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The role played by patterned heating in reducing pressure losses within vertical conduits
is investigated. The heating generates flow separation structures which reduce the direct
contact between the stream and the sidewalls, thereby limiting the frictional resistance.
This also modifies the temperature field thereby inducing a net buoyancy force which
may either assist or oppose the pressure gradient required to maintain a fixed flow rate.
If the flow Reynolds number is increased sufficiently, the separation structures may be
washed away, which means that the pressure-gradient-reducing mechanism is eliminated.
The details of the system response are a function of the form of spatial heating distribution,
its intensity, the flow Reynolds number and the fluid Prandtl number. Carefully chosen
heating of the two walls can induce a pattern interaction effect and a judicious choice of
the two patterns can have as much as an order of magnitude effect on the system response.
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1. Introduction

The minimization of pressure losses within conduits is of great interest as otherwise there
is likely to be an unnecessary energy cost incurred to maintain the movement of fluid.
Such losses stem from one of two main origins: they can be created by the interaction of
pressure with the solid walls thereby leading to interaction drag (Mohammadi & Floryan
2012) or arise from the friction between the fluid and the boundaries. Mechanisms that
create frictional drag are reasonably well understood but possible strategies to control and
reduce this drag are not so advanced. The results presented in this paper provide some
general guidance as to how heating patterns might be used to reduce frictional drag.
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This is accomplished by encouraging the formation of a net buoyancy force, thereby
providing propulsion augmentation in vertical conduits. At face value it might seem that by
simply imposing a strong thermal gradient on the slot one could reduce the density of fluid
and hence promote the buoyancy effects. Unfortunately, this elementary technique is rarely
helpful because the magnitude of the permitted temperature differences is restricted by
potential changes in the thermophysical properties of the fluid; this limitation is especially
pertinent when the conduit is long. An alternative approach is proposed in this paper
where the use of distributed heating patterns with zero mean value is suggested; this
eliminates the need for large temperature differences. The resulting thermal field is now
known as structured convection (Hossain & Floryan 2013) – a term that is used to reflect
the fact that its well-defined topology is controlled by the underlying heating pattern. This
convection represents a forced system response which contrasts with the perhaps more
familiar Rayleigh–Bénard convection that arises as a bifurcation from the pure conduction
state. We point out that there is a well-developed and extensive literature that discusses
convection driven by horizontal temperature gradients (Hughes & Griffiths 2008) but this
cannot simply be extrapolated to vertical conduits.

Numerous studies of structured convection in horizontal channels have demonstrated
conclusively the clear potential for using carefully chosen heating patterns to limit pressure
losses (Hossain, Floryan & Floryan 2012; Floryan & Floryan 2015; Hossain & Floryan
2016; Inasawa, Taneda & Floryan 2019). A similar effect can be achieved when looking at
the driving force required to maintain the relative movement of parallel plates (Floryan,
Shadman & Hossain 2018). This reduction can be achieved whether the heating is applied
to the upper or lower wall, or both (Hossain & Floryan 2014, 2015a) and results from
the formation of flow separation structures that we shall refer to as `bubbles’. These
bubbles underpin the operation of three separate effects. First, they reduce the direct
contact between the stream and the sidewalls, thus reducing shear; second, the fluid
rotates inside the bubbles owing to the heating-induced density gradients and so provides
a supplementary propulsion force; and, lastly, the presence of the bubbles restricts the
effective flow cross-sectional area which is known to contribute to enhanced pressure
losses. The pressure-gradient-reducing effect disappears for excessively fast flows which
tend to wash away the separation bubbles. A careful choice of parameter combinations can
eliminate the need for a mean pressure gradient to drive the prescribed flow rate owing to
heating-induced self-pumping.

The use of patterned heating in horizontal slots leads to interesting theoretical questions
regarding the properties of structured convection. This convection commences as steady
rolls with a spatial pattern dictated by the heating distribution. An increase in the intensity
of heating leads to the formation of secondary states through an instability process
that arises owing to a competition between the spatial parametric resonance and the
Rayleigh–Bénard mechanism (Bénard 1900; Rayleigh 1916; Hossain & Floryan 2013,
2022). The details of this transition are sensitive to the fluid Prandtl number Pr. Additional
complications can arise if the bounding walls are not flat but instead are corrugated as this
leads to an interplay between the heating and topography patterns and the activation of this
interaction effect (Floryan & Inasawa 2021) leads to the onset of thermal streaming (Abtahi
& Floryan 2017b, 2018; Inasawa, Hara & Floryan 2021). Topography patterns can create
their own convection even when the walls are isothermal; this convection is an example
of a forced system response (Abtahi & Floryan 2017a). The combination of heating and
groove patterns can lead to a reduction in pressure losses greater than that achievable
by pure heating alone (Hossain & Floryan 2020). The addition of forced convection can
change the nature of the secondary states from stationary rolls to travelling waves (Hossain
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The reduction of pressure losses

& Floryan 2015b). It is unclear how this system response might change should the channel
be orientated vertically. The limited results concerning natural convection in vertical and
oblique channels suggest that a net buoyancy force can be generated even by periodic
heating with zero mean and this gives rise to a propulsive force (Floryan, Haq & Panday
2022b; Floryan et al. 2022c).

Heating-modified flows in vertical channels are of importance in various aspects of
architectural design as they can affect the performance of heating, ventilation and air
conditioning systems. Passive ventilation is achieved through the so-called stack effect,
whereby a density difference drives the heated air in the upward direction, thereby drawing
in cool air at the base of a structure (Linden 1999; Wong & Heryanto 2004; Mortensen,
Walker & Sherman 2011; Nagler 2021). Conversely, in a reverse stack effect hot air is
drawn down into a cooler environment. Such systems have performance limitations in
terms of the maximum possible flow rate that can be achieved but this can be addressed
by adding fans; this has the effect introducing a mean pressure gradient. An appreciation
of the properties of flow in vertical channels is also helpful in the design of fire prevention
measures in which effective control of the intensification and spreading of combustion
is of utmost importance (Song et al. 2020). Upright fault lines are found in thermal
recovery processes (Tournier, Gethon & Rabinowicz 2000) and in hydraulic fracturing
for gas recovery (Gandossi &Von Estorff 2015) with the relevant flows characterized by
very small Reynolds numbers. The introduction of pressure gradients can also be used for
enhancement of cooling by the chimney effect (Putnam 1882), which has been found to
have contemporary applications in the passive cooling of electronic components (Naylor,
Floryan & Tarasuk 1991; Straatman, Tarasuk & Floryan 1993; Straatman et al. 1994; Novak
& Floryan 1995; Shahin & Floryan 1999; Andreozzi, Buonomo & Manca 2005; Mehiris
et al. 2017) as well as in the design of passively cooled nuclear reactors (Weil 2012). The
strength of the chimney effect can be significantly enhanced by using it in conjugation
with an externally imposed pressure gradient. We remark that the intriguing concept of
a horizontal chimney effect that relies on pattern interaction has been recently proposed
(Floryan et al. 2022a).

It is this plethora of practical applications that motivates the work described below. Here,
we focus on the analysis of pressure-gradient-driven flows in vertical channels exposed
to patterned heating. It is important to emphasize that our concern is exclusively with
laminar flow and the thermal modulation of turbulent flows is outside the scope of our
interest. Our starting point is provided by recent study of natural convection in smooth
inclined slots exposed to a patterned heating (Floryan et al. 2022b) which predicts the
formation of a net buoyancy force even for purely periodic heating patterns. A study of
natural convection in a vertical grooved slot shows the importance of the pattern interaction
effect and thermal streaming in such configurations (Floryan et al. 2022c). In the current
work we aim to determine how patterned heating might be used to reduce pressure losses.
It is important to emphasize that we confine ourselves to the situation in which the two
sides of the vertical channel have equal mean temperatures upon which are superimposed
the patterned profiles. Moreover, we restrict ourselves to a study of Boussinesq fluids.
In view of the large number of parameters present in the problem, the extension to a
non-Boussinesq fluid (Paolucci 1982; Frőhlich, Laure & Peyret 1992), although perfectly
possible in theory, would likely lead to a rather opaque and confusing picture. Here, the
focus on the role played by the patterning.

