjective homomorphism πét

1 (A1
k)� Σ(Fpr). For a brief

survey of all the above results, see, for example, [HOPS14, § 3].

Remark 1.7. (1) Our result for finite local nilpotent group schemes (Theorem 1.2(1) (cf.

Proposition 3.4)) is motivated by Serre’s result on solvable quasi-p-groups [Ser90]. However,

we can extend his method only in the nilpotent case.

(2) Theorem 1.2(2) can be considered as a purely inseparable analogue of Nori’s result

[Kam86, Nor94]. To prove this, we will rely on a Bertini type theorem (Theorem 4.17). Hence,

we cannot give an explicit equation defining a saturated Σ(1)-torsor over A1
k for general Σ. In the

case where p = 2 and Σ = SL2, we can clarify this situation in not a conceptual but an explicit

way.

(3) In the classical conjecture, in particular, in the proof due to Raynaud or Harbater, the

rigid analytic or formal patching method and the theory of stable curves provide us with strong

tools to solve the problem. The author is not sure if these methods can be applicable in our

situation.

Remark 1.8. The full statement of the classical Abhyankar conjecture (proved by Harbater)

states that as a covering realizing a finite quotient G ∈ πét
A (U), one can take a G-covering tamely

ramified except for one point x0 ∈ X\U (cf. [Har94, Conjecture 1.2]). So, it might be natural to

ask for an analogous problem. To formulate it, we need the notion of tamely ramified torsors, a

similar notion to tamely remified coverings.

The notion of tameness of an action of a group scheme G on a scheme X was introduced

by Chinburg et al. [CEPT96]. On the other hand, Abramovich et al. gave another formulation

in terms of tame stacks (cf. [AOV08]). A relation between these two works has been studied

by Marques [Mar12]. Moreover, in [Bor09], Borne defined the fundamental group scheme which

classifies tamely ramified torsors by using the Tannakian category of parabolic bundles. To

obtain a good analogue of the notion of tame coverings, one needs to consider an extension

of a G-torsor P over an open subset U of X with D = X\U a normal crossing divisor to an

X-scheme Q together with an action of G. In [Gil12], Gillibert discussed this point. Recently,

in [Zal16], Zalamansky formulated a ramification theory in a purely inseparable setting in terms

of ramification divisors. The author is not sure if there exist any relations between Zalamansky’s

formulation and the previous ones.

In view of the above recent developments of the theory of tamely ramified torsors, one

can formulate a naive analogue of the strong Abhyankar conjecture [Har94, Conjecture 1.2] in

an obvious way. However, the author has no evidence of it. So, in the present paper, we will

concentrate on an analogue of the weak Abhyankar conjecture.

Notation

In this paper, k always means a perfect field; an algebraic variety over k means a geometrically

connected and reduced scheme separated of finite type over k; a curve over k is an algebraic

variety over k of dimension one; an algebraic group over k means a group object of the category

of algebraic varieties over k. Note that, automatically, any algebraic group over k is smooth.
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Let k be a perfect field of positive characteristic p > 0 and X an algebraic variety over k.
We denote by FX , or simply F , the absolute Frobenius morphism F = FX : X → X. For each
integer n ∈ Z, we denote by X(n) the nth Frobenius twist of X.

X(n)

�

//

��

X

��
Spec k '

Fn
// Spec k

If n > 0, the morphism Fn :X→X then factors uniquely through X(n). The resulting morphism,
denoted by F (n) : X → X(n), is the nth relative Frobenius morphism.

We denote by Veck the category of finite dimensional vector spaces over k. For an affine
k-group scheme G, we denote by Repk(G) the category of finite dimensional left k-linear
representations of G. For each (V, ρ) ∈ Repk(G), we denote by V G the G-invariant subspace
of V , i.e., V G = {v ∈ V | ρ(v) = v ⊗ 1}.

2. Fundamental group scheme

2.1 Profinite fundamental group scheme
In this subsection, we will briefly recall the definition of Nori’s profinite fundamental group
scheme [Nor76, Nor82].

Let X be an algebraic variety over k together with a rational point x ∈ X(k). We define the
category N(X,x) as follows. The objects of N(X,x) are all the triples (P,G, p) where:
• G: a finite k-group scheme;
• an (fpqc) G-torsor π : P → X;
• p ∈ P (k): a rational point with π(p) = x.

Let (P,G, p), (Q,H, q) ∈ N(X,x) be arbitrary two objects. Then a morphism (P,G, p) →
(Q,H, q) is a pair (f, φ) of an X-morphism f : P → Q and a k-homomorphism φ : G → H
making the following diagram commute.

P ×G //

(f,φ)
��

P

f
��

Q×H // Q

Here, the above two horizontal morphisms are the ones defining the actions of torsors. By these
objects and morphisms, N(X,x) becomes a category. In [Nor82], Nori proved that the category
N(X,x) is a cofiltered category and, in particular that the projective limit

lim
←−

(P,G,p)∈N(X,x)

(P,G, p)

exists.

Definition 2.1. The projective limit of underlying group schemes

πN (X,x)
def
= lim

←−
(P,G,p)∈N(X,x)

G

is called the profinite fundamental group scheme, or shortly the fundamental group scheme,
of (X,x).

From the definition, the following is immediate.
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Proposition 2.2. The fundamental group scheme πN (X,x) is a profinite k-group scheme such
that for any finite k-group scheme G, the map

Homk(π
N (X,x), G)→ Tors(G, (X,x))

φ 7→ (XN
x , x

N )×πN (X,x) φG

is bijective. Here

(XN
x , x

N )
def
= lim

←−
(P,G,p)∈N(X,x)

(P, p)

and Tors(G, (X,x)) is the set of isomorphism classes of pointed G-torsors over (X,x). Moreover,

the torsor (XN
x , x

N )×πN (X,x) φG associated with a homomorphism φ is defined as the quotient
of the product (XN

x , x
N )×G by the diagonal action of πN (X,x):

(x, g) · γ def
= (xg−1, gφ(γ))

for (x, g) ∈ XN
x ×G and γ ∈ πN (X,x).

Definition 2.3. A G-torsor (P, p) → (X,x) is said to be saturated if the corresponding
homomorphism πN (X,x)→ G is surjective.

Remark 2.4. If k is algebraically closed, then for any finite étale k-group scheme G is the constant
group scheme associated with the finite group G(k) and a G-torsor over X is nothing but a
G(k)-covering over X. Therefore, from the universality of Grothendieck’s étale fundamental
group πét

1 (X,x), there exists a k-homomorphism of πN (X,x) to the pro-constant group scheme
associated with πét

1 (X,x). In fact, this homomorphism is surjective. Furthermore, if k is of
characteristic zero, then it is an isomorphism. For details, see [EHS08, Remark 2.10].

2.2 The maximal linearly reductive quotient of πN

Now let us recall the maximal linearly reductive quotient πlin.red(X,x) of πN (X,x) (cf. [BV15]).

Definition 2.5 (Cf. [AOV08, § 2]). A finite k-group scheme G is said to be linearly reductive if
one of the following equivalent conditions is satisfied:

(a) the functor Repk(G)→ Veck; V 7→ V G is exact;

(b) the category Repk(G) is semi-simple.

