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CHARACTERIZATIONS OF AXIOMATIC CATEGORIES 
OF MODELS CANONICALLY ISOMORPHIC TO 

(QUASI-)VARIETIES 

BY 

MICHEL HÉBERT 

ABSTRACT. Let JtL(T) be the category of all homomorphisms 
(i.e. functions preserving satisfaction of atomic formulas) between 
models of a set of sentences T in a finitary first-order language L. 
Functors between two such categories are said to be canonical if they 
commute with the forgetful functors. The following properties are 
characterized syntactically and also in terms of closure oiJtL{T) for 
some algebraic constructions (involving products, equalizers, factori
zations and kernel pairs): There is a canonical isomorphism from 
JtL{T} to a variety (resp. quasivariety) in a finitary expansion of L 
which assigns to a model its (unique) expansion. This solves a 
problem of H. Volger. 

In the case of a purely algebraic language, the properties are 
equivalent to: "^#L(7) is canonically isomorphic to a finitary variety 
(resp. quasivariety)" and, for the variety case, to "the forgetful 
functor oiJtL(T) is monadic (tripleable)". 

1. Introduction. Identities and quasi-identities are certainly very natural 
ways to express properties of classes of structures. It has been remarked early 
(by G. Birkhoff) that they identify classes permitting certain constructions such 
as substructures, products, quotients. With this in mind, one can consider more 
general ways of expressing properties, that is, more general types of sentences, 
and ask if they correspond to some specific (new or old) constructions. Keisler 
has probably cooked his "sandwiches" (see [2] ) this way from universal-
existential sentences. One can go in the other direction, looking if closure for a 
certain algebraic construction can be syntactically characterized. When success
ful, any of these attempts gives a so-called "preservation" theorem. 

Ideally, the point of view of category theory focuses on the essence, on the 
idea behind the form. For example, "categorical" free algebras are exactly what 
they should be: the structures with the required universal property, even if they 
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do not always correspond to the classical "freely generated" algebras. In fact, 
many interesting properties are preserved under isomorphisms of categories, 
but the usual frames are often too rigid to pass undamaged: for example, we 
know that an axiomatic class of algebras having a monadic (see [12] ) forgetful 
functor can be seen as a variety, but in an expanded language (we will see that 
if the first language is finitary, then we can choose the second one also 
finit ary). 

Many characterizations of categories isomorphic to varieties and quasivarie-
ties have been found (see [5], [9], [10], [11]). What we do in this paper is to start 
with a standard category of models, that is an axiomatic (in a finitary language) 
class of structures with their homomorphisms (in the sense of [2] ), and ask 
when it is canonically isomorphic to a (finitary) variety or quasivariety. Here, 
"canonical" means that the underlying functions and sets are preserved by the 
isomorphism. Note that the above characterizations, combined with the fact 
that the forgetful functor for a category of models (for a finitary language) 
preserves filtered colimits (proved in [14] ), give clues for an algebraic answer to 
our question. From these and with the help of several results in [15], we will find 
syntactical characterizations of these situations. We emphasize that the case of 
language with relation symbols is different from the purely algebraic case: we 
will have to be more specific about the nature of the isomorphism, essentially 
because of the too great freedom of the interpretations of the relation symbols 
with regard to homomorphisms. For varieties, the result will nevertheless solve 
a problem of [15]. In algebraic cases, this also gives a syntactical characteriza
tion of the monadicity of the forgetful functor. In the case of quasivarieties, the 
"unpleasant" form of the characterization will be shown to be imposed by 
the "non-uniformity" (to be defined later) of the property to be character
ized. 

2. The characterizations. We first recall some definitions. 
Here a language will be a usual first-order predicate language L as defined 

for example in [2]. We emphasize that all relation and operation symbols 
will be finitary. A (L-)structure is what [2] calls a "model" (for L). A function 
f.A —> B between underlying sets of structures 31 and 53 is a homomorphism 
if for each w-ary operation symbol F, each n-ary relation symbol R and each 
a„ . . . , an e A, we have f(F%(al9 . . . , an) ) = i^ t / fa i ) , . . . ,f(an) ) and 
R%(au . . . , an) implies Rm(f(ax),. . . ,f(an)) (not necessarily the opposite), 
where R<%, R<%, F% and F<$ are the interpretations of R and F in W and 33 
respectively. A category of models will be the category J?(T) of all models of a 
theory (that is, a set of sentences) T in L with all the homomorphisms between 
them. Jt($) is the category of all L-structures and homomorphisms. 

We denote by [At] (respectively A[^4/], 3 A[y^] ) the set of all atomic formu
las (respectively conjunctions of atomic formulas, and of the form 3yx . . . yn\p 
with \p e A[At]). A variety (respectively a quasivariety) is a category 
Jt(T) where T is equivalent to a set of sentences of the form V5ôp (respec-
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tively Vx(<p —» \p)9 called universal strict Horn sentences), where xp e [At] 
(and <p G A[At]); here, 3c is a string of variables and V3c means VJCJ . . . xn. 