The remainder of the paper is organized as follows. In § 2, we introduce our model,
which consists of a vertical channel that contains a fluid moving upward together with
heating patterns that are applied to the walls. To appreciate some of the properties of the
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Figure 1. A schematic of the flow system.

flows we perform several computations that are described in §§ 3 and 4. In the first of these
we examine the case when only one wall of the conduit is heated and then proceed in § 4
to extend our calculations to allow the heating to be applied to both walls. It is shown that
the relative positions of the two heating profiles can have a dramatic effect on the size of
the system response. We complement these numerical results with a closer examination of
two cases that are amenable to theoretical analysis; in Appendix A we develop the solution
structure generated by long-wavelength thermal modulation while the short-wavelength
limit is discussed in Appendix B. We round off the paper with a few final remarks and
discussion in § 5.

2. Problem formulation

Consider steady two-dimensional pressure-gradient-driven flow of a Boussinesq fluid
contained in a vertical isothermal channel formed by two smooth parallel walls unbounded
in the x-direction. The sides of the channel are separated by a distance 2h and the gravity
vector is supposed to act in the negative x-direction, as shown in figure 1. We scale
distances on the half-channel width h (so the edges are located at y = ±1), fluid velocities
on the maximum streamwise velocity umax and the pressure on ρu2

max, where ρ denotes
the density of the fluid. Then, in the absence of heating, we have the standard forms of the
velocity v0 = (u0, v0) and pressure p0 fields, together with the streamfunction Ψ0 and the
flow rate Q0 given by

v0(x, y) = (1 − y2, 0), p0(x, y) = −2x/Re, Ψ0 = y − 1
3 y3 + 2

3 , Q0 = 4
3 ;

(2.1a–d)

here, the Reynolds number has been defined by Re = umaxh/ν, where ν is the kinematic
viscosity.

We now apply sinusoidal heating to both walls which means that their (dimensionless)
temperatures are

y = −1 : θR(x) = 1
2 Rap,R cos(αx), (2.2a)

y = +1 : θL(x) = 1
2 Rap,L cos(αx +Ω); (2.2b)

where here, and in what follows, we use the subscripts R and L to describe the properties
relating to the right and left walls, respectively. If T denotes the absolute temperature,
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then we base the relative temperature θ on the difference T − TW , where TW is the mean
temperature of the walls, and scale it using κν/(gΓ h3) as the temperature scale; here, g
is the gravitational acceleration, Γ denotes the thermal expansion coefficient and κ is the
thermal diffusivity. The intensities of the heating of the walls are described by the two
Rayleigh numbers Rap,R = gΓ h3Tp,R/(κν) and Rap,L = gΓ h3Tp,L/(κν); here, Tp,L and
Tp,R are the differences between the maximum and minimum of the left and right periodic
temperature components, respectively. We point out that the two thermal profiles (2.2) are
perfectly tuned in as much that they are characterized by the same wavenumber α although
the two patterns incorporate a phase offset Ω .

Convection in the slot is governed by the scaled continuity, Navier–Stokes and energy
equations that can be written as

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∇2u + Pr−1θ,
∂u
∂x

+ ∂v

∂y
= 0, (2.3a,b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∇2v, u

∂θ

∂x
+ v

∂θ

∂y
= Pr−1∇2θ, (2.3c,d)

where (u, v) are the velocity components in the (x, y) directions scaled on Uv = ν/h, p is
the pressure scaled with ρU2

ν and Pr = ν/κ is the Prandtl number. The relevant boundary
conditions take the forms

u(−1) = u(1) = 0, v(−1) = v(1) = 0, θ(−1) = θL(x), θ(1) = θU(x), (2.4a–d)

where the functions θL(x) and θU(x) are as defined in (2.2) and the flow fields can be
decomposed as

u(x, y) = Reu0( y)+ u1(x, y), v(x, y) = v1(x, y), (2.5a,b)

p(x, y) = Re2p0(x)+ Bx + p1(x, y), ψ(x, y) = Reψ0( y)+ ψ1(x, y), (2.5c,d)

where the subscript 1 refers to modification to the reference flow (2.1) induced by the
heating and B denotes the pressure-gradient correction. We are interested in determining
whether the imposition of wall heating can lead to a reduction in the pressure gradient
required to maintain the specified flow rate. Accordingly, we impose the mass flow rate
constraint in the form

Q(x)|mean ≡ λ−1
∫ x0+λ

x0

∫ 1

−1
u(x, y) dy dx = 4

3
Re, (2.6)

where λ is the wavelength of the heating and Q is scaled using Uv . We seek information
concerning the mean pressure gradient, i.e.

∂p
∂x

∣∣∣∣
mean

≡ λ−1
∫ x0+λ

x0

∂p
∂x

dx = −2Re + B, (2.7)

and remark that positive values of B signify a reduction in the pressure losses.
The system (2.2)–(2.6) was solved by expressing the velocity components using a

streamfunction ψ defined in the usual manner, i.e. u = ∂ψ/∂y, v = −∂ψ/∂x, eliminating
pressure and then using Fourier expansions in the x-direction together with Chebyshev
expansions in the y-direction. An extensive discussion of the algorithm and the
benchmarking of its accuracy have been described elsewhere (Hossain et al. 2012) and
the reader is referred to that paper for further details. The pressure field was normalized by
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Figure 2. The flow and the temperature fields for one-wall heating with the parameter choices Rap,R = 400,
Pr = 0.71 and α = 0.6. In the sequence of plots the Reynolds number Re is increased from 0 to 100. In (a)
Re = 0, (b) 1, (c) 5, (d) 10, (e) 15 and ( f ) 100. In all the plots the temperature has been normalized with its
maximum θmax.

bringing the mean value of its periodic component to zero while the mean Nusselt number
Nuav was evaluated using

Nuav = −λ−1
∫ x0+λ

x0

∂θ

∂y

∣∣∣∣
y=−1

dx. (2.8)

With this definition, positive values of Nuav mean that the right wall losing energy. We
remark that the shear forces acting on the fluid at the right and left walls are given by

FR = −λ−1
∫ λ

0

∂u
∂y

∣∣∣∣
y=−1

dx, FL = λ−1
∫ λ

0

∂u
∂y

∣∣∣∣
y=+1

dx, (2.9a,b)

respectively, while the total (buoyancy) body force per unit length is given by

Fb = λ−1Pr−1
∫ 1

−1

∫ λ
0
θ dx dy. (2.10)

3. Heating with an arbitrary wavenumber: one-wall heating

We commence our investigation into the problem by first looking at the case when we
restrict the heating to just the right-hand wall (Rap,L = 0); some typical flow patterns
are displayed in figure 2. The flow topology for pure natural convection (when Re = 0)
consists of a family of counter-rotating rolls (figure 2a). As the Reynolds number increases
the flow pattern can undergo substantial modification. When Re = 1 we have a flow
field that consists of convection-driven rolls combined with a stream tube that meanders
between them and which carries fluid in the positive x-direction (see figure 2b). The net
upward flow breaks various symmetries present in the natural convection and generates
a mean buoyancy force as well as changing the shear forces that act on the two walls.
A further increase to Re = 5 strengthens the stream tube and shrinks the size of the rolls,
which can now be regarded as separation bubbles – the bubbles adjacent to the heated wall
are appreciably larger (figure 2c). As Re grows yet further this general process continues
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Figure 3. (a) The forms of the buoyancy force Fb, the viscous forces differences�FR = FR − FS and�FL =
FL − FS at the two walls, the sum�FR +�FL and the pressure-gradient correction B as functions of Re. Other
parameter values are fixed at values Rap,R = 400, Pr = 0.71, α = 0.6. (b) The distribution of the viscous stress
difference �σR = σxv,R − σxv,S at the right wall and (c) the stress difference �σL = σxv,L − σxv,S at the left
wall where σxv,S denotes the shear stress in an isothermal channel. In plots (b) and (c) five Reynolds numbers
are used: Re = 0 (red lines), 1 (green), 10 (cyan), 25 (purple), 100 (black).

with the bubbles on the left wall becoming quite small when Re = 10 (figure 2d); they have
completely disappeared by the stage Re = 15 (figure 2e). In contrast, the bubbles at the
right wall persist irrespective of the value of Re and the overall flow becomes essentially
rectilinear when Re = 100 (figure 2f ).

