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CHARACTERIZATIONS OF AXIOMATIC CATEGORIES
OF MODELS CANONICALLY ISOMORPHIC TO
(QUASI-)VARIETIES

BY
MICHEL HEBERT

ABSTRACT. Let #;(T) be the category of all homomorphisms
(i.e. functions preserving satisfaction of atomic formulas) between
models of a set of sentences 7T in a finitary first-order language L.
Functors between two such categories are said to be canonical if they
commute with the forgetful functors. The following properties are
characterized syntactically and also in terms of closure of 4, (T) for
some algebraic constructions (involving products, equalizers, factori-
zations and kernel pairs): There is a canonical isomorphism from
A, (T) to a variety (resp. quasivariety) in a finitary expansion of L
which assigns to a model its (unique) expansion. This solves a
problem of H. Volger.

In the case of a purely algebraic language, the properties are
equivalent to: “.#; (T) is canonically isomorphic to a finitary variety
(resp. quasivariety)” and, for the variety case, to “the forgetful
functor of A, (T) is monadic (tripleable)”.

1. Introduction. Identities and quasi-identities are certainly very natural
ways to express properties of classes of structures. It has been remarked early
(by G. Birkhoff) that they identify classes permitting certain constructions such
as substructures, products, quotients. With this in mind, one can consider more
general ways of expressing properties, that is, more general types of sentences,
and ask if they correspond to some specific (new or old) constructions. Keisler
has probably cooked his “sandwiches” (see [2]) this way from universal-
existential sentences. One can go in the other direction, looking if closure for a
certain algebraic construction can be syntactically characterized. When success-
ful, any of these attempts gives a so-called “preservation” theorem.

Ideally, the point of view of category theory focuses on the essence, on the
idea behind the form. For example, “categorical” free algebras are exactly what
they should be: the structures with the required universal property, even if they
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do not always correspond to the classical “freely generated” algebras. In fact,
many interesting properties are preserved under isomorphisms of categories,
but the usual frames are often too rigid to pass undamaged: for example, we
know that an axiomatic class of algebras having a monadic (see [12] ) forgetful
functor can be seen as a variety, but in an expanded language (we will see that
if the first language is finitary, then we can choose the second one also
finitary).

Many characterizations of categories isomorphic to varieties and quasivarie-
ties have been found (see [5], [9], [10], [11] ). What we do in this paper is to start
with a standard category of models, that is an axiomatic (in a finitary language)
class of structures with their homomorphisms (in the sense of [2]), and ask
when it is canonically isomorphic to a (finitary) variety or quasivariety. Here,
“canonical” means that the underlying functions and sets are preserved by the
isomorphism. Note that the above characterizations, combined with the fact
that the forgetful functor for a category of models (for a finitary language)
preserves filtered colimits (proved in [14] ), give clues for an algebraic answer to
our question. From these and with the help of several results in [15], we will find
syntactical characterizations of these situations. We emphasize that the case of
language with relation symbols is different from the purely algebraic case: we
will have to be more specific about the nature of the isomorphism, essentially
because of the too great freedom of the interpretations of the relation symbols
with regard to homomorphisms. For varieties, the result will nevertheless solve
a problem of [15]. In algebraic cases, this also gives a syntactical characteriza-
tion of the monadicity of the forgetful functor. In the case of quasivarieties, the
“unpleasant” form of the characterization will be shown to be imposed by
the “non-uniformity” (to be defined later) of the property to be character-
ized.

2. The characterizations. We first recall some definitions.

Here a language will be a usual first-order predicate language L as defined
for example in [2]. We emphasize that all relation and operation symbols
will be finitary. A (L-)structure is what [2] calls a “model” (for L). A function
f:A — B between underlying sets of structures A and B is a homomorphism
if for each n-ary operation symbol F, each n-ary relation symbol R and each
a,...,a, € A, we have f(Fy(a,,...,a,)) = Fy(f(a)),...,f(a,)) and
Ry(ay, ..., a,) implies Ry(f(ay),...,f(a,)) (not necessarily the opposite),
where Ry, Ry, Fy and Fy are the interpretations of R and F in % and B
respectively. A category of models will be the category #(T) of all models of a
theory (that is, a set of sentences) 7 in L with all the homomorphisms between
them. .#(9) is the category of all L-structures and homomorphisms.

