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Abstract. We present predictions for cosmological parameter constraints from combined mea-
surements of second- and third-order aperture mass statistics of cosmic shear. The generalized
third-order aperture mass is introduced and its relation to the convergence bispectrum is given.
This quantity contains (in principle) all information about the bispectrum. Using ray-tracing
simulations, we perform a Fisher matrix analysis for various cosmological parameters and show
that the combination of 〈M2

ap〉 and 〈M3
ap〉 improves the parameter estimation significantly.

1. Introduction
The majority of cosmic shear observations, using deep surveys (z <∼ 1) with large sky

coverage (up to ∼ 100 square degree), is up to now based on second-order statistics.
Shear two-point functions have been measured with great success, and cosmological pa-
rameters, in particular the (dark+luminous) matter density Ωm and the power spectrum
normalization σ8 have been significantly constrained (e.g. van Waerbeke et al. 2004;
Jarvis et al. 2003; Réfrégier et al. 2002; Hoekstra et al. 2002).

Only recently, third-order statistics of cosmic shear have been detected successfully
(Bernardeau 2002; Pen et al. 2003; Jarvis et al. 2004), consistent with predictions from
the concordance ΛCDM model.

Although the detection of the small amplitude signal of higher-order statistics is very
challenging, it contains valuable information about the dark matter distribution in the
Universe:
• The large-scale matter distribution in the Universe is non-Gaussian on scales smaller

than ∼ 10 h−1 Mpc, corresponding to angular scales <∼ 50′ for typical redshifts involved
for cosmic shear. This non-Gaussianity arises from non-linear gravitational instabilities
and is only measurable using higher-order statistics.
• The dependence on cosmological parameters is different for second- and third-order

functions of cosmic shear, therefore (near-)degeneracies between cosmological parame-
ters can be lifted by combined measurements. For example, the most prominent Ωm-
σ8-degeneracy can be broken using the reduced skewness of the aperture mass statistics〈
M3

ap(θ)
〉
/
〈
M2

ap(θ)
〉2 which strongly depends on Ωm but is only a weak function of σ8

(see Fig. 1, also Schneider et al. 1998; van Waerbeke et al. 1999).

2. Convergence bispectrum
The bispectrum Bκ of the surface mass density κ is defined as〈
κ̂(��1)κ̂(��2)κ̂(��3)

〉
= (2π)2δD(��1 + ��2 + ��3)

[
Bκ(��1, ��2) + Bκ(��2, ��3) + Bκ(��3, ��1)

]
; (2.1)

it is defined for closed triangles in Fourier space. For a Gaussian random field, the bi-
spectrum vanishes, and different Fourier modes are uncorrelated. In the general case
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Figure 1. Left panel: The measured near-degeneracy between Ωm and σ8 (van Waerbeke et al.
2004). Right panel: The reduced skewness plotted as a function of Ωm (thin lines) and σ8 (thick
curves), for two different aperture radii θ = 1′ (dashed) and θ = 10′ (solid). The non-varying
parameters are kept fixed to Ωm = 0.3 and σ8 = 0.9 respectively.

however, there are mode couplings – the bispectrum is a measure of the amplitude of
these couplings. Because κ is statistically isotropic, the bispectrum can be reparametrized
as B(��1, ��2) = b(�1, �2, ϕ) where ϕ = ∠(��1, ��2).

In order to model the bispectrum, we use the ansatz from Scoccimarro & Couchman
(2001), called Hyper-extended perturbation theory (HEPT). This approach is based on
(second-order) perturbation theory (PT). It is a modification of PT on small-scales,
obtained by fitting the highly non-linear regime to N-body simulations. In both PT and
HEPT, the above defined function b can be written as

b(�1, �2, ϕ) =
2∑

m=0

cosm(ϕ)b̄(m)
κ (�1, �2). (2.2)

3. Aperture mass statistics
3.1. Definition

The aperture mass is defined as a filtered integral over the convergence κ in a circular
aperture. It also can be written as a filtered integral over the shear tangential to the
aperture center (Kaiser, N. et al. 1994; Schneider 1996):

Map(θ) =
∫

d2x Uθ(x)κ(�x) =
∫

d2x Qθ(x)γt(�x). (3.1)

The second equality holds if Uθ is a compensated filter, i.e.
∫

dx x Uθ(x) = 0. Using this
relation, it is possible to determine Map in a local region on the sky, by measuring the
tangential ellipticities of galaxies within the aperture, which are estimators of the shear
in the weak lensing regime, 〈εt〉 = γt.