Heating-induced rolls tend to decrease the direct contact between the stream and the
walls, thereby reducing the frictional resistance. The existence of separation bubbles
diminishes the effective flow cross-sectional area, and this typically leads to an increase of
pressure losses. The rotational motion of fluid within the bubbles themselves is partially
driven by the buoyancy force associated with density variations – this effect provides
some propulsion which reduces the pressure drop required to maintain a prescribed flow
rate. The mean buoyancy force arises because the net fluid movement destroys symmetries
which are present in pure natural convection and whether this force leads to either negative
or positive propulsion depends on the flow conditions. The likely cumulative effect is
difficult to predict without a careful and detailed analysis.

Figure 3 focuses on the profiles of various forces generated by the heating; in particular,
the mean buoyancy force Fb as defined in (2.10) and the forces FR and FL (2.9) that act
on the right and left walls, respectively. If the values taken by these latter two quantities
for the case of an isothermal channel are denoted FS (note that the isothermal shears on
the left and right walls are the same) then it is helpful to examine the differences �FR =
FR − FS and �FL = FL − FS, the sum �FR +�FL together with the pressure-gradient
correction B. The data displayed in figure 3(a) demonstrate the somewhat intricate role
played by Fb for the flow conditions illustrated here. We observe that Fb = 0 when Re = 0;
it then rapidly increases with Re until Re ≈ 5, which suggests that this force is propelling
the fluid. Once Re exceeds approximately 5, Fb decreases and changes sign when Re ≈
10; now this buoyancy force opposes the fluid movement. Finally, it reaches a minimum
value at Re ≈ 30 before beginning to grow and becoming positive once more at Re ≈
60. The magnitude of the viscous force on the right wall decreases with its maximum
value occurring when Re ≈ 10. Heating always seems to increase the magnitude of the
viscous force at the left wall, at least whenever the separation bubbles are present, but
the sum of the two wall forces suggests that the overall viscous force is reduced. The
pressure-gradient correction correlates well with variations of the mean buoyancy force
and the total viscous force for the conditions used in figure 3(a). The shear stresses at the
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Figure 4. The form of the pressure-gradient correction B/Re as a function of α and Pr when Rap,R = 300 for
two values of the Reynolds number; (a) Re = 1 and (b) Re = 10. The region of parameter space shaded grey
identifies those conditions that correspond to a reduction in the pressure losses.

right wall increase near the hot spots and decrease near the cold spots, as illustrated in
figure 3(b), with the cumulative effect shown in figure 3(a). The qualitative distribution
of these stresses along the channel does not change much with Re while the amplitude of
their variations decreases as the separation bubbles are reduced and are eventually washed
out. Shear stresses at the left wall increase opposite to the hot spots and decrease opposite
to the cold spots, as illustrated in figure 3(c). Their magnitudes decrease much faster with
Re than those at the right wall.

3.1. The role of the Prandtl number
The key role played by the mean buoyancy force raises the issue as to the importance
of the Prandtl number. Asymptotic analysis presented later in the paper suggests that
long-wavelength heating always reduces the pressure losses, but a similar reduction can
be achieved in the short-wavelength limit only if Pr is sufficiently large. The conditions
marking the transition between a reduction to an enhancement of pressure losses, together
with the size of the pressure losses themselves, are illustrated in figure 4 – to gauge the
effectiveness of heating the reader is reminded that when B = 2Re the pressure loss is
zero. A plot of the mean buoyancy force as displayed in figure 5(a), which corresponds
to the conditions used in figure 4(a), shows that this buoyancy force behaves in a similar
fashion to the variations in the pressure-gradient correction. The shear at the right wall (see
figure 5b) appears to be significantly reduced while that at the left wall generally increases,
except when α and Pr are large. The reduction in the total shear force as displayed in
figure 5(d) correlates well with both the formation of the mean buoyancy force and the
reduction in the pressure gradient. An increase in Pr tends to strengthen the convection
which in turn leads to an increase in the mean buoyancy force. When Pr is very large, the
buoyancy effects are confined to a boundary layer adjacent to the heated wall and reduces
the mean buoyancy force as a smaller portion of the flow field is exposed to temperature
variations. The buoyancy force also seems to decrease in the long-wavelength limit α → 0
as the magnitude of the temperature gradient decreases. A reduction in the buoyancy force
is also noted in the short-wavelength structure α → ∞ ; now the temperature gradient
becomes concentrated within a thin boundary layer adjacent to the heated wall. Changes
in the viscous forces occur owing to modifications to the flow pattern and this leads to a
pressure-gradient reduction similar in size to that which can be attributed to the buoyancy
force.
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Figure 5. The form of (a) the buoyancy force Fb, (b) the force difference �FR = FR − FR,S, (c) the force
difference �FL = FL − FL,S and (d) the sum �FR +�FL as functions of α and Pr. The Rayleigh number
Rap,R = 300 and the Reynolds number Re = 1. The region of parameter space shaded grey identifies those
conditions that correspond to a reduction in the losses.

To probe more deeply the properties of the flow structure we focused on the two
values of the Prandtl number, Pr = 0.71 and 7; these were chosen as they are the values
appropriate to air and water, respectively. The form of B(α) is illustrated in figure 6. It
is evident that the largest absolute value of B occurs at some α = O(1) value and falls
off towards zero as α → 0 and α → ∞ – these limits are analysed in the appendices. It
is also noted that the sign of B changes at some α = O(1) whose value(s) is a function
of the other parameters in the problem. For example, when Pr = 0.71 there appear to be
two ranges of α; for relatively small values there is a reduction in the pressure losses but
at larger values there is a significant increase of these losses. It seems that the critical
value at which the transition between these contrasting behaviours occurs between these
zones moves towards smaller α values as Rap,R increases, see figure 6(a,c). The details
of this response are only slightly affected by an increase in the Reynolds number from
Re = 1 to Re = 10. The situation changes somewhat at the higher Prandtl number Pr = 7.
Now a reduction in the pressure losses is observed for all values α unless Rap,R becomes
particularly large – this is illustrated in figure 5(b) for Rap,R = 1000 for which, over a
small range of α, increasing losses are noted. An increase in Re from Re = 1 to Re = 10
sees the elimination of the short range. In summary we conclude that an increase in Rap,R
does not inevitably lead to a larger reduction in the pressure losses, and an increase in Re
does not necessarily result in a modification of the pressure losses.
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Figure 6. The variation in the pressure-gradient correction quantity |B/Re| as a function of the heating
wavenumber α. Dashed lines denote parameter combinations for which B/Re is negative.

The forms of the various forces that contribute to the flow dynamics when Pr = 0.71
and Re = 1 (appropriate to figure 6a) are depicted in figure 7(a); additional information
that shows the changes in these forces relative to the base case of an isothermal channel
is provided in figure 7(b). The right-wall shear force tends to moderate the pressure
losses but the left-wall shear force increases the flow losses; which effect is the stronger
depends on the particular flow parameters. The buoyancy force tends to reduce the losses
at smallish values of α but appears to have the opposite effect at relatively large values
of α. Taken overall, the combination of all these forces seems to reduce losses at small
wavenumbers but increases them at shorter wavelengths. These remarks are naturally
somewhat qualitative in nature as the detailed behaviour of the system response can change
markedly with variation in Pr.

3.2. The effect of the heating wavenumber α
Figure 8 provides information that helps describe how the flow pattern adapts as
the heating wavenumber changes. Long-wavelength heating generates large separation
bubbles (figure 8a) whose size diminishes with increasing α (figure 8b,c) until they are
confined to a thin boundary layer attached to the heated wall (figure 8d). If Pr is increased,
the separation bubbles seem to shrink (see figure 8e–h).