We denote by [A4?] (respectively /\[4¢], 3/\[At]) the set of all atomic formu-
las (respectively conjunctions of atomic formulas, and of the form 3y, ... y
with ¢ € A[At]). A variety (respectively a quasivariety) is a category
A(T) where T is equivalent to a set of sentences of the form Vxy (respec-
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tively Vx(¢ — ), called universal strict Horn sentences), where ¢ € [A¢]
(and ¢ € A[A1]); here, X is a string of variables and VX means Vx; ... x,,.

If U:(T) — S and U:M(T') — S/ are the usual forgetful functors
(DA = A, etc...), a functor H:A4(T) — #(T") is called canonical if UH = U.
M(T) is said to be closed for products (respectively for equalizers) if the products
(respectively equalizers) in .#(8) of objects (respectively morphisms) in #(T)
are in A(T). Note that a product in .#(®) is the usual “direct product” (see [2])
and that if £, g:9 — B are homomorphisms, the equalizer € of f and g in .#(8)
is the substructure (“submodel” in the terminology of [2] ) of A on the set {a €
A|f(a) = g(a) }. We remark that if L has no relation symbol, then for #(T) to
be closed for products (respectively equalizers) is equivalent to the condition
that #(T) has products (equalizers) and U preserves them; the fact that it is not
the case when relation symbols are present will be important. There is a natural
factorization of morphisms in #(#): if f:% — B is a homomorphism, we will
denote by Im(f) the (unique) substructure of B on the image of f; if for each
morphism f in AZ(T) Im(f) is a model of T, we will say that #(T) is closed for
Jactorizations. M(T) is closed for sandwiches if U is in A(T) for each diagram

i J
S BSEin D)

where i/ and j are embeddings, ji is an elementary embedding (see [2] ) and B is
a model of T.

We will say that a theory T satisfies condition (*) if the following is true:
(*) For each Y(x, y) € /\[At] such that T + Vx3y((X, y)), there exists
Y(X, y,z) € /\[At] such that

THVxIyz((x, y) N Y(X, y,2)) N\ vxa'yazowx, V,2)).
Here, Elljz‘(q:()_z)) abbreviates 3y(e(y) ) N\ VxVzZ(e(X) N\ ¢(z) = X = z), where
X = z means (/\7_, (x; = z;)). Note that a model of a sentence of the form
V)?El')_/(«p()_c ) ) has only one element.

In the context of the next theorem, condition (*) will permit us to define new
operation symbols in a way to achieve our goal. The meaning of “definitional
extension” can be found in [15], but will also be made clear in the proof.

The rather unpleasant form of condition (*) will be seen to reflect the
“non-uniformity” of the property to be characterized: a property P concerning
theories in a language L is said to be uniform if there exists a set T, of sentences
in L such that a theory T has property P if and only if T = T for a subset 7; of
Tp. See Remark 3 following the theorem.

THEOREM 1. For any theory T in L, the following are equivalent:

(a) There is a canonical isomorphism from #M(T) to a quasivariety in an ex-
pansion of L by operation symbols which assigns to a structure its (unique)
expansion.
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(b) There is a canonical isomorphism from M(T) to a quasivariety in an expan-
sion of L which assigns to a structure its (unique) expansion.

(¢) A(T) is closed for factorizations, products and equalizers.

(d) T = T, U T,, where T, is a set of universal strict Horn sentences and T, is a
set of sentences of the form Vx3yy, ¢ € A[At), and T satisfies condition (*).

(e) T has a definitional extension T* in L* such that #(T*) is a quasivariety and
L-homomorphisms between models of T are L*-homomorphisms.
If L has no relation symbol, these are equivalent to:

(f) A(T) is canonically isomorphic to a quasivariety.