If U\Jt(T) -> ^ and U:Jt(V) -> ^ are the usual forgetful functors 
(1721 = ^ , etc. . . ) , a functor H:Jf(T) -* J£(T) is called canonical if £/'# = (7. 
Ji(T) is said to be closed for products (respectively for equalizers) if the products 
(respectively equalizers) in Jt($) of objects (respectively morphisms) in Jf(T) 
are i n ^ ( r ) . Note that a product in~#(0) is the usual "direct product" (see [2] ) 
and that if / , g:2ï —» 93 are homomorphisms, the equalizer © of / and g in^#(0) 
is the substructure ("submodel" in the terminology of [2] ) of 21 on the set {a e 
A \f(a) = g (a) }. We remark that if L has no relation symbol, then for~#(T) to 
be closed for products (respectively equalizers) is equivalent to the condition 
that Jt(T) has products (equalizers) and Upreserves them; the fact that it is not 
the case when relation symbols are present will be important. There is a natural 
factorization of morphisms in J?(&): if/:91 —> 93 is a homomorphism, we will 
denote by ^m(f) the (unique) substructure of 93 on the image of / ; if for each 
m o r p h i s m / i n ^ ( 7 7 ) ^m(f) is a model of T, we will say \haXJt(T) is closed for 
factorizations. Jt(T) is closed for sandwiches if 21 is inJt(T) for each diagram 

i J 
21 ^ © <=* ® in ^ ( 0 ) 

where / and j are embeddings, y7 is an elementary embedding (see [2] ) and 93 is 
a model of T. 

We will say that a theory T satisfies condition (*) if the following is true: 
(*) For each \p(x, y) e A[At] such that T h \fx3y(\p(x, y) ), there exists 
yf/(x, y, z ) e A[^/] such that 

T h Vx3yz(xP(x, y) A i//(3t, J7, ^) ) A Vx3ly3IW(x, y, J) ). 

Here, 3ly(<p(y) ) abbreviates 3y(<jp(J0 ) A V3cVz(<p(3c) A <p(z) —> x = z), where 
x = z means (A? = 1 (JC,- = z,) ). Note that a model of a sentence of the form 
V3c3 y(<p(x) ) has only one element. 

In the context of the next theorem, condition (*) will permit us to define new 
operation symbols in a way to achieve our goal. The meaning of "definitional 
extension" can be found in [15], but will also be made clear in the proof. 

The rather unpleasant form of condition (*) will be seen to reflect the 
"non-uniformity" of the property to be characterized: a property P concerning 
theories in a language L is said to be uniform if there exists a set TP of sentences 
in L such that a theory T has property P if and only if T = Tx for a subset Tx of 
TP. See Remark 3 following the theorem. 

THEOREM 1. For any theory T in L, the following are equivalent: 
(a) There is a canonical isomorphism from Jt(T) to a quasivariety in an ex

pansion of L by operation symbols which assigns to a structure its (unique) 
expansion. 
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(b) There is a canonical isomorphism from Jf(T) to a quasivariety in an expan
sion of L which assigns to a structure its (unique) expansion. 

(c)Jf{T) is closed for factorizations, products and equalizers. 
(d) T = Tx U r2, where Tx is a set of universal strict Horn sentences and T2 is a 

set of sentences of the form \fx3y\p, \p e A[v4/], and T satisfies condition (*). 
(e) T has a definitional extension T* in L* such that Jt(T*) is a quasivariety and 

L-homomorphisms between models of T are L*-homomorphisms. 
If L has no relation symbol, these are equivalent to: 

(f) Jt(T) is canonically isomorphic to a quasivariety. 

PROOF, (a) =̂> (b). Obvious. 

(b) =̂> (c). Let T* be a set of universal strict Horn sentences in an expansion 
L* of L such that^#(r*) is a quasivariety as in (b). Let/:31 -> 93 inJf(T). Then 
the L* -substructure of the L*-expansion of 93 on the image o f /mus t be a model 
of r * (because T* is universal) and its L-reduct is then mJf(T). This proves the 
closure for factorizations. It is easy to see that the fact that Jt(T*) is closed 
for products and equalizers implies the same for Jt(T), by the nature of the 
isomorphism. 

(c) =» (d). We first prove that the closure of Jt(T) for factorizations and 
equalizers implies that T is equivalent to (T{ U T{), where T[ is the set of 
universal consequences of T and T{ is the set of universal-existential-positive 
consequences of T. 