The distributions of the shear forces corresponding to the conditions used in
figure 8(a–d) are profiled in figure 9(a); the equivalent results pertaining to the higher
Prandtl number Pr = 7 are shown in figure 9(b). These forces oscillate about a mean
value whose size can change significantly according to the underlying flow conditions.
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Figure 7. (a) The buoyancy force |Fb|, the viscous forces at the right |FR| and left |FL| walls and the pressure
force |Fp|. All quantities plotted as functions of the heating wavenumber α. (b) Illustrates the variations of the
viscous forces at the right |�FR| = |FR − FR,S| and left |�FL| = |FL − FL,S| walls, at both walls |�Fv | =
|Fv − Fv,S| and the pressure force |Fb|. In all cases: Rap,R = 400, Re = 1, Pr = 0.71. Dashed lines denote
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Figure 8. The flow and temperature fields for Rap,R = 400,Re = 1 and various values of α. Temperatures
have been normalized by θmax. In the top row the Prandtl number Pr = 0.71 while the wavenumber values are
(a) α = 0.07, (b) 0.39, (c) 2.29 and (d) 15. In the bottom row Pr = 7 with the same values α.

The shear forces tend to oppose the fluid movement in regions where the stream is in
direct contact with the walls but tends to promote movement in those areas adjacent to
separation bubbles. As the wavenumber increases so the extent of the separation bubbles
and the amplitude of the shear variations both reduce. At larger values of Pr the amplitude
of the shear variation is suppressed (cf. figure 9a,b).

3.3. Variation in the heating intensity
The data summarized in figure 10 provides a basis for the assessment of the effects of the
heating intensity. The results suggest that at relatively modest values of Pr, e.g. Pr = 0.71,
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lines) walls when Rap,R = 400, Re = 1 In (a) Pr = 0.71 while in (b) Pr = 7 and results are shown for the four
wavenumbers used in figure 8 so α = 0.07, 0.39, 2.29 and 15.
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number Rap,R. Grey shading identifies parameter combinations that lead to a reduction in the pressure losses.

an increase in Rap,R at α <∼ 2 initially reduces pressure losses, but this effect is transitory
and substantial increases in Rap,R ameliorate this effect; eventually, we get an increase in
pressure losses for all values of Re used in this study (see figure 10a,c). Pressure losses
appear to always increase with Rap,R when a sufficiently large α is used. When Pr = 7 the
reduction in losses increases with Rap,R (figure 10b,d).
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Figure 11. Variation in the pressure-gradient correction |B/Re| as a function of Rap,R when (a) Pr = 0.71 and
(b) Pr = 7. Dashed lines denote parameter combinations for which B/Re is negative. The circular symbols
correspond to the plots of the flow and temperature fields presented in figures 12 and 13.

Next, we explore the nature of the pressure losses as a function of Rap,R for prescribed
values of the wavenumber α. The forms of B are illustrated in figure 11 for two values of
α; in figure 11(a) we have α = 0.6, which lies solidly in the B > 0 region of figure 10(a),
and in figure 11(b) we have α = 2, for which B < 0. When Pr = 0.71 and α = 0.6, B
increases with Rap,R until Rap,R ≈ 300, then it starts to drop and becomes negative when
Rap,R > 450 (figure 11a). When α = 2, B is always negative and its magnitude grows with
Rap,R. An increase in Reynolds number to Re = 10 changes the system response only in
a marginal way (figure 11a). When Pr = 7, an increase in Rap,R initially enhances B but
this trend reverses when Rap,R is relatively large leading to an increase in the pressure
losses (figure 11b). It is of interest to note that the magnitude of B is in general roughly
proportional to Ra2

p,R over the range studied.
The development of the flow and temperature fields as we increase Rap,R are shown in

figure 12 when Pr = 0.71. In all cases the growth of Rap,R gives rise to larger separation
bubbles and more intense movement within them. In the case of smaller α, the filling in
of the space between the walls with the bubbles (see figure 12a–c) reduces the pressure
gradient and eventually leads to an increase of these losses. The losses continually increase
with Rap,R at larger wavenumbers (see figure 12d–f ). A comparison of all the panels in
figure 12 demonstrates that it is not easy to predict the overall effect; for instance, the
large bubbles in figure 12(a) lead to a decrease of pressure losses while, in contrast, the
relatively small bubbles in figure 12(d) increase these losses.

The evolution of the flow and temperature patterns when Pr = 7 are illustrated in
figure 13. It is interesting to observe that pressure losses are reduced at smallish Rap,R
(see figure 13a,d), which suggests that the buoyancy force is largely responsible for this
effect. The addition of separation bubbles seems to promote the reduction of pressure
losses (figure 13b,e); an effect that can ascribed to mitigation of the friction but, if these
bubbles grow too large, the trend reverses and pressure losses grow (see figure 13c, f ).

3.4. The effect of the Reynolds number Re
The effects of varying the size of the Reynolds number Re are addressed by the results
summarized in figure 14. When Re is small and Pr = 0.71, heating at small α reduces
the pressure losses while at larger wavenumbers these losses irrespective of the heating
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Figure 12. The flow and the temperature fields when Re = 1, Pr = 0.71. The three heating intensities
correspond to Rap,R = 100, 300 and 1000; in (a–c) the wavenumber α = 0.6 and in (d–f ) α = 2. The flow
conditions used in these plots are marked by circles in figure 11(a).
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Figure 13. The flow and the temperature fields when Re = 1, Pr = 7. The three heating intensities correspond
to Rap,R = 100, 600 and 1200 in (a–c) for which the wavenumber α = 0.6; and to Rap,R = 100, 1200 and 2400
in (d–f ) where α = 2. The flow conditions used in these plots are marked by circles in figure 11(b).

intensity (figure 14a,b). An increase in Re appears to have minimal effect on the flow
properties until Re approaches 1; after this, the magnitude of B starts to fall and this
is accompanied by a concomitant decrease in the range of α over which B remains
positive at lower values of Rap,R (figure 14a). An increase in Rap,R expands this interval
at higher values of Re (figure 14b). When Pr = 7 the pressure losses are reduced for all
wavenumbers, at least for the relatively weak heating rate Rap,R = 400, With an increase
to Rap,R = 800 a window in the (α,Re)-plane is created at small values of Re in which
losses increase (figure 14d). It is worth noting that this window closes as Re grows.

Some details of changes induced by varying Re are illustrated in figure 15 for the
particular wavenumbers α = 0.6 and α = 2. There appears to be a well-defined asymptote
as Re → 0 in all cases but the value of B can be of either sign depending on the parameter
values. An increase in Re at the lower heating rate of Rap,R = 400 initially mitigates the
loss reduction and but there is an eventual increase in this loss when α = 0.6. A similar
effect is observed at the larger heating rate Rap,R = 800. The situation is somewhat similar
for Pr = 7; now there are well-defined positive asymptotes as Re → 0 in all cases except
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Figure 14. The variation of the pressure-gradient correction B/Re as a function of α and Re and for the
parameter combinations (Pr, Rap,R) = (a) (0.71, 400), (b) (0.71,800), (c) (7,400) and (d) (7,800). Grey shading
indicates parameter combinations that lead to a reduction in the pressure losses.

when (α,Rap,R) = (0.6, 800) for which B is negative (figure 15b). An increase in Re leads
to a reduction of B, except for this special case for which an increase in Re first leads to an
increase of B, which becomes positive, reaches a maximum when Re ≈ 3 and then begins
to decrease roughly proportional to Re−2 (figure 15b).

The evolution of the flow patterns for various values Re has already been discussed for
Pr = 0.71 (see figure 2). With a greater Prandtl number Pr = 7 there is a much quicker
elimination of the separation bubbles, with the flow becoming virtually rectilinear by the
stage Re = 20 (see figure 16) (cf. we previously noted that this only happens once Re =
100 when Pr = 0.71). This can be explained in terms of the temperature field becoming
almost uniform at smaller Re for larger Pr; at this stage, convective effects dominate their
conductive counterparts.