Proor. (a) = (b). Obvious.

(b) = (c). Let T* be a set of universal strict Horn sentences in an expansion
L* of L such that #(T*) is a quasivariety as in (b). Let /:9 — B in #(T). Then
the L*-substructure of the L*-expansion of 8 on the image of / must be a model
of T* (because T* is universal) and its L-reduct is then in .#(T). This proves the
closure for factorizations. It is easy to see that the fact that #(T*) is closed
for products and equalizers implies the same for #(T), by the nature of the
isomorphism.

(¢) = (d). We first prove that the closure of #(T) for factorizations and
equalizers implies that T is equivalent to (7] U T;), where T| is the set of
universal consequences of T and 7j is the set of universal-existential-positive
consequences of 7.

Propositions 1 and 5 of [15] show that the fact that #(T) is axiomatic and
closed for equalizers implies that it is closed for sandwiches. Let 4 = 7T} U T;.
Standard arguments involving saturated extensions and used to prove many
preservation theorems show that there exist diagrams

J k i
—=——B"" > B, e B W’

By, <Y

where B, B”, B’ and A’ are L-structures, B, and B, are models of T, i, k and
Jj are embeddings, “<” means “elementary embeddings”, & is a surjective
homomorphism and ik is an elementary embedding (see [2] Section 5.2 for
the diagram on the left and the proof of Proposition 4 of [15] for the other
diagram).

Because % = A’, the isomorphism theorem of Keisler-Shelah (see [2] Theorem
6.1.15) says that there exists an ultrafilter K such that the ultrapowers [ ] %
and [I 9 are isomorphic. For a homomorphism g:€ — D, it is easy to verify
that [Ix g:1Ix € — TIx D, the function defined pointwise from g, is a
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homomorphism. Moreover, [ 1 g is surjective (respectively an embedding) if g
is (see [3] p. 115). The diagrams then induce a third one:

HK gB/ — > HK gB/r C). HK 9/[/ _’:; HK 9/[ C). HK gBu/

where I1x B’ and I B are in #(T) because any structure is elementarily
equivalent to its ultrapowers. #(T) being closed for factorizations, we conclude
that [T, B”, and hence B”, is in #(T). But .#(T) is also closed for sandwiches
(see Propositions 4 and 14 of [15]), and the second diagram then says that
AE=T

This proves that T = 7] U T;.

To finish the proof, note first that any universal sentence is equivalent to a set
of sentences of the form

(1 Vi(e = (e, V... Vyg,))

where o, ¢, ..., ¢, are conjunctions of atomic formulas. Moreover any sen-
tence of 7; can be written in the form

2 VX (,\Z 3)74/,-)

where each v, is a conjunction of atomic formulas. In the present hypothesis, we
can apply Proposition 12 of [15]; then, for each consequence of T of the form

(1), there exists j € {1,...,n} such that

3) THVx(e — q>j)

and for each consequence of T of the form (2) there exists k € {1,...,m}
such that

“) T+ Vx3yy).

The sentence in (3) being equivalent to a conjunction of universal strict Horn
sentences, 7T is equivalent to a set of sentences of the forms described in (d). A
similar argument to the one used in the proof of (2) = (3) of Proposition 14 of
[15] shows that its Propositions 9 and 10 imply condition (*).