Proposition 2.6 (Abramovich et al. [AOV08, Proposition 2.13]). A finite k-group scheme G is
linearly reductive if and only if for an algebraic closure k of k, then Gk := G×k k is isomorphic
to a semi-direct product H n ∆ where H is a finite constant k-group scheme of order prime to
the characteristic of k and ∆ is a finite diagonalizable k-group scheme.

Here a finite group scheme G is said to be diagonalizable if it is abelian and its Cartier dual
is constant (cf. [Wat79, § 2.2]). Proposition 2.6 does not require the assumption that k is perfect.

Remark 2.7. Assume that k is an algebraically closed field of characteristic p > 0. From
Proposition 2.6, we can deduce that if a finite étale group scheme G is linearly reductive if
and only if p - #G(k) and that a finite local k-group scheme is linearly reductive if and only

if G
'
→ Diag(X(G)) with X(G) = Hom(G,Gm) a p-group.
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Definition 2.8 (Cf. [BV15, § 10]). We denote by πlin.red(X,x) the maximal linearly reductive
quotient of πN (X,x).

Remark 2.9. (1) In [BV15], Borne–Vistoli studied the linearly reductive quotient in terms of
fundamental gerbes. They called it the tame fundamental gerbe. Here, the word ‘tame’ stems
from the notion of tame stacks (cf. [AOV08]).

(2) If k is of characteristic zero, then any finite k-group scheme is linearly reductive and
πN (X,x) = πlin.red(X,x).

From now on assume that k is of positive characteristic p > 0. Then a finite k-group scheme
G is said to be local if it is connected. We denote by πloc(X,x) the maximal local quotient of
πN (X,x). The arguments in [Ünv10] then imply that πloc(X,x) does not depend on the choice
of a rational point x ∈ X(k). More precisely, let L(X) be the category of pairs (P,G) where G
is a finite local k-group scheme and P → X is a G-torsor. Then the projective limit

lim
←−

(P,G)∈L(X)

(P,G)

exists and for any x ∈ X(k), there exists a canonical isomorphism

πloc(X,x) ' lim
←−

(P,G)∈L(X)

G.

In particular, for any finite local k-group scheme G, the map in Proposition 2.2 induces a
bijection:

Homk(π
loc(X,x), G)

'−→ H1
fpqc(X,G). (2.1)

Hence, we write simply πloc(X) instead of πloc(X,x).
If k is algebraically closed, then the maximal linearly reductive quotient πloc(X)lin.red is

diagonalizable and we have the following:

πloc(X)lin.red = Diag(X(πloc(X))).

Here X(πloc(X)) = Hom(πloc(X),Gm), the group of characters of πloc(X) and for any abelian
group A, we denote by Diag(A) the diagonalizable k-group scheme associated with A [Wat79,
§ 2.2]. On the other hand, any homomorphism πloc(X)→Gm factors through µpn = Diag(Z/pnZ)
for some integer n > 0. Hence,

X(πloc(X)) = lim−→
n>0

Homk(π
loc(X), µpn)

'−→ lim−→
n>0

H1
fpqc(X,µpn).

Here, since all the µpn are abelian, the map in Proposition 2.2 induces the last isomorphism.
Hence, we have seen that the following holds.

Proposition 2.10. If k is an algebraically closed field of characteristic p > 0, then there exists
a canonical isomorphism:

πloc(X)lin.red ' lim
←−
n>0

Diag(H1
fpqc(X,µpn)).

Note that πloc(X)lin.red is nothing but the maximal local linearly reductive quotient of
πN (X,x).
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3. A purely inseparable analogue of the Abhyankar conjecture

Let k be an algebraically closed field of positive characteristic p > 0. Let X be a projective smooth

curve over k of genus g > 0. Let U be a nonempty open subset of X with n
def
= #(X\U) > 0.

The scheme U is then an affine smooth curve over k. We denote by γ the p-rank of the Jacobian
variety Pic0

X of X, i.e.,

γ
def
= dimFp Pic0

X [p](k).

Since X is smooth and projective, the invariant γ coincides with the dimension of the Fp-vector
space HomZ(πét

1 (X)ab,Fp) (cf. [Bou00]). Moreover, in this case, for any integer m > 0, we have

H1
fpqc(X,µpm) ' Pic0

X [pm](k) ' (Z/pmZ)⊕γ . (3.1)

Here, for the first equality, see, for example, [Ant11, Proposition 3.2]; for the second equality,
see, for example, [Mum08, ch. IV].

Let πloc
A (U) be the set of isomorphism classes of finite local k-group schemes G such that

there exists a surjective homomorphism πloc(U)� G.

3.1 Question
We first give a necessary condition for a finite local k-group scheme G to belong to the set
πloc
A (U).

Proposition 3.1. For any finite local k-group scheme G, if G ∈ πloc
A (U), then there exists an

injective homomorphism X(G) ↪→ (Qp/Zp)⊕γ+n−1.

By virtue of Proposition 2.10, Proposition 3.1 is an immediate consequence of the following.

Proposition 3.2. For any integer m > 0, we have

H1
fpqc(U, µpm) ' (Z/pmZ)⊕γ+n−1.

Proof [Cf. [Sta, Tag 03RN, Lemma 53.68.3]]. Let X\U = {x1, . . . , xn}. Then there exists an

isomorphism Pic(U) ' Pic(X)/R with R
def
= 〈OX(xi) | 1 6 i 6 n 〉Z ⊂ Pic(X). Therefore,

H1
fpqc(U, µpm) ' {(L,α) |L ∈ Pic(U), α : L⊗p

m '−→ OU}/ '

'
{

(L,D, α)

∣∣∣∣L ∈ Pic(X), D ∈ Zx1 + · · ·+ Zxn,
α : L

⊗pm '−→ OX(D)

}/
R,

where R is the group defined by

R
def
= {(OX(D′), pmD′, id) |D′ ∈ Zx1 + · · ·+ Zxn}.

We identify the group H1
fpqc(U, µpm) with the second one in the right-hand side of the above

equation. We then obtain the following exact sequence:

0→ H1
fpqc(X,µpm)→ H1

fpqc(U, µpm)→
n⊕
i=1

Z/pmZ Σ−→ Z/pmZ→ 0.

Here the second map is given by (L,α) 7→ (L, 0, α) and the third one by (L,D, α) 7→ (ai)
n
i=1

with D =
∑n

i=1 aixi. This completes the proof (cf. (3.1)). 2

Considering the Abhyankar conjecture (cf. Theorem 1.5), the following question naturally
arises.

Question 3.3. Let G be a finite local k-group scheme. If there exists an injective homomorphism
X(G) ↪→ (Qp/Zp)⊕γ+n−1, then does the group scheme G belong to the set πloc

A (U)?
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3.2 Nilpotent case
Now we will show that, for any finite local nilpotent k-group scheme G, Question 3.3 has an
affirmative answer.

Proposition 3.4. Let G be a finite local nilpotent k-group scheme. Then G ∈ πloc
A (U) if and

only if there exists an injective homomorphism X(G) ↪→ (Qp/Zp)⊕γ+n−1.

Proof. First we remark on αp-torsors over U . Since U is affine,

H1
fpqc(U,Ga) = H1(U,OU ) = 0,

we have
H1

fpqc(U,αp) ' Γ(U,OU )/Γ(U,OU )p.