We close our description of these one-wall heating problems by noting that all the flows
considered have fluid directed upwards (against gravity). This is not unduly restrictive
for it is straightforward to generalize our finding to downward problems. This can
be accomplished by nothing that if we change the sign of the buoyancy term in the
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Figure 15. The variation of the pressure-gradient correction |B/Re| as a function of Re when (a) Pr = 0.71,
(b) Pr = 7. Dashed lines denote negative values. The flow and temperature patterns for condition marked with
circles in figure 15(a) are displayed in figure 2 and those marked by circles in figure 15(b) are displayed in
figure 16.
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Figure 16. The flow and temperature fields corresponding to the parameter values Rap,R = 400,Pr = 7, α =
0.6. Panels show increasing values of Re; (a) Re = 0, (b) 0.1, (c) 0.5, (d) 1, (e) 5 and ( f ) 20. The temperature has
been normalized using θmax. The flow conditions used in these figures are marked with circles in figure 15(b).

x-momentum equation (2.3a) – the flow is directed towards the positive x-axis and the
gravity vector is directed towards the positive x-axis. An inspection of (2.3) then shows
that the solution remains unchanged under the transformations θ → −θ, x → x + λ/2.
In other words, we conclude that the results for downward flows can be inferred directly
from the calculations described above and the need for further separate computations is
therefore rendered unnecessary. We are grateful to a referee for pointing out that these
symmetries can only hold if the transport fluid properties are constant and will necessarily
be broken in more realistic non-isothermal circumstances.

4. Heating applied to both walls

We now turn our attention to examining the problem when both walls of the slot are heated.
It is perhaps unsurprising that in this configuration the relative position of the two heating
patterns is a crucial factor that affects the performance of the system. We remind the
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Figure 17. The flow and temperature fields when the two walls are heated equally strongly with Rap,R =
Rap,L = 200. The wavenumber α = 0.6. In (a–f ) the hot spots are aligned so Ω = 0; the Reynolds number
Re = (a) 0, (b) 0.1, (c) 0.2, (d) 1, (e) 10 and ( f ) 20. In (g–l) the hot spots on one wall are opposite the cold spots
on the other so Ω = π. In the calculations Re = (g) 0, (h) 1, (i) 5, ( j) 10, (k) 15 and (l) 20. The temperature has
been normalized with θmax.

reader that it is the phase difference Ω (see definition (2.2)) that is used to prescribe
the relative patterning; Ω = 0 corresponds to hot spots at the walls being aligned in the
horizontal direction whileΩ = π corresponds to hot spots at one wall opposite cold spots
on the other. We shall restrict our discussion mainly to Pr = 0.71 because this enables
us to describe the plethora of possible system responses without being overwhelmed by
numerous parameter combinations.

The flow and temperature fields when the hot spots are aligned exhibit a left/right
symmetry, as shown in figure 17(a–f ). Pure natural convection leads to the formation
of two columns of counter-rotating rolls, as shown in figure 17(a). Heating-induced
modulations of small Re flows lead to the trapping of fluid in the middle of the channel at
positions next to the hot spots as well as the formation of separation bubbles at the height of
the cold spots (see figure 17b). The net upwards flow takes the form of a stream tube which
flows between the separation bubbles and then divides into two smaller stream tubes which
surround the in-flow stagnation zones (figure 17b,c). An increase in Re reduces the extent
of the in-flow stagnation zones as well as the separation bubbles and then washes away
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Figure 18. The mean buoyancy force Fb, the viscous force differences at the right and left walls�FR = FR −
FR,S, �FL = FL − FL,S, the sum �FR +�FL and the pressure-gradient correction B. These quantities are
shown as functions of Re with Rap,R = Rap,L = 200, Pr = 0.71, α = 0.6. The pressure-gradient correction for
the one-wall heating case with Rap,R = 400 has been superimposed for reference. (a) Ω = 0 and (b) Ω = π.

the stagnation zones (figure 17d) before eliminating the separation bubbles (figure 17e).
Eventually, the remnant flow becomes rectilinear (figure 17f ). In figure 17(g–l) we show
the contrasting problem Ω = π for which the flow and temperature fields do not possess
any obvious symmetries. Now pure natural convection takes the form of a single column of
counter-rotating rolls. Heating-induced modulations of the small-Re flows lead to creation
of separation bubbles attached to the cold spots (figure 17h–k). The net upwards flow takes
the form of a single stream tube which meanders between the bubbles. As Re increases the
bubbles shrink and eventually are washed away (figure 17l).

Modifications of the flow and temperature fields lead to forces whose structure strongly
depend onΩ . WhenΩ = 0, the two-wall heating leads to a reduction in pressure losses by
up to an order of magnitude compared with the one-wall heating results. The range of Re
over which such a reduction is possible is depicted in figure 18 and both the amelioration
of shear forces and the increase in the net buoyancy force contribute to this effect. The
situation is qualitatively different when Ω = π as then the two-wall heating increases the
pressure losses across a wide range of Re. We contrast this with the one-wall heating
results for which losses can be reduced at certain values of Re (see figure 18b); the reason
for this can be ascribed to the net buoyancy force.

The evolution of the flow and temperature fields as functions of the wavenumber are
illustrated in figure 19 when Ω = 0. The structure starts as a nearly rectilinear flow in the
small-α limit; as the wavenumber increases separation bubbles form on both sides of the
channel; eventually, their growth ceases and they are eliminated when α is sufficiently
large. The situation is somewhat different whenΩ = π as then the separation bubbles are
in existence even at small values α and these slowly shrink as α grows before the flow
becomes effectively rectilinear.

It is helpful to comment briefly on the changes associated with an increase in Pr as this
leads to strengthening of the convective effects. The evolution of the flow and temperature
fields for the same conditions as in figure 19 but now with Pr = 7 are illustrated in
figure 20. When there is no heating offset Ω = 0 there is no evidence of any separation
bubbles irrespective of the wavenumber. On the other hand, separation bubbles are formed
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Figure 19. The flow and the temperature fields when Rap,R = Rap,L = 200, Re = 1, Pr = 0.71. The
temperature has been normalized with θmax. Results are shown at the five wavenumbers α = 0.2, 1.2, 3, 5
and 9; in the top row the phase offset Ω = 0 and in the lower row Ω = π.

1 0

1.0

(a) (b) (c) (d)

(e) ( f ) (g) (h)

0.5x/λ

0
–1 1 0

1.0

0.5

0
–1 1 0

1.0

0.5

0
–1 1 0

1.0

0.5

0
–1

1 0

1.0

0.5x/λ

0
–1 1 0

y y y y

1.0

0.5

0
–1 1 0

1.0

0.5

0
–1 1 0

1.0

0.5

0

1

0

–1
–1

Ω
 =

 π
Ω

 =
 0

α = 0.9α = 0.1 α = 2 α = 8

Figure 20. The flow and the temperature fields when Rap,R = Rap,L = 200, Re = 1, Pr = 7. The temperature
has been normalized with θmax. Results are shown at the four wavenumbers α = 0.1, 0.9, 2 and 8; in the top
row the phase offset Ω = 0 and in the lower row Ω = π.

when Ω = π but now they are much weaker than their counterparts observed in figure 19
when Pr = 0.71.

Detailed information concerning the pressure-gradient reduction is provided in
figure 21. These data pertain to the problem with the same heating intensity at the
two walls with Rap,R = Rap,L = 200. For comparison purposes, these plots also include
data relevant to the single-wall heating with a doubled heating intensity so that Rap,R =
400,Rap,L = 0. An inspection of the two data sets provides a simple means by which
one may estimate any possible gain associated either with the one-wall heating or by
some heating to each wall. When Pr = 0.71, two-wall heating with Ω = 0 leads to
a pressure-gradient reduction perhaps an order of magnitude larger than the one-wall
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Figure 21. The pressure-gradient correction |B/Re| as a function of α when Rap,R = Rap,L = 200,Ω = 0 and
Ω = π. The results for the one-wall heating Rap,R = 400, Rap,L = 0 have been included for reference. Dashed
lines represent negative values. (a) Pr = 0.71 and (b) Pr = 7.

heating results. Moreover, it extends the range of wavenumbers over which such a
reduction is possible (figure 21a). The use of two-wall heating with Ω = π is detrimental
as it appears to increase the pressure loss over the whole α range (figure 21a). When the
fluid is water, for which Pr = 7, two-wall heating with Ω = 0 produces effects similar
to those resulting from one-wall heating but the use of Ω = π produces results that are
actually worse than their one-wall counterparts (figure 21b). We remark that the heating
has minimal influence on the pressure gradient in both the small- and large-α limits
regardless of the values ofΩ and Pr. The maximum effect on the pressure gradient occurs
when α ≈ 1 − 2; it also seems that B ∝ α2 as α → 0 and B ∝ α−5 as α → ∞ and these
predictions are confirmed by some asymptotic analysis described in the appendices.