(d) = (e). For each sentence of the form Vx3yy, ¢ € A[At], which is a
consequence of T, add to L strings H¥', H¥, ... of operation symbols for
each string ¥ (X, ¥, 72), ¥2(X, %1, V3, V3), - .. of formulas in /\[A4¢] such that
THVYXIp ... 50 A A ... Ayg)and THVXA'S, ... 735, ,(¥,) for each
i, where HY = (H!, ..., H*D)if 5 = (y!,...,)*©). Call L* the expansion of
L obtained, and add to T, seen as a theory in L*, all sentences

VEWE, AY(F)) A (/\ Y(x, HY (), ..., H¥ " (x)) ) )

i=1
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for each positive integer n.
Then, for the new theory T* obtained, we see easily that

i
T* - Vxy )_’1(/\l V= H\P’()_C) < @i - ,)/,'+1)))-
j=

For any A = T, A has clearly a unique expansion A* in #(T*). In other
words T* is a definitional extension of T by new operations defined by formulas
in 3/\[A4¢]. The fact that any homomorphism preserves formulas in 3/\[A4¢]
insures that a L-homomorphism 9% — B between models of T is a L*-
homomorphism A* — B*. Clearly #(T*) is a quasivariety.

(e) = (a). Obvious.

(a) = (f). Obvious.

(f) = (c). The existence of a canonical isomorphism from a quasivariety to
A(T) insures that it has products and equalizers and that its forgetful functor
preserves them. Because of the absence of relation symbols, this implies that
A(T) is closed for products and equalizers. For the factorizations, it follows
easily from the fact that any quasivariety is closed for substructures.

ReMARKS. (1) The proof of (¢) = (d), combined with an adaptation of
condition (*) to the type of sentences considered (see Proposition 9 of [15])
leads to a preservation theorem for equalizers and factorizations.

(2) Consider, for a given theory 7, the following 4 properties: (i) T is a
quasivariety; (ii) 7 satisfies Theorem 1; (iii) #(T) is closed for limits (i.e. T
satisfies Theorem 14 of [15]); (iv) The models of T are precisely the reducts of
the objects of some quasivariety (in an extended language). Clearly (i) = (i1) =
(i1) = (iv). None of these implications can be reversed. For the first one,
consider the theory of groups in the language with one nullary and one binary
operations (no unary one to represent inverses). For the second one, let R and S
be binary and unary relation symbols respectively,

T = {Vx(S(x) = Iy(R(x, y))), Vxyz(R(x, y) N\ R(x,z) =y = z)}
and A and B be the two models of T such that
A ={a},B={b b}, Sy =0=Ry Sq = {b}and Ry = { (b, V) }.

Then the image of the homomorphism f:4 — B defined by f(a) = b is not a
model of 7. Hence #(T) is not closed for factorizations, but it is easily seen to
be closed for limits (i.e. for products and equalizers). Note that this also shows
that Theorem 2 of [7] is false. The gap between (iii) and (iv) can come from the
non-unicity of the expansions of a model as well as from the presence of
homomorphisms which are no more homomorphisms in the extended language.
[1] treats of that with examples. This is also related to the problem of the
definability of “implicit operations”, which is the subject of [8] and [6].
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Theorem 3 of [8] implies in particular that (a) = (e) (in our Theorem 1) and that
the sentences defining the new operations can be chosen of the form I /A\[A¢]
(see also [6]).

(3) The unpleasantness of condition (*) is unavoidable: Proposition 6 of [15]
can be slightly generalized to cover the present situation by replacing its part (i)
by “A theory T satisfying the equivalent conditions of (our) Theorem 1 is in-
variant under R”. This is so because the theory Volger uses in his proof is also
invariant under factorizations. Hence the property of verifying the conditions of
Theorem 1 is not uniform.

The next result parallels Theorem 1 for varieties. It solves a problem of
H. Volger (see [15] p. 47). For the definition of a monadic (or tripleable)
functor, see for example [12]. We will say that #(T) is closed for homomorphic
images whose kernel pair is in #(T) if in any diagram

A3 L’ B f» C
5
in #(0) where f is surjective, {f}, f,) is the kernel pair (in .#(9) ) of f and A and
B satisfy 7T, then € is also in (7).