On the other hand, since U is an affine smooth integral scheme, there exists a dominant morphism
U → A1

k, whence

H1
fpqc(U,αp)←↩ H

1
fpqc(A1

k, αp) =
⊕
p-n

k · tn, (3.2)

where t is the coordinate of A1. Furthermore, since αp is simple, any nonzero element of
H1

fpqc(U,αp) corresponds to a surjective homomorphism πloc(U)� αp (cf. (2.1)).
Now let us prove the proposition. It suffices to show the ‘if’ part. We prove this by induction

on the order dimk k[G] = pr (r > 0). From the assumption, G is obtained by central extensions
of αp or µp. If dimk k[G] = p, then G = αp, or = µp and the statement is immediate from (3.2),
or from the assumption. Since G is a nontrivial nilpotent group scheme, the center Z(G) is
nontrivial. Let H ⊂ Z(G) be a subgroup scheme of order p. Then we get a central extension of
finite k-group schemes:

1→ H → G→ G/H → 1. (3.3)

Since dimk k[G/H] < dimk k[G] and X(G/H) ⊆ X(G), by induction hypothesis, there exists a
surjective homomorphism φ : πloc(U) → G/H. Since U is affine, Hq

fpqc(U,Ga) = 0 if q 6= 0,

we have H2
fpqc(U,αp) = 0. On the other hand, H1

fpqc(U,Gm) = Pic(U) is divisible (cf. [Sta,

Tag 03RN, Proof of Lemma 53.68.3]) and H2
fpqc(U,Gm) = Br(U) = 0, we then also have

H2
fpqc(U, µp) = 0. Therefore, we find that H2

fpqc(U,H) = 0 and the exactness of (3.3), noticing

that H0
fpqc(U,G/H) = 0, implies that the resulting sequence

0→ H1
fpqc(U,H)→ H1

fpqc(U,G)→ H1
fpqc(U,G/H)→ 0

is an exact sequence of pointed sets (cf. [Gir71, p. 284, Remarque 4.2.10]). Therefore,
the isomorphism (2.1) implies that there exists a lift φ : πloc(U) → G of φ and we obtain the
following commutative diagram:

0 // K //

f

��

πloc(U)
φ //

φ

��

G/H // 0

0 // H // G // G/H // 0

where K
def
= Ker(φ). If f is nontrivial, then it is surjective, whence so is φ. Thus, from now

on assume f = 0. In this case, the homomorphism φ factors through G/H. Thus, the central
extension (3.3) is trivial, i.e., G = H × (G/H). We claim that

H1
fpqc(U,H) ) Ker(Homk(π

loc(U), H)→ Homk(K,H)). (3.4)
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If the claim (3.4) is true, then one takes a k-homomorphism g : πloc(U)→ H so that g|K 6= 0
and the one (g, φ) : πloc(U)→ G = H × (G/H) is surjective. Thus, it remains to show the claim
(3.4). Notice that

Homk(G/H,H) = Ker(Homk(π
loc(U), H)→ Homk(K,H)).

Thus, if H ' αp, then the claim (3.4) follows from dimkH
1
fpqc(U,αp) =∞. If H ' µp, then the

claim (3.4) follows from the following inequality:

dimFp Homk(G/H,µp) < dimFp Homk(G,µp) 6 γ + n− 1 = dimFp H
1
fpqc(U, µp).

Here for the first inequality, we use G ' µp × (G/H). This completes the proof. 2

Corollary 3.5. Every finite local unipotent k-group scheme appears as a finite quotient of
πloc(U).

Example 3.6. Assume k is of characteristic p = 2. In this case, the first Frobenius kernel

SL2(1)
def
= Ker(F (1) : SL

(−1)
2 → SL2)

of the algebraic group SL2 is nilpotent. Indeed, noticing that

SL2(1)(A) =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ A, ad− bc = 1

a2 = d2 = 1, b2 = c2 = 0

}
for any k-algebra A, the maps

SL2(1)(A)→ (α2 × α2)(A);

(
a b
c d

)
7→ (ab, cd), A : k-algebra

then form a k-homomorphism SL2(1)→ α2 × α2, which makes the following sequence

1→ µ2→ SL2(1)→ α2 × α2→ 1 (3.5)

a nonsplit central extension (cf. [Wat79, ch. 0, Exercise 3]). In particular, SL2(1) is nilpotent.
From the facts that X(µ2) = Z/2Z and that any homomorphism SL2(1) → Gm factors through
µ2, the nonsplitness of (3.5) deduces the condition that X(SL2(1)) = X(α2 × α2) = 1. Therefore,
by applying Proposition 3.4, we can conclude that there exists a surjective homomorphism
πloc(A1

k)� SL2(1).

Remark 3.7. (1) In the particular case where U = A1
k, that Question 3.3 is affirmative is

equivalent to the assertion that any finite local k-group scheme G with X(G) = 1 appears
as a quotient of πloc(A1

k). For example, for any integers n, r > 0, the rth Frobenius kernel

SLn(r)
def
= Ker(F (r) : SL

(−r)
n → SLn) of SLn gives such a one, i.e., X(SLn(r)) = 1 (cf. (3) below).

(2) In general, if a finite k-group scheme G is generated by all the unipotent subgroup
schemes, then G has no characters, i.e., X(G) = 1. The author expects that the converse might
be true, namely, that X(G) = 1 if and only if G is generated by all the unipotent subgroup
schemes.

(3) Let us see another example of finite local k-group scheme G with X(G) = 1. Let Σ be
a semi-simple simply connected algebraic group over k. Then for any integer r > 0, the rth
Frobenius kernel

Σ(r)
def
= Ker(Σ(−r) F (r)

−−→ Σ)
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has no nontrivial characters, i.e., X(Σ(r)) = 1 (indeed, since Σ is semi-simple simply connected,
any character Σ(r)→Gm comes from some character of Σ [Jan03, Part II, chs 3, 3.15, Proposition
and Remarks 2)]. However, since Σ is semi-simple, there exist no nontrivial characters of Σ [Jan03,
Part II, chs 1, 1.18(3)]). Therefore, if Question 3.3 is affirmative for the affine line A1

k, then the
group scheme Σ(r) must appear as a finite quotient of πloc(A1

k). We will prove this fact is actually
true (cf. Corollary 4.19).

(4) Moreover, if Σ is a semi-simple simply connected algebraic group over k, then one can
prove that the first Frobenius kernel Σ(1) is generated by all the unipotent subgroup schemes
of it. Indeed, fix a maximal torus T < Σ. Let R be the root system. Choose a positive system
R+ ⊂ R and denote by S the corresponding set of simple roots ([Jan03, Part II, chs 1, 1.5]).
We denote by U+ (respectively U−) the unipotent radical corresponding to the positive roots
(respectively the negative roots). By [Jan03, Part II, chs 3, 3.2 Lemma], it suffices to show that
T(1) ⊂ 〈U±(1)〉. Since Σ is simply connected, we have

(α∨)α∈S :
∏
α∈S

Gm
'−→ T

(cf. [Jan03, Part II, chs 1, 1.6(4)]), where the α∨ are dual roots. Hence, we are reduced to showing
that α∨(µp) ⊂ 〈U±(1)〉 for any α ∈ S. For this, we may assume that Σ = SL2. In this case, we

have dim k[SL2(1)] = p3 and dim k[U±(1)] = p, whence p2 6 dim k[〈U±(1)〉] 6 p3. For the equality

SL2(1) = 〈U±(1)〉, it suffices to show dim k[〈U±(1)〉] = p3. However, again by [Jan03, Part II, chs 3,

3.2, Lemma], there exists a surjective k-algebra homomorphism k[SL2(1)]� k[U+
(1) × U

−
(1)]. This

factors through k[〈U±(1)〉] and the resulting algebra map φ : k[〈U±(1)〉] → k[U+
(1) × U−(1)] is then

surjective. The map φ is not isomorphism because U+
(1)×U

−
(1) is not a subgroup scheme of SL2(1)

but 〈U±(1)〉 is. Therefore, we have dim k[〈U±(1)〉] > dim k[U+
(1) × U

−
(1)] = p2. Then we must have

dim k[〈U±(1)〉] = p3, which implies that SL2(1) = 〈U±(1)〉. This completes the proof.