Our discussion so far has been restricted to the extremes in the relative positioning of the
heating patterns. Variations in the pressure losses regarded as a function of Ω is displayed
in figure 22 confirm that, indeed, the data determined forΩ = 0 andΩ = π represent the
extremes in the possible values of B. The optimal system performance is achieved when
Ω = 0 and an unfortunate selection of Ω can be enough to switch reductions in pressure
losses to increases at a sufficiently small Pr.

The role played by Pr is illustrated in figure 23 for the extreme configurationsΩ = 0 and
Ω = π. The results clearly demonstrate the attractiveness of employing Ω = 0; indeed,
using Ω = π gives outcomes less good than those that provided by single-wall heating.
The drawbacks of using Ω = π include a reduction in the achievable pressure losses,
a restriction on the heating wavenumbers that correspond to a pressure reduction and a
smaller range of Pr over which pressure reductions are feasible.

The final question to be addressed here relates to a characterization of the system
response when the walls are exposed to different heating intensities. The results shown
in figure 24 correspond to the situation when one of the walls is heated twice as
strongly as the other. These findings can be compared with the data pertaining to equal
heating configuration summarized in figure 22. The weakening of the heating of one wall
moderates the magnitude of loss reduction but the qualitative dependence on the other
parameters remains largely unchanged.
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Figure 22. The pressure-gradient correction B/Re as a function of α andΩ when Rap,R = Rap,L = 200. Here,
we have two Reynolds numbers Re = 1 (a,b) and 10 (c,d) and two values of Pr: 0.71 (a,c) and 7 (b,d). Grey
shading identifies conditions that lead to a reduction in the pressure losses.

5. Discussion

The reduction of pressure losses in conduits is of interest as a mechanism for controlling
the cost of energy associated with fluid transportation. Our analysis has explored the
potential of using patterned heating for restricting pressure losses in laminar flows through
vertical channels. Using patterned heating in this way is particularly attractive as it
sidesteps the need for large temperature differences. Here, we have supposed that the
heating distribution takes a sinusoidal form characterized by the wavenumber α and with
an amplitude specified in terms of an appropriate Rayleigh number. This heating can be
applied to one wall or both; in this latter instance this brings into play the consideration of
the phase offset between the two patterns. We have assumed that the fluid is Boussinesq,
and the field equations have been solved numerically to spectral accuracy. We have
managed to develop explicit analytic solutions in the large and small α limits and we have
demonstrated that these show excellent agreement with the computations. We posed the
problem as one in which we asked the size of the pressure-gradient correction required to
preserve the flow rate in the heated channel compared with the reference isothermal case.
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Figure 23. The pressure-gradient correction B/Re as a function of α and Pr for two-wall heating with Rap,R =
Rap,L = 200 and the one-wall heating with Rap,R = 400. The grey shading identifies those conditions that lead
to a reduction in the pressure losses.

We have seen that the heating generates separation bubbles which play a central role
in minimizing the pressure losses. These bubbles reduce the direct contact between the
stream and the sidewalls, thereby reducing frictional resistance. Furthermore, the bubbles
restructure the temperature field, and this leads to the formation of a net buoyancy force
which counterbalances the pressure losses. The appearance of these bubbles reduces the
effective flow area, which tends to promote pressure losses. Owing to the multiplicity of
the effects that feed into the system dynamics, its response can exhibit a wide range of
characteristics as the various parameters change. An accurate prediction of the response
with a particular combination of parameter values necessitates detailed analysis and it is
difficult to draw useful conclusions that hold over a wide range of cases. With sufficient
increase in the flow Reynolds number, the separation bubbles are washed away, and this
eliminates the pressure-gradient-reducing effect completely. Our calculations suggest that
heating is most effective when α = 0(1) and is of somewhat limited use in the small and
large wavenumber limits. The system response appears to be sensitive to variations in the
Prandtl number; this can be explained by noting that, as Pr grows, the convective effects
intensify, and these are responsible for the modification of the temperature field and hence
the net buoyancy force. The heating of both walls can lead to a pattern interaction effect
and an adjustment in the relative position of the two distributions can change the system
response by as much as an order of magnitude. We have demonstrated that the optimal
effect is achieved when the hot spots on the two walls are aligned horizontally.

One question that has not been addressed in this study concerns the stability of our
solution structures. It is well known that thermally stratified shear channel flows such as
Rayleigh–Bénard flows or pressure-driven laminar flows in differentially heated channels
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Figure 24. The pressure-gradient correction B/Re as a function of α and Ω when Rap,R = 200, Rap,L = 100.
Regions shaded grey identify conditions that leads to a reduction in the pressure losses.

tend to be three-dimensional and unsteady. These very classical results pertain to uniform
wall heating while our study has been focussed on patterned heating with the mean
temperatures of the walls being equal. There seems to be very few studies into the stability
of patterned convection, although Hossain & Floryan (2015b) have looked at this issue in a
horizontal channel. It is very likely that there is a threshold beyond which the flow passes
through a stability limit after which the flow becomes three-dimensional. Clearly, the next
step in a study of the present problem would be a careful stability analysis of the flow to
ascertain the point beyond which the system will no longer exhibit pressure losses when
subjected to patterned heating.

In summary, we have shown that a significant and dramatic reduction in the pressure
losses can be achieved if the various flow parameters are chosen carefully. As far as
we know, these results are novel and potentially significant. They provide some general
guidelines as to how the various problem parameters may be chosen and how the heating
patterns may be arranged to achieve optimal results. The quantitative details of the system
properties are naturally functions of the heating distribution, its strength, the flow Reynolds
number and the Prandtl number. Carefully chosen heating of the two walls can induce
a pattern interaction effect and a judicious choice can have as much as an order of
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magnitude effect on the system response. It would be of interest to know whether more
intricate heating distributions might improve our scope in further reducing the pressure
losses. There is also the issue as to how our ideas might generalize to other geometries.
In this regard, our present calculations have been restricted to vertical conduits and we
are currently looking at how the various conclusions are modified should the slot be
inclined. We claim that, whilst many properties of patterned heating may be relatively well
understood, in this paper we have established the unexpected result that it can give rise to
a rather large reduction in pressure losses. In turn, this implies a potentially considerable
saving in the energy expended in maintaining the flow. Whilst many practically important
and relevant fluid flows are far more complicated than our idealized motion through a
heated vertical conduit of the type envisioned here, we have shown that patterned heating
may play a significant role in controlling important properties of physically and practically
important flow configurations.
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Appendix A. Long-wavelength heating

In this appendix we look at the properties of the patterned convection in the
long-wavelength limit α 	 1. We do this by introducing the stretched coordinate X = αx
which brings the governing equations and thermal boundary conditions to the following
form:

α[Re(1 − y2)+ u1]u1X + v1(−2Re y + u1y) = −αp1X + α2u1XX + u1yy + 1
Pr
θ1, (A1a)

α[Re(1 − y2)+ u1]v1X + v1v1y = −p1y + α2v1XX + v1yy, (A1b)

α[Re(1 − y2)+ u1]θ1X + v1θ1y = 1
Pr
(α2θ1XX + θ1yy), (A1c)

αu1X + v1y = 0, (A1d)

with the thermal boundary conditions becoming

θ1(X,−1) = 1
2 Rap,R cos X and θ1(X, 1) = 1

2 Rap,L cos(X +Ω). (A2a,b)

It is helpful for the subsequent calculations to define three related quantities

R1 = Rap,R + Rap,L cosΩ, R2 = Rap,R − Rap,L cosΩ and R3 = Rap,L sinΩ.
(A3a–c)