In the following, we will use the filter functions introduced by Crittenden et al. (2002):

Uθ(x) =
1

2πθ2

(
1 − x2

2θ2

)
e−

x2

2θ2 ; Qθ(x) =
x2

4πθ4
e−

x2

2θ2 . (3.2)

3.2. Second moment
The second moment or variance is of main interest for cosmic shear observations, because
it is a direct measure of the power spectrum Pκ of the projected large-scale matter
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fluctuations: 〈
M2

ap(θ)
〉
≡ 〈Map(θ)Map(θ)〉 =

1
2π

∫
d� �W (θ�)Pκ(�), (3.3)

where the filter function W (η) = η4 exp(−η2)/4 is a peaked, localized function, which
makes 〈M2

ap〉 a local measure of the power spectrum. By measuring this quantity for
different aperture radii θ, the power spectrum can be probed locally and scanned over a
large range of wave numbers.

3.3. Third moment

The third moment or skewness of the aperture mass
〈
M3

ap(θ)
〉
≡ 〈Map(θ)Map(θ) Map(θ)〉

can be written as a function of the bispectrum of the convergence κ. It is mainly sensitive
to wave vectors which form equilateral triangles in Fourier space, It therefore probes
basically the diagonal of the bispectrum; we denote this quantity as 〈M3

ap,d(θ)〉.
It is thus very useful to generalize this expression, and define a quantity which is the

correlator of Map using three different filter radii:〈
M3

ap(θ1, θ2, θ3)
〉
≡ 〈Map(θ1)Map(θ2)Map(θ3)〉 (3.4)

This quantity probes (in principle) the full �-space of the bispectrum.
With the definition of (2.2), we write

〈
M3

ap(θ1, θ2, θ3)
〉

as a function of the bispectrum:

〈
M3

ap(θ1, θ2, θ3)
〉

=
∫

d�1 �1

∫
d�2 �2

2∑
m=0

I(m)(θ1, θ2, θ3, �1, �2)b̄(m)
κ (�1, �2). (3.5)

The filter functions I(m), as shown in Fig. 2, are relatively sharply peaked, as in the case
of

〈
M2

ap

〉
. Thus,

〈
M3

ap

〉
is a local measure of the bispectrum. Apparently, 〈M3

ap,d〉 mainly

probes the diagonal of the b̄
(m)
κ , whereas the generalized third-order aperture mass using

different filter radii is sensitive to a larger region in �-space and contains more information
about the bispectrum and thus cosmology.

4. Ray-tracing simulations
In order to predict the measurement accuracy of cosmological parameters using second-

and third-order aperture statistics of cosmic shear, we use 36 ΛCDM ray-tracing sim-
ulations, see Ménard et al. (2003) for details. Each field is a 1024 × 1024 κ-grid and
represents a 12 square degree section of the sky. The source galaxies are situated at a
common redshift of z0 = 0.977.

The results for the aperture mass statistics from the ray-tracings match very well the
theoretical predictions for filter radii θ >∼ 1′, as shown in Fig. 3.

We split up every field in four subfields, and calculate the covariances of
〈
M2

ap

〉
and〈

M3
ap

〉
by averaging over the 144 subfields, neglecting the small correlation between

adjacent subfields. Thus, our simulated survey corresponds to a single field with an
area of three square degree. To each κ pixel, we add an intrinsic ellipticity as a Gaussian
random variable with dispersion σε = 0.3. Thus, the covariance contains errors both from
cosmic variance as well as from intrinsic ellipticities. We verify that our calculation of the
covariance from galaxies at grid points instead of (quasi-)random positions introduces
no artefacts, and also that no smoothing of the κ field is necessary. We compare the
covariance of

〈
M2

ap

〉
for Gaussianized κ fields with the method from Kilbinger & Schneider

(2004) and find excellent agreement between the two approaches.
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Figure 2. Contours of the integrand I(m) for m = 0, 1, 2 from left to right are plotted for
different values of θi as a function of �1 and �2 in units of h Mpc−1. The right-most panels
show the profile of the diagonal of I(m), where the solid, dashed and dotted lines correspond to
m = 0, 1 and 2 respectively.

5. Constraints on cosmological parameters
In order to quantify the accuracy of the determination of cosmological parameters using

second- and third-order aperture mass statistics of cosmic shear, we calculate the Fisher
matrix Fij (Tegmark 1997) to get degeneracy directions and amplitudes for different
combinations of cosmological parameters. The most important quantity obtained from
the Fisher matrix is the minimum variance bound (MBV), the lower bound of the 1-σ-
uncertainty for any unbiased estimator.