4. Main results

4.1 Torsors coming from Frobenius endmorphisms of an affine algebraic group
Let k be an algebraically closed field of characteristic p > 0 and U a smooth affine curve
over k. Let Σ be an affine algebraic group over k. Note that for each integer r > 0, the rth

relative Frobenius morphism F (r) : Σ(−r)
→ Σ gives a saturated Σ(r)

def
= Ker(F (r))-torsor over Σ.

Here, recall that the saturatedness means the corresponding homomorphism πN (Σ) → Σ(r) is
surjective (cf. Definition 2.3). In § 4, motivated by Question 3.3, we will consider the following
question.

Question 4.1. Fix an integer r > 0.

(1) Does there exist any k-morphism f : U → Σ so that the Σ(r)-torsor f∗Σ(−r)
→ U defined

by the following cartesian diagram is saturated?

f∗Σ(−r)

�

//

��

Σ(−r)

F (r)

��
U

f
// Σ
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(2) Furthermore, if it exists, for which k-morphism f : U → Σ, is the resulting Σ(r)-torsor

f∗Σ(−r)
→ U saturated?

Let us begin with showing that one can reduce the problem to the case r = 1.

Lemma 4.2. Let Σ be an affine algebraic group over k and f : U → Σ a k-morphism. If f∗Σ(−1)

is saturated, then for any integer r > 1, f∗Σ(−r) is also saturated.

Proof. We will show this by induction on r > 1. We will denote by φ(−r) : πloc(U)→ Σ(r) the

homomorphism corresponding to the torsor f∗Σ(−r). Assume φ(−r) is surjective. Let us show
that φ(−r−1) is also surjective. Since F (r)∗f∗Σ(−r) is a trivial torsor, the composition

πloc(U (−r))
F

(r)
∗−−→ πloc(U)

φ(−r)

� Σ(r)

is trivial. We then obtain the following commutative diagram:

πloc(U (−r))
F

(r)
∗ //

ψ := ∃
��

πloc(U)

φ(−r−1)

��

φ(−r)

""
1 // Σ

(−r)
(1)

// Σ(r+1)
// Σ(r)

// 1 (exact)

(4.1)

and the map φ(−r−1) ◦F (r)
∗ factors through Σ

(−r)
(1) . We denote by ψ the resulting homomorphism

πloc(U (−r))→ Σ
(−r)
(1) . We are then reduced to showing the surjectivity of ψ. The commutativity

of the diagram (4.1) implies that Ind
Σ(r+1)

Σ
(−r)
(1)

(Q) ' F (r)∗f∗Σ(−r−1), where Q is the torsor over

U (−r) corresponding to the morphism ψ. On the other hand, by considering the tautological
commutative diagram

Σ(−r−1) = //

F (1)

��

Σ(−r−1)

F (r+1)

��
Σ(−r) F (r)

// Σ

we can find that

Ind
Σ(r+1)

Σ
(−r)
(1)

(Σ(−r−1) F (1)

−−→ Σ(−r)) = F (r)∗(Σ(−r−1) F (r+1)

−−−−→ Σ).

Therefore, by the construction, Q is nothing but the torsor defined by the cartesian diagram

Q

�

//

��

Σ(−r−1)

F (1)

��
U (−r) f (−r)

// Σ(−r)

where f (−r) is just the rth Frobenius twist of f .

U (−r)

�

' //

f (−r)

��

U

f

��
Σ(−r) ' // Σ
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Then, the saturatedness of the torsor f∗Σ(1)
→ U indicates the saturatedness of the torsor

Q→ U (−r), or equivalently, the surjectivity of ψ. This completes the proof. 2

Next let us see a basic example. The following proposition gives a complete answer to
Question 4.1 for the pairs (U,Σ) = (A1

k,G⊕na ) (n > 1).

Proposition 4.3. Assume that k is of characteristic p > 0 and n > 0 an integer. Let

f = (fi(t)) ∈ k[t]⊕n = Mork(A1
k,G⊕na )

be a k-morphism A1
k → G⊕na . We define the α⊕np -torsor Pf over A1

k by the pulling back of the

relative Frobenius morphism F (1) : G(−1)
a

⊕n
→ G⊕na , i.e., Pf

def
= f∗G(−1)

a

⊕n
. Then Pf is saturated

if and only if the images fi(t) ( 1 6 i 6 n) in H1
fpqc(A1

k, αp) = k[t]/k[tp] are linearly independent
over k.

Proof. We will show this by induction on n > 0. In the case where n = 1, then since αp is simple,

the assertion is obvious. From now on assume that n > 1 and that dimk〈fi(t) | 1 6 i 6 n− 1〉k =
n − 1. Put f ′ := (f1(t), . . . , fn−1(t)). Then Pf ′ is an α⊕n−1

p -torsor over A1
k. We denote by φ

and φ′ the homomorphism πloc(A1
k)→ α⊕np corresponding to Pf and the one πloc(A1

k)→ α⊕n−1
p

to Pf ′ , respectively. From the assumption, φ′ is surjection. Let K
def
= Ker(φ′). We then obtain

the following commutative diagram.

0 // K //

ψ

��

πloc(A1
k)

φ′ //

φ

��

α⊕n−1
p

// 0

0 // αp // α⊕np

prn

dd
// α⊕n−1
p

// 0

Then we have

φ : surjective⇐⇒ ψ 6= 1

⇐⇒ prn ◦ φ ∈ Hom(πloc(A1
k), αp)\φ′

∗
Hom(α⊕n−1

p , αp)

⇐⇒ fn(t) ∈ (k[t]/k[tp])\〈f1(t), . . . , fn−1(t)〉k
⇐⇒ dimk〈fi(t) | 1 6 i 6 n〉k = n.

This completes the proof. 2

4.2 Explicit equations defining saturated SL2(1)-torsors in the characteristic p = 2

case
We will continue to use the same notation as in § 4.1. As we have seen in Example 3.6, in
the case where k is of characteristic p = 2, there exists a saturated SL2(1)-torsor P → A1

k

(cf. Definition 2.3). On the other hand, since H1
fpqc(A1

k,GL2) = 0 and H0
fpqc(A1

k,GL2)→ H0
fpqc

(A1
k,Gm) = k∗ is surjective, we have H1

fpqc(A1
k, SL2) = 0, whence

H1
fpqc(A1

k, SL2(1)) ' SL2(k[t2])\ SL2(k[t]).
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Therefore, such a torsor P → A1
k must be obtained by the pulling back of the relative Frobenius

morphism F (1) : SL
(−1)
2 → SL2 along some k-morphism f : A1

k → SL2.