When α 	 1 we seek solutions which assume the structure

(u1, v1, p1, θ1) = α−1(0, 0, P̂−1, 0)+ (Û0, 0, P̂0, θ̂0)

+ α(Û1, V̂0, P̂1, θ̂1)+ α2(Û2, V̂1, P̂2, θ̂2)+ · · · , (A4)
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where all the unknowns are functions of X and y. Given the form of the boundary
conditions we are led to the zeroth-order solutions

Û0 = − 1
24 Pr

y(1−y2)(R2 cos X+ R3 sin X), V̂0 =− 1
96 Pr

(1−y2)2(R3 cos X−R2 sin X),

(A5a,b)

θ̂0 = 1
4 [(R1 − R2y) cos X − R3(1 + y) sin X] and P̂−1 = 1

4 Pr
(R1 sin X + R3 cos X).

(A5c,d)

The O(α) thermal field consists of both mean and X-dependent parts. It may be shown that

θ̂1(X, y) = −1
4 Pr Re[F1( y) sin X + F2( y) cos X] + 1

384 [F3( y) sin 2X

+ F4( y) cos 2X + F5( y)], (A6)

where the polynomials F1( y)− F5( y) are defined to be

F1( y) = 1
60(1 − y2)[5(y2 − 5)R1 − y(3y2 − 7)R2], (A7a)

F2( y) = 1
60 R3(1 − y2)(3y3 + 5y2 − 7y − 25), (A7b)

F3( y) = 1
60 (1 − y2)(3y4 − 2y2 − 17)(R2

3 − R2
2)− 1

30 y(1 − y2)(7 − 3y2)(R2
3 + R1R2),

(A7c)

F4( y) = 1
30 (1 − y2)(3y4 + 3y3 − 2y2 − 7y − 17)R2R3 − 1

30 y(1 − y2)(3y2 − 7)R1R3,

(A7d)

F5( y) = − 1
30 y(1 − y2)(7 − 3y2)(R1 + R2)R3. (A7e)

It then follows that

Û1(X, y) = ReR3

10 080

(
F6 − F7

Pr

)
cos X + Re

10 080

(
F8 + R2

F7

Pr

)
sin X + ÛM1( y), (A8a)

V̂1(X, y) = ReR3

10 080

(
F9 − F10

Pr

)
sin X + Re

10 080

(
F11 − R2

F10

Pr

)
cos X, (A8b)

and
P̂0 = 17

210 Re(R3 sin X − R1 cos X), (A8c)

in which the polynomials F6( y)− F11( y) are given by

F6( y) = (1 − y2)(3y5 + 7y4 − 18y3 − 98y2 + 31y + 19), (A9a)

F7( y) = y(y2 − 1)(5y4 − 16y2 + 19), (A9b)

F8( y) = (y2 − 1)[(3y5 − 18y3 + 31y)R2 − (7y4 − 98y2 + 19)R1], (A9c)

F9( y) = −1
8 (y

2 − 1)2(3y4 + 8y3 − 22y2 − 152y + 51), (A9d)

F10( y) = 1
8 (y

2 − 1)2(5y4 − 18y2 + 29), (A9e)

and
F11( y) = −1

8(y
2 − 1)2[(3y4 − 22y2 + 51)R2 − 8y(y2 − 19)R1]. (A9f )

Furthermore, the mean part of the streamwise velocity ÛM1( y) is another polynomial but
this consists only of terms of odd degree so the mass flux across the slot −1 ≤ y ≤ 1
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is zero. The full forms of Û1, V̂1 and P̂0 also incorporate higher harmonics in X but these
do not play a part in what follows so are not recorded.

We now move onto consideration of the O(α2) terms. If we suppose that the pressure
gradient

pX = Aα2 + · · · , (A10)

then the O(α2) terms in the streamwise momentum and energy equations are

Re(1 − y2)Û1X − 2Re y V̂1 + Û0Û1X + Û1Û0X + V̂0Û1y + V̂1Û0y

= −(A + · · · )+ Û0XX + Û2yy + 1
Pr
θ̂2, (A11a)

Re(1 − y2)θ̂1X + Û0θ̂1X + Û1θ̂0X + V̂0θ̂1y + V̂1θ̂0y = 1
Pr
(θ̂0XX + θ̂2yy). (A11b)

If we denote the mean part of θ̂2(x, y) by θ̂2M( y) then the mean parts of (A11b) furnish
an expression for (θ̂2M)yy that can be integrated twice subject to the requirement that θ̂2M

vanishes at y = ±1. This result is substituted into (A11a) for the mean function Û2M( y)
which can be found subject to Û2M(±1) = 0; the pressure gradient is then adjusted to
ensure that the mean mass flux is zero. After considerable algebraic manipulation we find
that

A = Re
227026800 Pr2

{
(Ra2

p,L + Ra2
p,R − 2Rap,L Rap,R cosΩ)(51 − 790 Pr)

+[5876(Ra2
p,L + Ra2

p,R)+ 9620 Rap,LRap,R cos�]Pr2

}
,

(A12)

and the pressure gradient is then B = Aα2. When heating is applied at the right wall only,
the above expression simplifies to the form

B = α2
ReRa2

p,R

227026800 Pr2 (51 − 790 Pr + 5876 Pr2), (A13)

a quantity which is positive for any Pr which means that such heating always reduces
pressure losses. The same conclusion holds for heating applied at the left wall only.

To determine the mean Nusselt number, we take the expression for θ̂2M and evaluate the
derivative at y = −1 to find that

dθ̂2M

dy

∣∣∣∣∣
y=−1

= 1
45 360

Re(Ra2
p,R − Ra2

p,L)(1 − 10 Pr), (A14)

which leads to

Nuav = −α2λ−1
∫ x0+λ

x0

dθ̂2M

dy

∣∣∣∣∣
y=−1

dx = − α3

45 360
Re(Ra2

p,R − Ra2
p,L)(1 − 10 Pr).

(A15)

To assess the veracity of our results, we display in figure 25 a comparison of the asymptotic
predictions against some numerical simulations of the full governing system. We plot
the form of B as given by (A13) and the Nusselt number Nuav predicted by (A15). The
comparison shows excellent agreement between the analytical and numerical findings, at
least for wavenumbers α < 0.1.
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Figure 25. Comparisons of the numerically and analytically determined pressure-gradient correction B and the
average Nusselt number Nuav for long-wavelength heating with Re = 3, Rap,R = 312, Rap,L = 0, Pr = 0.71.
Dotted lines identify analytical solutions Ba and Nuav,a as given by (A13) and (A15), respectively, while the
solid lines identify the corresponding numerical solutions Bn and Nuav,n. The dashed-dotted lines identify the
differences�B = |Ba − Bn| and�Nu = |Nuav,n − Nuav,a| which appear to be of size O(α4). Black lines relate
to the pressure-gradient parameter B while red lines correspond to Nuav .