Denote /13y L the language obtained from LAby removing all its rACIation
symbols. [A7] is the set of all atomic sentences of L, and for ¢ € /\[At], Y is the
conjunction of the atomic formulas in ¢ which belong to [47]. Remark that if
\Il\/ = §, then a model of Vk'ﬂly'(@()—c, ¥)) has only one element. Note also that a
sentence VX(R(X) ), R a relation symbol, can be written

VEGFWE 7)) A 3T 7))
for some y € A[At] (take for ¢ the formula (R(X) /A X = y) ). We will denote
by cAondition (Q) the one obtained from (*) above by requiring ¢/(x, y, z) to be in
A[At].

A formula in /\[At] is of the form /\S_1 (F(x) = Gy(x)) for some terms
F,...,G, in L. We will sometimes write F (x) G (x). We will say that a
theory Tsatzsfzes condition (+) if the following is true:

(+) For each y = /\ -1 (F(x ¥, 2)) = G(x, ¥, z)) in /\[At] for which
T+ Vvx3 yaz(xp(x, v, z) ), there exist Y, ..., x,l/ in /\[At] such that

T+ Vx3 )7, e )7,"(,-)3?(\]»,-(2, Vs ,y,,,(,.), zZ))
fori = 1,...,n, and

THYXy'Z’3{y, z, u, ul, v, v, w(yj, DI = 0, ...,m@i); i = 1,...,n}

WX, 7,7) A (/=\1 W, @@, w(l, i), ..., w(m@), i), v,) A

A @@, w0, i), ..., wm@) — 1, i), %)) A (w(0, n)
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=y AN w(m(n), n) = y’) N\

n—1
A (/\l @0, i) = @4, A wim(i), i) = a,.+1))
where, if 4, = (u;,...,u,) and ] = (uf,...,u)), each {u,, u/} is {u;, u;} or
{Ij-()"c, ¥, 7, G(X, y',z') } for some j € {1,..., s}

This condition is necessary to insure the unicity of y when we will replace
vx3'53Z(Y(, 7, 7)) by VXWX, H,(X), H,(X) ) ) in an appropriate expansion of
L. Its form expresses the link with “congruence relations” (see [4], in particular
the characterization of a congruence generated by a subset in Chapter 1), which
is just another way to speak about kernel pairs. Its precise justification will
appear in the proof of the next theorem.

THEOREM 2. For any theory T in L, the following are equivalent:

(a) There is a canonical isomorphism from #(T) to a variety in an expansion of
L by operation symbols which assigns to a structure its (unique) expansion.

(b) There is a canonical isomorphism from M(T) to a variety in an expansion
of L which assigns to a structure its (unique) expansion.

(¢) A(T) is closed for products, equalizers and homomorphic images whose
kernel pairs are in M(T).

(d) T is equivalent to a set of sentences of the form

vx@yzy A 3'53z), ¢ € Aldr],

and satisfies conditions (¥) and (+).
(e) T has a definitional extension T in L* such that M(T}) is a variety and
L-homomorphisms between models of T are L*-homomorphisms.
If L has no relation symbol, these are equivalent to:
(f) A(T) is canonically isomorphic to a variety.
(8) The forgetful functor for #(T) is monadic.
If L has no operation symbol, this is equivalent to:
(h) #(T) is a variety.

Proor. (a) = (b). Clear.
(b) = (c). By Theorem 1, it suffices to prove that if
Aok
A3ZIB»CE
2

is a diagram in #(9) with (f,, f,) = kernel pair of A, A and B in A#(T) and h
surjective, then € is in A#(T).

Let V and L* be respectively a variety and an expansion of L as in (b), and let
A* be the image of a model A of T by the isomorphism. We consider the
following L*-expansion € of G: if F is a n-ary operation symbol of L* not in L
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and ¢y, ...,c, are elements of €, then Fg(cy,...,c,) = h(Fg«(b,....b,))
where b; is any element of B such that h(b;) = ¢, i = 1,...,n; it is the
definitions of ¥, f; and f,, and the fact that f, and f, are L*-homomorphisms
(of A* in B*) that insure that Fg is a well-defined function. If R is a n-ary rela-
tion symbol of L* not in L, define Rg in any way such that Ry.(b,, ..., b,) =
I_l@(h (by), ..., h(,)). Clearly h is a (surjective) L*-homomorphism from 8* to
@€. But V' is a variety, and then must contain €. By the nature of the isomor-
phism, it follows that € is in (7).