P

�

//

��

SL
(−1)
2

F (1)

��
A1
k

f // SL2

Hence, by Proposition 3.4 and Example 3.6, combining with Lemma 4.2, we can obtain an
affirmative answer to Question 4.1(1) for the pair (U,Σ) = (A1

k, SL2) in the case where p = 2. As
a consequence of it, we have the following.

Corollary 4.4. Assume p = 2. Then there exists a surjective homomorphism

πloc(A1
k)� lim

←−
r>0

SL2(r).

In particular, for any integer r > 0, there exists a surjective homomorphism πloc(A1
k)� SL2(r).

Next, we will consider Question 4.1(2) to the pair (U,Σ) = (A1
k,SL2) in the case where k is

of characteristic p = 2 and will give an answer (cf. Corollary 4.13).
Recall that the saturatedness of a finite étale torsor P → U depends only on the underlying

scheme of it. In fact, it is saturated if and only if it is (geometrically) connected (cf. [Zha13,
Lemma 2.3]). One of the difficulties of our problem is that the saturatedness of a local torsor, in
contrast to the étale case, depends also on the multiplicative structure of the underlying group
scheme. The following simple example indicates such a situation.

Example 4.5. Let l be a prime number with l 6= p. We define the k-morphism f : Gm→ Gm×Gm

by a 7→ (a, al). We define the one g : Gm → Ga × Gm as the composition Gm
f−→ Gm × Gm ⊂

Ga ×Gm. Then the underlying schemes of the torsors f∗(G(−1)
m ×G(−1)

m ) and g∗(G(−1)
a ×G(−1)

m )
are isomorphic to each other. However, the former is not saturated, but the latter is.

Hence, it seems to be difficult to obtain a concise characterization of the saturatedness of
finite local torsors purely in terms of the category N(X,x) (cf. § 2). To avoid this problem,
we will rely on a Tannakian interpretation of πN (U). For definitions and basic notions of
Tannakian categories, see [DM82, Del90]. We will use the category of generalized stratified
bundles, introduced by Esnault and Hogadi [EH12]. For the full definition of it, see [EH12]
(for the definition of stratified bundles in the usual sense, see, for example, [Gie75, doS07]).
By virtue of Lemma 4.2, the category Strat(U, 1) of 1-stratified bundles is large enough for our
purpose.

Definition 4.6. Let X be a smooth algebraic variety over a perfect field k of characteristic
p > 0. A 1-stratified bundle on X is a sequence {E(i)}∞i=0 of coherent sheaves E(i) over X(i)

together with isomorphisms σ(i) : E(i) '−→ F (1)∗E(i+1) for i > 1 and

σ(0) : F (1)∗E(0) '−→ F (2)∗E(1). (4.2)

Let E = {E(i), σ(i)}, E′ = {E′(i), σ′(i)} be arbitrary two 1-stratified bundles. A homomorphism

of E into E′ is a sequence of OX(i)-linear homomorphisms φ(i) : E(i)
→ E′(i) (i > 0) satisfying

σ′
(i) ◦ φ(i) = F (1)∗φ(i+1) ◦ σ(i), i > 1;

σ′
(0) ◦ F (1)∗φ(0) = F (2)∗φ(1) ◦ σ(0).
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The homomorphisms of 1-stratified bundles satisfy the composition rule and one obtains the
category Strat(X, 1) of 1-stratified bundles on X.

Theorem 4.7 (Esnault–Hogadi [EH12]). The category Strat(X, 1) of 1-stratified bundles is a k-
linear abelian rigid tensor category, and if one takes a k-rational point x ∈X(k), then the functor
ωx : Strat(X, 1)→ Veck; {E(i), σ(i)} 7→ x∗E(0) defines a neutral fiber functor. Furthermore, the
maximal profinite quotient of its Tannakian fundamental group π1(Strat(X, 1), ωx) coincides
with the image of F (1) : πN (X,x)→ πN (X,x)(1).

In particular, if G is a finite local k-group scheme of height one, i.e., G(1) = G, then

any homomorphism φ : πloc(X) → G factors through the maximal pro-finite local quotient
π1(Strat(X, 1), ωx)prof. loc. Denote by ψ the resulting homomorphism

ψ : π1(Strat(X, 1), ωx)prof. loc
→ G.

Let us consider the composition

hφ : Repk(G)
ψ∗−→ Repk(π1(Strat(X, 1), ωx)prof. loc) ⊂ Strat(X, 1). (4.3)

Then, from the standard Tannakian argument (cf. [Nor82, ch. II, Proposition 3]), we have the
following.

Lemma 4.8. The homomorphism φ is surjective if and only if

dimk HomStrat(X,1)(I, hφ(k[G], ρreg)) = 1.

Here I def
= {OX(i) , id} is a unit object of Strat(X, 1).

Remark 4.9. Since hφ(k[G], ρreg) is an algebra object in Strat(X, 1), the 1-stratified bundle
hφ(k[G], ρreg) admits a morphism from the unit object I→ hφ(k[G], ρreg) corresponding to the
unit element of the algebra. Thus, the dimension dimk HomStrat(X,1)(I, hφ(k[G], ρreg)) is always
greater than or equal to 1.

If π : P → X is the G-torsor corresponding to the homomorphism φ : πloc(X)→ G. Then
one can describe the 1-stratified bundle hφ(k[G], ρreg) as follows (cf. [EH12, Construction 4.1]).
We define {E(i)}∞i=1 by

E(i) def
= OX(i) ⊗ k[G] = O⊕ dim k[G]

X(i) , i > 1;

E(0) def
= (π∗OP ⊗ k[G])G.

Here G acts on π∗OP ⊗ k[G] by

(P ×G)×G 3 ((p, h), g) 7→ (p · g−1, h · g) ∈ P ×G.

We define {σ(i)}∞i=0 by σ(i) def
= id for i > 1 and σ(0) the canonical trivialization morphism:

F (1)∗((π∗OP ⊗ k[G])G)
'−→ F (2)∗E(1) = OX(−1) ⊗ k[G]. (4.4)

Here, since G is of height one, the torsor F (1)∗P is trivial and admits a canonical section F (1)∗P ⊃
(F (1)∗P )red = X(−1). The isomorphism σ(0) is the one corresponding to this section. We then
have hφ(k[G], ρreg) = {E(i), σ(i)}. Note that (k[G], ρreg) is a G-torsor object in Repk(G) and the
functor hφ is a tensor functor, hence hφ(k[G], ρreg) gives a G-torsor object in Strat(X, 1). We also

denote P 1-strat def
= hφ(k[G], ρreg). Lemma 4.8 implies that P is saturated if and only if P 1-strat is

connected as an algebra object in Strat(X, 1).
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Example 4.10. Let m > 0 be an integer and f : Gm → Gm a k-morphism defined by a 7→ am.

Let P 1-strat = {E(i), σ(i)} with P
def
= f∗G(−1)

m a µp = Spec k[z]/(zp − 1)-torsor. Then

E(0) =

(
k[x, x−1, y]

(yp − xm)
⊗ k[z]

(zp − 1)

)µp
=

p−1⊕
j=0

k[x, x−1] · (yz)j .