Appendix B. Short-wavelength heating

When α is large most of the interesting motion takes place near the walls; given this we
again put X = αx and introduce Y = α( y + 1) near the right-hand wall. Written in terms
of these the governing equations become

α

[
Re
(

2Y
α

− Y2

α2

)
+ u1

]
u1X + v1

[
2Re

(
1 − Y

α

)
+ αu1Y

]

= −αp1X + α2(u1XX + u1YY)+ θ1

Pr
, (B1a)

α

[
Re
(

2Y
α

− Y2

α2

)
+ u1

]
v1X + αv1v1Y = −αp1Y + α2(v1XX + v1YY), (B1b)

u1X + v1Y = 0, (B1c)

α

[
Re
(

2Y
α

− Y2

α2

)
+ u1

]
θ1X + αv1θ1Y = α2

Pr
(θ1XX + θ1YY). (B1d)

We solve these equations subject to the periodic heating on the edges of the slot so that

θ1(X,−1) = 1
2 Rap,R cos X, θ1(X, 1) = 1

2 Rap,L cos(X +Ω). (B2a,b)

When α � 1 we seek solutions which assume the structure

u1 = α−2

( ∞∑
0

α−jÛj

)
, v1 = α−2

( ∞∑
0

α−jV̂ j

)
,

p1 = α−1

( ∞∑
0

α−jP̂j

)
, θ1 =

( ∞∑
0

α−jΘ̂ j

)
,

(B3a–d)
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where all the unknowns are functions of X and Y. Leading-order terms in the thermal
equation simply give

Θ̂0XX + Θ̂0YY = 0 ⇒ Θ̂0(X, Y) = 1
2 Rap,Rexp(−Y) cos X, (B4)

in order to satisfy the boundary condition on Y = 0 and to decay as Y → ∞ . The
next-order equations simply show that Θ̂1(X, Y) ≡ 0; we also have Û1 = V̂1 = P̂1 ≡ 0.
At O(α−2) we find that

2YRe Θ̂0X = 1
Pr
(Θ̂2XX + Θ̂2YY) ⇒ Θ̂2(X, Y) = 1

4
Pr Re Rap,RY(Y + 1)exp(−Y) sin X,

(B5)
while O(1) terms in the two momentum and the continuity equations give

0 = −P̂0X + Û0XX + Û0YY + 1
Pr
Θ̂0, 0 = −P̂0Y + V̂0XX + V̂0YY , Û0X + V̂0Y = 0,

(B6a–c)
whose solution is

Û0 = Rap,R

16 Pr
Y(2 − Y)exp(−Y) cos X, V̂0 = Rap,R

16 Pr
Y2exp(−Y) sin X,

P̂0 = Rap,R

8 Pr
(1 + 2Y)exp(−Y) sin X.

(B7a–c)

We next return to the energy equation at O(α−3). We have that

Û0Θ̂0X + V̂0 Θ̂0Y − Re Y2Θ̂0X = 1
Pr
(Θ̂3XX + Θ̂3YY), (B8)

which, on substituting the leading-order results, becomes

Θ̂3XX + Θ̂3YY = − 1
32 Ra2

p,R Y exp( − 2Y) sin 2X + 1
2 Pr Re Rap,RY2exp(−Y) sin X, (B9)

which admits the solution

Θ̂3(X, Y) = − 1
24 (2Y2 + 3Y + 3)Yexp(−Y)Pr Re Rap,R sin X

+ 1
512 Ra2

p,R Y(1 + 2Y)exp(−2Y) sin 2X. (B10)

We also need to solve the problem for Û2, V̂2 and P̂2. Given the forms of the leading-order
solutions (B4) and (B7) the relevant equations can be written

Û2XX + Û2YY − P̂2X = Rap,R Re
8 Pr

Yexp(−Y)[Y(Y − 1)− 2 Pr(Y + 1)] sin X, (B11)

V̂2XX + V̂2YY − P̂2Y = Rap,R Re
8 Pr

Y3exp(−Y) cos X, Û2X + V̂2Y = 0. (B12a,b)

The solution of this system is

Û2 = Re Rap,L

8 Pr

[
− 1

12
Y(Y3 − Y2 − 3Y − 12)+ Pr

24
(−Y4 + 2Y3 + 9Y2 − 6Y)

]
× exp(−Y) sin X, (B13a)

V̂2 = Re Rap,L

8 Pr

[
−Y2

12
(Y2 + 3Y + 6)+ Pr

24
Y2(3 − 2Y − Y2)

]
exp(−Y) cos X, (B13b)
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and

P̂2 = Re Rap,L

8 Pr

[
1
6
(2Y3−3Y2+3Y + 9)− Pr

12
(4Y3 + 12Y2 + 12Y+15)

]
exp(−Y) cos X.

(B13c)

It may be checked that at O(α−3) and O(α−4) in the streamwise momentum equation the
nonlinear terms cannot generate any mean terms so, fortunately, we do not need to deal
with them in any detail. At O(α−4) in the energy equation we have

2Y Re Θ̂2X = 1
Pr
(Θ̂4XX + Θ̂4YY) ⇒ Θ̂4(X, Y) ∝ exp(−Y) cos X. (B14)

We move to the fifth-order problem and find that

1
Pr
(Θ̂5XX + Θ̂5YY) = 2Y Re Θ̂3X − ReY2Θ̂2X + Û0Θ̂2X + Û2Θ̂0X + V̂0Θ̂2Y + V̂2Θ̂0Y .

(B15)

Now, in view of the leading-order solutions, together with the second-order results, the
nonlinear terms here will generate mean terms. If this mean component is denoted as
Θ̂5M(Y) then

d2Θ̂5M

dY2 =
Re Ra2

p,R

384
Y exp( − 2Y)[2Y3 + 2Y2 + 3Y − 12 + Pr(3 + 3Y + 6Y2 − 5Y3)].

(B16)

This can be integrated twice subject to Θ̂5M(0) = 0 and the requirement that Θ̂5M remains
bounded as Y → ∞. Then we obtain

Θ̂5M =
Ra2

p,RRe

1024

[
(8 Pr − 9){(1 − (1 + 2Y + 2Y2)exp( − 2Y)}

−2
3

Y3exp( − 2Y){ Pr(5Y + 14)− 2(Y + 5)}
]
. (B17)

The streamwise momentum equation at O(α−5) gives

2Y Re Û3X − Y2 Re Û2X +Û0Û2X + Û2Û0X +2 Re V̂3 − 2Y Re V̂2 + V̂0Û2Y + V̂2Û0Y

= −P̂5X + Û5XX + Û5YY + Θ̂5

Pr
.

(B18)

We are again interested in the mean parts of this equation. If we suppose that P̂5M = AX
then let us consider the mean part of Û5, call it Û5M(Y). Fortunately, we do not need to
solve for the full form of Û5M(Y); instead, it is sufficient to note that for large Y we have

Û5M ∼
[

A −
Ra2

p,R Re

128

(
1 − 9

8 Pr

)]
1
2

Y2. (B19)

This completes the analysis of the wall layer. We see that the O(α−5) component of θ1
tends to a constant as Y → ∞ (see (B17)) while the O(α−7) component of u1 grows
quadratically.
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Figure 26. A comparison of the numerically and analytically determined pressure-gradient correction B and
the average Nusselt number Nuav for short-wavelength heating with Re = 1, Rap,R = 200, Rap,L = 0, Pr = 7.
The dotted and solid lines identify the analytical and numerical solutions, respectively. The black lines relate
to B while red refers to Nuav .

Thus, across the bulk of the slot where y = O(1) we have that

u1 = α−5Ũ( y)+ · · · , θ1 = α−5Θ̃( y)+ · · · , p1 = α−5Ax + · · · , (B20a–c)

and these satisfy

0 = −A + d2Ũ
dy2 + 1

Pr
Θ̃,

d2Θ̃

dy2 = 0. (B21a,b)

The form of (B17) shows that for matching we require

Θ̃ →
Ra2

p,RRe

128

(
Pr − 9

8

)
as y → −1. (B22)

An exactly parallel calculation at the left-hand wall shows that we must also demand that

Θ̃ → −
Ra2

p,LRe

128

(
Pr − 9

8

)
as y → 1. (B23)

Hence

Θ̃( y) = Re
256

(
Pr − 9

8

)
[Ra2

p,R − Ra2
p,L − (Ra2

p,L + Ra2
p,R)y], (B24)

so that

d2Ũ
dy2 = A − Re

256 Pr

(
Pr − 9

8

)
[Ra2

p,R − Ra2
p,L − (Ra2

p,L + Ra2
p,R)y]. (B25)

If we integrate twice and demand Ũ(±1) = 0 this determines that

A = Re
256 Pr

(
Pr − 9

8

)
(Ra2

p,R + Ra2
p,L). (B26)

In conclusion, we see that to maintain a constant mass flux through the channel we need
to impose a pressure-gradient correction B = α−5A where A is given by (B26). The sign
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of the pressure-gradient correction depends on Pr with the reduction of pressure losses
occurring only if Pr > 9

8 .
In figure 26 we compare our asymptotic predictions against some numerical simulations.

We see excellent agreement between the two cases for α > 10.
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