(c) = (d). Let T} be the set of consequences of T of the form VfE')‘zEIE(xp),
Y € A[At]. We first show that T = T;.

Let % be a model of T;. If ¢ is a universal-existential-positive consequence of
T, Proposition 12 of [15] implies that there exists a consequence ¢’ of T of the
form Vx3y(¥), ¢ conjunction of atomic formulas, such that ¢’ - ¢ (as in the
proof of Theorem 1). But the form of ¢’ places it in 7} and then 9 satisfies any
universal-existential-positive consequence of T. As in the proof of Theorem 1,
this forces the existence of a diagram

k i
p) L= A ————))

sB/

with ik an elementary embedding and B’ in #(T'). We prove now that the kernel
pair {f}, ,):6€ 3 ¥’ of h (in #(B) ) is in A(T).

T, being equivalent to a set of universal and of positive sentences, the
surjectivity of 4 and the fact that i is an embedding imply that B” & T,.
Condition (*) being satisfied by #(T) (by closure for equalizers and
Propositions 9 and 10 of [15]), for any sentence Vx3'53z(y) of T, there exists a
formula ¢/(x, y, z, u), ¢/ a conjunction of atomic formulas, such that

T+ vx3'53za@ A ) and T + vx3'5z3a@).

But V)_cEIl)_zZEIE(xp’), being then in T}, must be satisfied in ®B”; it is routine to
check that this implies that ¥x3'53Z(y), and then any sentence of T, is true
in €. But € is, by construction, substructure of 8’ X B’ (the product in #(0) ),
which is in #(T). It follows that € verifies also any sentence in the set 7,
of the universal consequences of 7. Part (d) of Theorem 1 implies in particular
that 7, U T, = T, and then € & T. Applying the hypothesis, we have that
B” is in A(T), and then also U because #(T) is closed for sandwiches (as in
Theorem 1). This proves that T = T,.

Let T F vx3 yEIz(a(x y,z) N\ B(x, y, z)) with B € /[At] and a €
[At]\[At] Then a is of the form R(F(X, ¥, z) ) for some string of terms F and
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some relation symbol R. For a given model A of 7, consider the L-structure A’
on U defined by Fy, = Fy for all operation symbols F and Ry, = (U)" for all
n-ary relation symbols R. Then the identity function is a homomorphism
from A to A, and the domain of its kernel pair is (isomorphic to) U itself.
Hence %’ = T. But % & Vxyz(a), and then A’ = V)_CBIYEIZ(,B). This implies
that % = vx3'y3z(B).

Hence we have shown that

T+ vxa'53I7((x, 7, 7))
implies
T+ vx35IZ((X, 7, 7)).

In particular, Tl (and hence T) is equivalent to a set of sentences of the form
Vx(@yzy A 3 yEIZz,b)) Y € /\[At]. This insures also that T satisfies (*) (from
the fact that it satisfies condition (*) ). It remains to show that (+) is also
true.

If 9 is a L-structure, an equivalence relation § on U will here be called a
congruence on N if it is a congruence on the L-reduct 91 of % in the usual
algebraic sense (see [4]). For a congruence 6§ on ¥, we denote by /8 the
L-expansion of 91/6 obtamed by defining Ry ,4 = (U(%I/0) )" for all n-ary
relation symbols R (where U(%I/ ) is the underlying set of 91/ ). For a string a of
n elements of 4, we will write |a| = n and (abusively)a € 4. Ifa = (a;, ..., a,)
and @ = (4),...,a,), the notation (@, @) € 6 will mean { (q; a)|i =
1, ,n} € 0