Therefore, the representation matrix A ∈ GLp(k[x(−1)±1]) of σ(0) with respect to the basis
{yzj | 0 6 j 6 p− 1} and {zj | 0 6 j 6 p− 1} is given by the diagonal matrix:

A =


1 0 · · · 0

0 x(−1)m · · · 0
· · · · · ·

0 0 · · · x(−1)m(p−1)

 .

A direct computation then recovers the following well-understood result:

HomStrat(Gm,1)(I, P 1-strat) '

{
k if p - m,
k[µp] if p | m.

Example 4.11. Let n > 0 be an integer and f = (fi(x)) ∈ k[x]⊕n = Mork(A1
k,G⊕na ) a k-morphism

(cf. Proposition 4.3). Let P 1-strat = {E(i), σ(i)} with

P
def
= f∗G(−1)⊕n

a = Spec
k[x, yi (1 6 i 6 n)]

(ypi − fi(x) (1 6 i 6 n))

an α⊕np = Spec k[zi(1 6 i 6 n)]/(zpi (1 6 i 6 n))-torsor. Then

E(0) =
⊕

06j1,...,jn6p−1

k[x] · (y1 + z1)j1 · · · (yn + zn)jn .

The representation matrix A ∈ GLpn(k[x(−1)]) of σ(0) with respect to the basis

{(y1 + z1)j1 · · · (yn + zn)jn}, {z1
j1 · · · znjn}

is unipotent and, by a direct computation, one can verify that the condition that {fi(x)}ni=1 ⊂
k[x]/k[xp] is linearly independent over k is equivalent to the condition that

dimk HomStrat(A1
k,1)(I, P

1-strat) = 1.

This then gives another proof of Proposition 4.3.

Now let us prove the main result of this subsection.

Theorem 4.12. Assume p = 2. Let

f =

(
f22(x)x−m −f12(x)x−m

−f21(x)x−m f11(x)x−m

)
∈ GL2(k[x±1]) = Mork(Gm,GL2)

be a k-morphism with fij(x) ∈ k[x] (1 6 i, j 6 2) and

det

(
f11(x) f12(x)
f21(x) f22(x)

)
= xm

for some m ∈ Z>0. Let P
def
= f∗GL

(−1)
2 be the resulting torsor over Gm.
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(1) In the case 2 | m, assume that one of the following conditions is satisfied:

• dimk〈f11, f21〉 = dimk〈f11f21, f12f22〉 = 2;

• dimk〈f12, f22〉 = dimk〈f11f21, f12f22〉 = 2.
Then we have

HomStrat(Gm,1)(I, P 1-strat) ' k[µ2].

(2) In the case 2 - m, assume that one of the following conditions is satisfied:

• dimk〈f11, f21〉 = 2, dimk〈f11f21, f12f22〉 = dimk〈f11f12, f21f22, xm〉 = 3;

• dimk〈f12, f22〉 = 2, dimk〈f11f21, f12f22〉 = dimk〈f11f12, f21f22, xm〉 = 3

Then we have
HomStrat(Gm,1)(I, P 1-strat) = k.

Here, for each f ∈ k[x], f denotes the image of f in k[x]/k[xp].

Proof. Let P 1-strat = {E(i), σ(i)}. Let π : P → Gm be the structure morphism. We then have

π∗OP =
k[x±1, yij (i, j = 1, 2)]

(y2
11 − f22(x)x−m, y2

12 − f12(x)x−m, y2
21 − f21(x)x−m, y2

22 − f11(x)x−m)
.

Let ρP (respectively ρ0) be the coaction π∗OP → π∗OP ⊗ k[GL2(1)] induced by the action
P ×GL2(1)→ P (respectively the one by the trivial action). Let ι be the antipode of k[GL2(1)].
Then the composition

π∗OP ⊗ k[GL2(1)]
ρ⊗id−−−→ π∗OP ⊗ k[GL2(1)]⊗ k[GL2(1)]

id⊗ι⊗id−−−−−→ π∗OP ⊗ k[GL2(1)]⊗ k[GL2(1)]
id⊗m−−−→ π∗OP ⊗ k[GL2(1)] (4.5)

gives a k[GL2(1)]-comodule isomorphism

(π∗OP , ρP )⊗ (k[GL2(1)], ρreg)
'−→ (π∗OP , ρ0)⊗ (k[GL2(1)], ρreg). (4.6)

If one writes k[GL2(1)] = k[zij ]/(z
2
ij − δij), then(
ι(z11) ι(z12)
ι(z21) ι(z22)

)
=

(
z11 z12

z21 z22

)−1

.

Therefore, via the map (4.5), the element

eij
def
=

2∑
q=1

yiq ⊗ zqj ∈ π∗OP ⊗ k[GL2(1)]

is mapped to yij ⊗ 1, which belongs to

((π∗OP , ρ0)⊗ (k[GL2(1)], ρreg))GL2(1) = k[x±1][yij ⊗ 1 | 1 6 i, j 6 2].

Hence, by (4.6), we find that

E(0) = k[x±1][eij | 1 6 i, j 6 2].

Notice that E(i) ' k[x±1]⊕24 with free basis {em11
11 em12

12 em21
21 em22

22 |mij = 0, 1}.
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Let A ∈ GL24(k[x(−1)±1]) be the representation matrix of the inverse isomorphism σ(0)−1

with respect to the basis

1, ν11ν21, ν12ν22, ν11ν12ν21ν22, ;

ν11, ν12, ν21, ν22,

ν11ν12, ν11ν22, ν12ν21, ν21ν22;

ν11ν12ν21, ν11ν12ν22, ν11ν21ν22, ν12ν21ν22

for ν ∈ {e, z}. One then obtains

A =


C O O O

B ⊗ E O B ⊗D
B ⊗B O

O B ⊗ x(−1)mE

 ,

with

B =

(
f ′11(x(−1)) f ′21(x(−1))

f ′12(x(−1)) f ′22(x(−1))

)
; E =

(
1 0
0 1

)
;

C =


1 f ′11(x(−1))f ′21(x(−1)) f ′12(x(−1))f ′22(x(−1)) ∗
0 x(−1)m 0 f ′12(x(−1))f ′22(x(−1))x(−1)m

0 0 x(−1)m f ′11(x(−1))f ′21(x(−1))x(−1)m

0 0 0 xm

 ;

D =

(
0 f ′12(x(−1))f ′22(x(−1))

f ′11(x(−1))f ′21(x(−1)) 0

)
,

where {f ′ij(x(−1))} is defined by

f ′ij(x
(−1))2 = fij(x).

Here, notice that x(−1)2 = x and that detB = x(−1)m. Furthermore, the assumption on {fij(x)}
implies the same condition on {f ′ij(x(−1))}.

Now one can reduce the problem to calculating the right-hand side of the following equation:

HomStrat(Gm,1)(I, P 1-strat) ' {(a, b) ∈ k⊕24 × k[x±1]⊕24 |A · a = b}.

First we consider the case where 2 |m. In this case, without loss of generality, we may assume
that m = 0. Note that the condition that det(fij(x)) = 1 implies that the set

{f11f12, f21f22}

is also linearly independent over k. Indeed, this follows from the equation:(
f11f12

f21f22

)
=

(
f2

12 f2
11

f2
22 f2

21

)(
f11f21

f12f22

)
.