Propositions 1 and 5 of [15] show that the fact that Jt(T) is axiomatic and 
closed for equalizers implies that it is closed for sandwiches. Let A 1= T[ U T[. 
Standard arguments involving saturated extensions and used to prove many 
preservation theorems show that there exist diagrams 

%r- J » w» > 33 %<= •»"£= • » ' 

/ 
932 < w 

where 93', 93", 93'" and W are L-structures, 93j and 932 are models of T, /, k and 
j are embeddings, "-<" means "elementary embeddings", h is a surjective 
homomorphism and ik is an elementary embedding (see [2] Section 5.2 for 
the diagram on the left and the proof of Proposition 4 of [15] for the other 
diagram). 

Because 91 = 21', the isomorphism theorem of Keisler-Shelah (see [2] Theorem 
6.1.15) says that there exists an ultrafilter K such that the ultrapowers IT^ 91 
and 11/^ 91/ are isomorphic. For a homomorphism g:(£ —» 2), it is easy to verify 
that n ^ g'-TLK S —» 1 1 ^ ®, the function defined pointwise from g, is a 
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homomorphism. Moreover, IT*: g is surjective (respectively an embedding) if g 
is (see [3] p. 115). The diagrams then induce a third one: 

iiKh llKi UKj 

where 1 1 ^ 93' and 1 1 ^ 93'" are in Jl{T) because any structure is elementarily 
equivalent to its ultrapowers.^#(r) being closed for factorizations, we conclude 
that 1 1 ^ 93", and hence 93", is in Jt(T). But Ji{T) is also closed for sandwiches 
(see Propositions 4 and 14 of [15]), and the second diagram then says that 
% \= T. 

This proves that T = T{ U T{. 
To finish the proof, note first that any universal sentence is equivalent to a set 

of sentences of the form 

(1) V*(v->(vi V . . . V V w ) ) 

where <p, <pu . . . , <pn are conjunctions of atomic formulas. Moreover any sen
tence of T{ can be written in the form 

(2) v*(y ajty) 

where each \pt is a conjunction of atomic formulas. In the present hypothesis, we 
can apply Proposition 12 of [15]; then, for each consequence of T of the form 
(1), there exists j e {1, . . . , n} such that 

(3) T h Vx(* -» Vj) 

and for each consequence of T of the form (2) there exists k e {1, . . . , m} 
such that 

(4) T\-Vx3yWk). 

The sentence in (3) being equivalent to a conjunction of universal strict Horn 
sentences, T is equivalent to a set of sentences of the forms described in (d). A 
similar argument to the one used in the proof of (2) => (3) of Proposition 14 of 
[15] shows that its Propositions 9 and 10 imply condition (*). 

(d) => (e). For each sentence of the form \fx3y{\p, xp Œ A[At]9 which is a 
consequence of T7, add to L strings H^\ H^2, . . . of operation symbols for 
each string ^ ( x , yh y2)9 ^(*> î> 2̂> >̂ )» • • • of formulas in A[^4^] such that 
T h V3c3y, . . . J i - + i W A ^ A . . . A ^-) and T h Vx3xyx . . . Jpj^+,0//,.) for each 
/, where H^ = (Hl

i9. . . , f/f(/)) if yt = (y],.. . ,.yf(/)). Call L* the expansion of 
L obtained, and add to T, seen as a theory in L*, all sentences 

VX(#JC, H+KX) ) A ( A *,-(*, HHn..., #*'+1(*) ) ) ) 
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for each positive integer n. 
Then, for the new theory T* obtained, we see easily that 

T* \- \/xyx . . . Ji( A jj, = H*J(x) «s. 3yi+lWi(x> Ji» • • • ^ / + i ) ) )• 

For any 31 t= T, 21 has clearly a unique expansion 21* in J?(T*). In other 
words r * is a definitional extension of T by new operations defined by formulas 
in 3A[At]. The fact that any homomorphism preserves formulas in 3A[At] 
insures that a L-homomorphism 5t —> 93 between models of T is a L*-
homomorphism 91* —» 93*. Clearly J((T*} is a quasivariety. 

(e) => (a). Obvious, 
(a) =» (f). Obvious. 
(f) => (c). The existence of a canonical isomorphism from a quasivariety to 

Jt{T) insures that it has products and equalizers and that its forgetful functor 
preserves them. Because of the absence of relation symbols, this implies that 
JiÇT) is closed for products and equalizers. For the factorizations, it follows 
easily from the fact that any quasivariety is closed for substructures. 

REMARKS. (1) The proof of (c) => (d), combined with an adaptation of 
condition (*) to the type of sentences considered (see Proposition 9 of [15]) 
leads to a preservation theorem for equalizers and factorizations. 