Let\p S /\[At] as in condition (+) (¢ = (/\3_l =G = (F=G)),Aa
model of T and @, b, ¢in A such that 9 & {[a, b, ¢]. For any b’, ¢’ in 4 such that
|b’| = |b| and [¢’| = [¢|, we consider the relation 8[y(a, b, ¢")] = U, 6, on
U defined by

b, = {(d, dld € 4} U {(F@ b, 7),G@ b, )}
U {(G@b,c) F@b,c))},
and for each n > 0,
= {{(d, d,)| there exist ¢, = d,, ¢}, ...,¢,, = d, in A and
¥, € A4 such that T+ V%3'3, ... 5,320, Fpr - . .. T,n 7)) and
A= Pld, 1,C - rCpes €] N ld,_1, 5., €, €,] for some
d,_\,d,_\) €6, ,ande,e, inA)}.

Then one can check that @[y(a, b’, ¢’)] is the smallest congruence 6 on
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9 containing (F (@, b’, "), G(a, b’,¢’) ) and such that for any y/ € A[4¢] with
T+ Vx3'537(y/(X, 7, Z) ), we have

(X E Yla, ay, @3] N Y@y, @y, @] and (a,, aj) € 0] = (ay, @) € 0.

Let f:4 - A/0[Y(a, b’, ¢’) ] be the canonical homomorphism and B(S A4 X
A) be the domain of the kernel pair of f. Of course (a, @’y € B if and only if
(a, @y € O[\(a, b’, ¢)]. Let ¢ € A[At] with T - Vx@yzy/ N 3 )
For (a,, a,) € B, there exist unique b, b, such that there exist 1, & with
A = Ya, b,, ¢l N Via, by, ¢). Then (b,, b,) is in B. By (*) there
exist Y’ € /\[At] and ¢{, ¢, d,, d, in A such that

A = N2_\(V[a, b, ) N Y@, b, ¢, d]) and
T+ vx3'yz3u@/x, 7, Z, @) ).

But (@, @,) being in B, this implies that (b, b,) and (¢, ¢}) will also be
there, by the property of 6[y(a, b’, ¢’)] mentioned above. This shows that
B = Vx@@yzy A 3])7324/). Hence B = T, and by the closure property,
A/0Y(a, b’,¢)] = T.

In particular, /0@, b’, ¢’) | & Vx3'y3zy. But (F(a, b, ), G(a, b, ¢) ) and
(F(a, b, ¢"), G(@, b’, ¢’) ) are both in O[Y(a, b’, ¢’) ], and this forces

(b, b’y € O[¥(@ b, )]
that is, (b, b’y € 8, for some integer n. This means that there exist
Yiv oy, € ALAY
satisfying T - vxaly ... I3z for i = 1,..., n, and strings d,d,e, e,
b, jyfori =1,...,nand j = 0, 1,..., m(i) such that

A @ 5, el A\ @ld, 5O b, B — 1,1 A
i=1

AN Yld, b(1, i), ..., b(m(@), i), €] )) N b(0, n)

n—1
= B A B, m = 5 A (A GO0 = Zyy ABen). D =710
i=1
and where, if d; = (d},...,d,) and d| = (d), . .., d,), we have, for each
ie{l,...,r},d,=d or
{d, d} = {F(@a, b, ), G,(@a, b’,¢") } for some j € {1,...,s}.

Expressed in infinitary logic, all this shows that
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T+ vxy 'z’ z@) (@ )r() () p{ (W(h, k) )plh, k integers}
(Y\E/F (4}(}7 ya Z) N (1/:Y\l (¢y(i)(l_'iy(i)’ wy(i)(l’ l)’ et wy(z)(m(Y(l) )’ l)’ —v_y(i)) A

AN Py Way iy Wy Do Wy (m(y(D)) = 1 1), Vi) )) A
A\ (Wy(n )(0’ ny) = i N wy(ny)(m(‘Y(ny) )9 ny) = .}_}I) N

r—]
(/\ (@, ) = Ty A Ty m ). D) = Ty |

with (i), _),’(l)) of the required form, and where (#)r = {u,},er and u, =
{way---» Uy(n, 1}, similarly for u’, VY "and w(h, k), and T is the set of all strmgs
Wyay - - s Yy(n,)) with ¢, ;) € A[At] and T+ vxaly, . - Yoy )y 32y

A(T) being "closed for products, there must exist y € I' for which we can
remove the disjunction and replace “I"”” by “y” in this sentence. This gives
condition (+).