We will solve the simultaneous equations A · a = b from the bottom. Then the condition that
the set {f ′11, f

′
21}, or {f ′12, f

′
22} is linearly independent implies that

ai = 0 (13 6 i 6 16).
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Moreover, the conditions that {f ′11f
′
12, f

′
21f
′
22} is linearly independent and that detB = f ′11f

′
22−

f ′12f
′
21 = 1 imply that

ai = 0 (i = 9, 12),

a10 = a11.

By solving the equations (
C O
O B ⊗ E

)
,

again combined with the assumption on f ′ij , we have

ai = 0 (2 6 i 6 8).

All the above computations then imply

HomStrat(Gm,1)(I, P 1-strat) ' k ⊕ k · det(zij) ' k[µ2].

Finally, let us consider the case where 2 -m. In this case, the equations in the partB⊗x(−1)mE
cannot imply ai = 0 (13 6 i 6 16). However, by solving the simultaneous equations(

O B ⊗ E O B ⊗D
)
a = b,

we can conclude that

ai = 0 (5 6 i 6 8 or 13 6 i 6 16).

Next let us solve the part C. Notice that {x(−1)m, f ′11f
′
21x

(−1)m} is linearly independent over

k. Thus, we find that a4 = 0. On the other hand, by the assumption that {f ′11f
′
21, f

′
12f
′
22} is

linearly independent, we also have a2 = a3 = 0. Finally let us solve the part B ⊗ B. Then the
condition that f ′11f

′
21 6= 0 in k[x(−1)±1]/k[x(−1)±2] implies that a10 = a11. Then the condition

that {f11f12, f21f22, xm} is linearly independent over k implies that a9 = a10 = a11 = a12 = 0.
Therefore, we can conclude that

HomStrat(Gm,1)(I, P 1-strat) = k. 2

As an immediate consequence of Theorem 4.12 (or its proof), we have the following.

Corollary 4.13. Assume p = 2. Let

f =

(
f22(x) f12(x)
f21(x) f11(x)

)
∈ SL2(k[x]) = Mork(A1

k, SL2)

be a k-morphism. Then the resulting SL2(1)-torsor f∗ SL
(−1)
2 → A1

k is saturated if and only if one
of the following conditions is satisfied:

• dimk〈f11, f21〉 = dimk〈f11f21, f12f22〉 = 2;

• dimk〈f12, f22〉 = dimk〈f11f21, f12f22〉 = 2.

Proof. By considering the composition

Gm ↪→ A1
k

f
−→ SL2 ↪→ GL2,

1652

https://doi.org/10.1112/S0010437X18007194 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X18007194


Purely inseparable analogue of Abhyankar’s conjecture

we are reduced to the case where f : Gm → GL2 with det(f) = 1. Thus, the statement follows
from the argument in the proof of Theorem 4.12, noticing that the condition

dimk HomStrat(Gm,1)(I, P 1-strat) = 2

implies the image of the homomorphism πloc(Gm) → GL2(1) corresponding to the torsor P =

f∗GL
(−1)
2 → Gm coincides with SL2(1). 2

Remark 4.14. For example, the embedding

A1
k 3 a 7→

(
1 + a2 + a3 a
a+ a2 1

)
∈ SL2

satisfies the condition in Corollary 4.13.

Combined with Lemma 4.2, Theorem 4.12 also implies the following.

Corollary 4.15. Assume p = 2. Then, there exists a surjective homomorphism

πloc(Gm)� lim
←−
r>0

GL2(r).

In particular, for any r > 0, the rth Frobenius kernel GL2(r) appears as a finite quotient of

πloc(Gm).

Proof. It suffices to find a k-morphism f ∈ GL2(k[x±1]) = Mork(Gm,GL2) satisfying the
condition of Theorem 4.12. The morphism

Gm 3 a 7→


1

a
+

1

a4

1

a2

1
1

a

 ∈ GL2

gives such a one. 2

Remark 4.16. (1) Corollary 4.13, combined with Lemma 4.2, gives an answer to Question 4.1(2)
for the pair (U,Σ) = (A1

k,SL2).
(2) Theorem 4.12 and the proof of Corollary 4.15, combined with Lemma 4.2, gives an

affirmative answer to Question 4.1(1) for the pair (U,Σ) = (Gm,GL2) in the case where k is of
characteristic p = 2. Furthermore, since X(GL2(r)) = Z/2rZ ⊂ Q2/Z2 (note that the first equality
follows from the exactness of 1→ SL2(r)→ GL2(r)→ µpr → 1 and X(SL2(r)) = 1), Corollary 4.15
gives an affirmative answer to Question 3.3 for Gm and for GL2(r) (r > 0) in the case where k is of
characteristic p = 2. However, we have restricted our attention to a special class of k-morphisms
Gm→ GL2, so it is not enough to give a complete answer to Question 4.1(2).

4.3 Bertini type theorem for finite local torsors and its application
Finally let us prove a purely inseparable analogue of a Bertini type theorem (cf. [Jou83]). As an
application, we will give an affirmative answer to Question 4.1(1) for the pair (A1

k,Σ) with Σ
a semi-simple simply connected algebraic group over k, whence, to Question 3.3 for A1

k and for
Σ(r) (r > 0).
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Theorem 4.17. Let n > 2 be an integer. Let k be a perfect field of positive characteristic p > 0.
Let G be a finite local k-group scheme of height one and π : P → Ank be a saturated G-torsor.
Then there exists a closed immersion ι : An−1

k ↪→ Ank such that the G-torsor ι∗P → An−1
k obtained

by pulling back P along ι is saturated as well.

To prove this theorem, we will rely on the Tannakian interpretation (cf. Theorem 4.7) again.
Then we are reduced to showing the following lemma of linear algebras.

Lemma 4.18. Let n > 2 be an integer. Let k be a perfect field of positive characteristic p > 0.
Let V1, . . . , Vm ⊂ k[x1, . . . , xn]/k[xp1, . . . , x

p
n] be finite dimensional subspaces. Then there exists a

polynomial g = g(x1, . . . , xn−1) so that the k-linear map

k[x1, . . . , xn]/k[xp1, . . . , x
p
n]→ k[x1, . . . , xn−1]/k[xp1, . . . , x

p
n−1];

xi 7→

{
xi, 1 6 i 6 n− 1,

g(x1, . . . , xn−1), i = n,

maps all the subspaces Vi injectively into k[x1, . . . , xn−1]/k[xp1, . . . , x
p
n−1].

Proof. By considering V := V1 + · · · + Vm, we are reduced to the case where m = 1. Let V be
a finite dimensional subspace of k[x1, . . . , xn]/k[xp1, . . . , x

p
n]. Without loss of generality, we may

assume that V is of the form

V = 〈xm1
1 · · ·x

mn
n | 0 6 mi 6 d; p - mi for some i〉

for a sufficiently large integer d > 0. Take an integer M > d with p - M and an integer N > 0
with pN > d(M + 1). Let us define

g
def
=

n−1∏
i=1

(xp
N

i + xMi ).

Note that the following subset of k[x1, . . . , xn−1]/k[xp1, . . . , x
p
n−1] is linearly independent over k:

xm1
1 · · ·x

mn−1

n−1 (0 6 mi 6 d,mn = 0; p - mi for some 1 6 i 6 n− 1),
n−1∏
i=1

xmi+mnM
i (p | mi for any 1 6 i 6 n− 1,whence p - mn),

n−1∏
i=1

xmi+mnpN

i (0 6 mi 6 d; mn 6= 0; p - mi for some 1 6 i 6 n− 1).