We use four different filter radii θ = 1.4, 3.9, 10.8 and 18 arc minutes and obtain a total
of 24 independent data points (4 for

〈
M2

ap

〉
and 20 for

〈
M3

ap

〉
).

As an illustrative example, we plot the MVB as error ellipses in Fig. 4 for combinations
of two parameters. All hidden parameters are kept fixed. Note that a flat Universe is
assumed (except in the case where both Ωm and ΩΛ enter the Fisher matrix.) Clearly,
a substantial improvement is obtained by combining second- and third-order aperture
statistics. Also, as expected, the generalized

〈
M3

ap

〉
gives better constraints than the

“diagonal” version of the skewness 〈M3
ap,d〉.

If we include more parameter in our analysis, it is necessary to introduce weak priors,
in order to regularize the likelihood function and to keep the MVBs reasonably small. For

https://doi.org/10.1017/S1743921305001845 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921305001845


Third-Order Aperture Mass Statistics of Cosmic Shear 85

Ray−tracings
PD

1.0 10.0

10−5

2

2

5

θ [arcmin]

<Map
2(θ)>

Ray−tracings
HEPT
PT

1.0 10.0
10−10

10−9

10−8

10−7

θ [arcmin]

<Map
3(θ,  θ,  θ)>

Ray−tracings
HEPT
PT

1.0 10.0
10−10

10−9

10−8

10−7

θ [arcmin]

<Map
3(θ, 3 θ, 5 θ)>

Figure 3.
〈
M2

ap

〉
and

〈
M3

ap

〉
from the ray-tracing simulations as compared to theoretical

predictions. The error bars are the rms from the 36 fields. PD=Peacock & Dodds (1996).

each parameter, we assume an additional Gaussian prior of unit variance. The absolute
values of the MVBs increase with the width of the prior, however the relative MVBs
between the different statistics and their combination is only weakly depending on the
priors.

In Table 1, the main result of this work is presented. The MVBs for combinations of
three and four cosmological parameters are shown for

〈
M2

ap

〉
, the generalized

〈
M3

ap

〉
and

the combination of both measures. The hidden parameters are again fixed; if not both
Ωm and ΩΛ are varying, a flat Universe is assumed. In all cases, a considerable decrease
of the MVBs is obtained combining second- with third-order Map-statistics.

Constraints on the cosmological constant are very poor; in order to make improve-
ments here, one has to include redshift information and do shear tomography, see e.g.
Hu (1999) and Takada & Jain (2004). The uncertainty in the source redshift highly
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Figure 4. 1-σ error ellipses for some combinations of two cosmological parameters. Blue dashed
line:

〈
M2

ap

〉
, red dotted line:
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〉
, green solid line:
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〉
, violet dash-dotted line: combina-
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increases the errors of all parameters; this fact will most likely also hold for a continuous
source redshift distribution instead of a single z-plane. Detailed knowledge about this
distribution is therefore of great importance, and it can be obtained by measuring pho-
tometric redshifts or by using the z-distribution of other (spectroscopic) galaxy surveys
with similar observation parameters.

From Fig. 4, one sees that the directions of degeneracy between parameters are similar
for

〈
M2

ap

〉
and

〈
M3

ap

〉
. However, there are differences, which help to at least partially

lift the degeneracies by combined measurements. The figures in Table 1 reveal that in
some cases rather large MVBs for

〈
M2

ap

〉
and

〈
M3

ap

〉
get much smaller for the combined

statistics, which is due to the difference in the directions of degeneracy in parameter
space.

Table 1. MVBs for various combinations of three and four cosmological parameters. The hidden
parameters are kept fixed. ‘2’, ‘3’ and ‘2+3’ stand for

〈
M2

ap

〉
,

〈
M3

ap

〉
and the combination of

both statistics respectively.

Ωm σ8 Γ ΩΛ

2 0.44 0.63 0.13
3 0.47 0.61 0.16

2+3 0.19 0.29 0.09

2 0.43 0.71 0.44 0.87
3 0.49 0.64 0.35 0.69

2+3 0.23 0.31 0.17 0.60

Ωm σ8 Γ z0

2 0.39 0.54 0.33
3 0.31 0.39 0.46

2+3 0.18 0.21 0.21

2 0.57 0.67 0.28 0.71
3 0.57 0.64 0.21 0.62

2+3 0.49 0.50 0.21 0.52
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