(d) = (e). Proceed as in (d) = (e) of Theorem 1 to obtain L* and T*. We need
to do more to eliminate the need of the sentences of the form

VIVIV (WE, 7) N\ WX, 7)) = 7 = 7).

For each consequence of T of the form Vx3'y3z(¢(X, 7, Z)) with ¢ €
/\[At] and for each consequence of T* of the form

VX (¢(G (%), G4(X), G3(X)) N VF(e(F, Hi(7), H)(7)))).

for some strings of terms G,, G,, G, H,, H, in L*, add to T* the sentence
VX(Gy(X) = H(G(%)))-

Call T} the new theory. Then conditions (*) and (+) insure that Tl* is
equivalent to its consequences of th;c\ form Vx(e(x)), ¢ € N[A?]: if VX3 yEsz[/
is a consequence of T with ¢ € /\[4¢], then the long sentence in (+) induces a
sentence in T* of the form

vzyfz’( (/\ Y(GIE, 7, 7, GAE, 7, ), . ) ))

but the existence of sentences of the form

Vxy'z/(GAX, 7', 7)) = H(G{(X, ¥, Z))
in T and the special form of the long sentence imply the unicity of y without
the presence of V)_CB‘)—/BZL. Finally, T* being a definitional extension of T by

new operations defined by formulas in 3/\[A4¢], the same is true of T}*
(e) = (a) = (f) = (g). Obvious or well-known.
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(g) = (c). Let U and U’ be respectively the forgetful functors for #(T) and
(). L having no relation symbol, the fact that U preserves limits implies that
A(T) is closed for products and equalizers. Let

TR
g
be a diagram in .#(@) with f surjective, ( f}, ;) = kernel pair in (@) of f and
A, B in A(T). We must show that € is in #(T).

It is easy to verify that Uf is a split coequalizer (in Set) of (Uf;, Uf,) (see [12]
for this concept). By Beck’s Theorem (see again [12]), there is a unique
homomorphism g:B — D in #(T) such that Ug = Uf and UD = U'G. Again,
the absence of operation symbol (and the surjectivity of f) forces (g:B8 — D) =
(/18 > 6).

(h)  (d). Easy.

REMARKS. (1) It is known how to construct, from the monadicity of the
forgetful functor, an unbounded language in which #(T) 1s a “variety” (see for
example [5]). For (g) = (f), we had to show that there exists a finitary language
permitting this. We could have deduced it from the result of Richter [14]
mentioned in the introduction, but we preferred the more direct and elementary
proof (of (g) = (c)) given.

(2) Consider, for a given theory 7, the following 4 properties: (i) 7 is a
variety; (ii) #(T) is closed for limits and homomorphic images (i.e. T satisfies
Theorem 15 of [15]); (iii) T satisfies Theorem 2; (iv) The models of 7 are
precisely the reducts of the objects of some variety (in an extended language).
Again (i) = (ii) = (iii) = (iv) and no implication can be reversed. The same
example (of groups) as in Remark 2 after Theorem 1 can be used to show that
(ii) # (i). A counterexample, due to Diaconescu, to (iii) = (ii) can be found on
page 47 of [15] (this also invalidates Theorem 3 of [7] ), and one to (iv) = (iii) on
page 166 of [1].

(3) In a language without operation symbol, then of course the property, for a
theory, of verifying Theorem 2 is a uniform one, by (h). The answer in the
general case is unknown to us: a proof like the one of Rabin ( [13], Theorem 11),
which forms the basis of the Proposition 6 of [15], creates considerable diffi-
culties here because of the necessary presence of operation symbols.
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