One can then conclude that the polynomial g gives a desired polynomial. 2

Proof of Theorem 4.17. We will show that there exists a closed immersion ι : An−1
k ↪→ Ank such

that

dimk HomStrat(An−1
k ,1)(I, (ι

∗P )1-strat) = 1.

Note that (ι∗P )1-strat = ι∗(P 1-strat) and that, from the assumption, we have

dimk HomStrat(An
k ,1)(I, P 1-strat) = 1. (4.7)
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Let P 1-strat = {E(i), σ(i)}. By Serre’s conjecture on vector bundles on an affine space (cf. [Lam78]),
the vector bundle E(0) is a free OAn

k
-module. Let

A ∈ GLq(k[x
(−1)
1 , . . . , x(−1)

n ])

with q = dimk k[G], which is some power of p, be the representation matrix of σ(0)−1 with respect
to some basis. The assumption (4.7) then amounts to saying that the vector space

HomStrat(An
k ,1)(I, P 1-strat) ' {a ∈ k⊕q |A · a ∈ k[x1, . . . , xn]⊕q}

is of dimension one. Then, by permuting basis if necessary, we may assume that

{a ∈ k⊕q |A · a ∈ k[x1, . . . , xn]⊕q} =



a
0
...
0


∣∣∣∣∣∣∣∣ a ∈ k

 .

Then, the matrix A has the following form:

A =


a11 ∗ · · · ∗
a21 ∗ · · · ∗
...

. . .
aq1 ∗ · · · ∗

 with ai1 ∈ k[x1, . . . , xn] (1 6 i 6 q).

Let us write

B
def
=

a12 · · · a1q

· · ·
aq2 · · · aqq

 .

Then the condition that dimk HomStrat(A1
k,1)(I, P 1-strat) = 1 is equivalent to the condition that

B · b 6∈ k[x1, . . . , xn]⊕q (0 6= b ∈ k⊕q−1).

Therefore, we are reduced to showing the following statement: if a matrix

B = (bij) ∈ Matrixs,t(k[x
(−1)
1 , . . . , x(−1)

n ])

satisfies the condition
B · b 6∈ k[x1, . . . , xn]⊕t (0 6= b ∈ k⊕s),

then there exists a polynomial g = g(x
(−1)
1 , . . . , x

(−1)
n−1 ) such that the condition

B′ · b 6∈ k[x1, . . . , xn−1]⊕t (0 6= b ∈ k⊕s),

is fulfilled. Here B′ = (b′ij) is a matrix with b′ij = bij(x
(−1)
1 , . . . , x

(−1)
n−1 , g). Indeed, by applying

Lemma 4.18 to the subspaces

Vi
def
= 〈bi1, . . . , bis〉 ⊂ k[x

(−1)
1 , . . . , x(−1)

n ]/k[x1, . . . , xn] (1 6 i 6 t),

we can find a polynomial g = g(x
(−1)
1 , . . . , x

(−1)
n−1 ) so that the homomorphism

k[x
(−1)
1 , . . . , x(−1)

n ]/k[x1, . . . , xn]→ k[x
(−1)
1 , . . . , x

(−1)
n−1 ]/k[x1, . . . , xn−1]

induced by x
(−1)
n 7→ g(x

(−1)
1 , . . . , x

(−1)
n−1 ) maps all the subspaces Vi injectively into

k[x
(−1)
1 , . . . , x

(−1)
n−1 ]/k[x1, . . . , xn−1].

Then for any b ∈ k⊕s, the condition that B′ · b ∈ k[x1, . . . , xn−1]⊕t implies the condition that
B · b ∈ k[x1, . . . , xn]⊕t. This completes the proof. 2
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Corollary 4.19. Let k be a perfect field of positive characteristic p > 0. Let Σ be a semi-simple

simply connected algebraic group over k. Then there exists a surjective homomorphism

πloc(A1
k)� lim

←−
r>0

Σ(r).

In particular, for any r > 0, the rth Frobenius kernel Σ(r) of Σ appears as a finite quotient of

πloc(A1
k).

Proof. We will adopt the argument of [Ser92, § 3.2]. Let us find a k-morphism A1
k → Σ so that

the resulting tower of torsors

· · ·→ Σ(−r)|A1
k
→ · · ·→ Σ(−1)|A1

k
→ A1

k

is saturated. By virtue of Lemma 4.2, it suffices to find a k-morphism A1
k → Σ so that Σ(−1)|A1

k

is saturated. Fix a maximal torus T < Σ and a set of positive roots. Let U+ < Σ (respectively

U− < Σ) be the unipotent radical corresponding to the positive roots (respectively the negative

roots). Let us define a k-morphism f : U+ × U−→ Σ by the composition

U+ × U− ↪→ Σ× Σ
m−→ Σ.

Here the first map is the natural inclusion and the second one the multiplication of Σ. Then the

pulling-back P
def
= f∗Σ defines a saturated Σ(1)-torsor over U+ × U−. Indeed, notice that the

diagram

U±(−1)

F (1)

��

� � // Σ(−1)

F (1)

��
U± �
� i± // U+ × U− f // Σ

commutes. Then the Σ(1)-torsor i∗±P → U± is reduced to the saturated U±(1)-torsor U±(−1)
→ U±,

i.e.,

i∗±P ' Ind
Σ(1)

U±
(1)

(U±(−1))
def
= U±(−1) ×U

±
(1) Σ(1).

If we denote by φ : πloc(U+×U−)→ Σ(1) (respectively ψ± : πloc(U±)→ U±(1)) the homomorphism

corresponding to the torsor P (respectively i∗±P ), this amounts to saying that the diagram

homomorphism

πloc(U±) //

ψ±
����

πloc(U+ × U−)

φ

��
U±(1)
� � // Σ(1)

commutes. Therefore, Im(φ) ⊃ U±(1), whence Im(φ) = 〈U±(1)〉 = Σ(1), where, for the last equality,

see Remark 3.7(4). Therefore, P is a saturated Σ(1)-torsor over U+×U− ' ANk for some N > 1.

Then by applying Theorem 4.17, we can conclude that there exists a closed immersion ι : A1
k ↪→

U+×U− so that ι∗P → A1
k is saturated as well. Therefore, the k-morphism f ◦ ι : A1

k→ Σ gives

a desired one. This completes the proof. 2
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Mar12 S. Marques, Actions modérées de schémas en groupes affines et champs modérés, C. R. Math.
Acad. Sci. Paris 350 (2012), 125–128.

Mum08 D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in
Mathematics, vol. 5, (Published by the Tata Institute of Fundamental Research, Bombay
by Hindustan Book Agency, New Delhi, 2008).

Nor76 M. V. Nori, On the representations of the fundamental group, Compositio Math. 33 (1976),
29–41.

Nor82 M. V. Nori, The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982),
73–122.

Nor94 M. V. Nori, Unramified coverings of the affine line in positive characteristic, in Algebraic
geometry and its applications (West Lafayette, IN, 1990) (Springer, New York, 1994),
209–212.

PS00 A. Pacheco and K. F. Stevenson, Finite quotients of the algebraic fundamental group of
projective curves in positive characteristic, Pacific J. Math. 192 (2000), 143–158.

Ray94 M. Raynaud, Revêtements de la droite affine en caractéristique p > 0 et conjecture
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