(2) Consider, for a given theory T, the following 4 properties: (i) T is a 
quasivariety; (ii) T satisfies Theorem 1; (iii) J((T) is closed for limits (i.e. T 
satisfies Theorem 14 of [15] ); (iv) The models of T are precisely the reducts of 
the objects of some quasivariety (in an extended language). Clearly (i) => (ii) =» 
(iii) =» (iv). None of these implications can be reversed. For the first one, 
consider the theory of groups in the language with one nullary and one binary 
operations (no unary one to represent inverses). For the second one, let R and S 
be binary and unary relation symbols respectively, 

T = {\fx(S(x) -> 3y(R(x, y) ) ), Vxyz{R{x, y) A R(x, z) -» y = z) } 

and 91 and 93 be the two models of T such that 

A = {a}, B = {b, V}, S% = 0 = R%, S% = {b} and R^ = { (b9 V) }. 

Then the image of the homomorphism/:^ —» B defined by f(a) = b is not a 
model of T. Hence Jt(T) is not closed for factorizations, but it is easily seen to 
be closed for limits (i.e. for products and equalizers). Note that this also shows 
that Theorem 2 of [7] is false. The gap between (iii) and (iv) can come from the 
non-unicity of the expansions of a model as well as from the presence of 
homomorphisms which are no more homomorphisms in the extended language. 
[1] treats of that with examples. This is also related to the problem of the 
definability of "implicit operations", which is the subject of [8] and [6]. 
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Theorem 3 of [8] implies in particular that (a) =» (e) (in our Theorem 1) and that 
the sentences defining the new operations can be chosen of the form 3 A [At] 
(see also [6] ). 

(3) The unpleasantness of condition (*) is unavoidable: Proposition 6 of [15] 
can be slightly generalized to cover the present situation by replacing its part (i) 
by "A theory T satisfying the equivalent conditions of (our) Theorem 1 is in
variant under R". This is so because the theory Volger uses in his proof is also 
invariant under factorizations. Hence the property of verifying the conditions of 
Theorem 1 is not uniform. 

The next result parallels Theorem 1 for varieties. It solves a problem of 
H. Volger (see [15] p. 47). For the definition of a monadic (or tripleable) 
functor, see for example [12]. We will say that J?(T) is closed for homomorphic 
images whose kernel pair is in Jt(T) if in any diagram 

I f 
fi 

i n ^ ( 0 ) where / i s surjective, (f\9f2) is the kernel pair (in~#(0) ) o f / a n d 91 and 
93 satisfy T, then (£ is also in^(T). 

Denote by L the language obtained from L by removing all its relation 
/ \ A A 

symbols. [At] is the set of all atomic sentences of L, and for $ e A[At]9-^is the 
conjunction of the atomic formulas in i// which belong to [At]. Remark that if 
A i A 

\p = 0, then a model of Vx3 y(\p(x, y)) has only one element. Note also that a 
sentence \/x(R(x) ), R a relation symbol, can be written 

\/x(3y(xP(x, y)) A 3]yÛ(x, y))) 

for some $ e A[v4/] (take for \p the formula (R(x) A x = y)). We will denote 
by condition (*) the one obtained from (*) above by requiring \f/'(x, y, I) to be in 
A[ît]. 

A formula in A [At] is of the form AJ= 1 (Fj(x) = Gj(x)) for some terms 
F]9 . . . , Gs in L. We will sometimes write F(x) = G(x). We will say that a 
theory T satisfies condition ( + ) if the following is true: 
( + ) For each ^ = As

J=l (Fj(x, y,z)) = Gj(x, y9 J) ) in A[At] for which 
T h Vx3ly3I(\l4x, y, J) ), there exist ipl9 . . . , xpn in A[At] such that 

T h \fx3lyx . . . ym(/ )3z(^(x, yl9 . . . 9ym(i), I) ) 

for / = 1, . . . , n, and 

T h Vxy'Y'3{y, z, w-, U-9 v}, v"/, w(j, i)\j = 0, . . . , m(i); i = 1, . . . , n} 

*Kx, y, z) A A (^-(S,-, w(l, i), . . . , w(m(i% i), v)) A 

A ^ ( ^ , H?(0, i), . . . , w(m(i) - 1, /), ?;0 ) A (w(0, /i) 
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= y A w(m(n), n) = y') A 

A ( A (W(0, I ) = Û / + 1 A iv(m(/), i) = Î7, + 1 ) ) ] 

where, if ûl = (ux,. . . , ur) and î/( = ( « { , . . . , u'r), each {w-, w/} is {ui9 ut} or 
{/J(3c, y , z'), G/3c, 7' , z') } for some 7 e {1, . . . ,s). 

This condition is necessary to insure the unicity of y when we will replace 
Vx3ly3I(\p(x, J7, z) ) by V3c (\p(3t, H^x), H2(x) ) ) in an appropriate expansion of 
L. Its form expresses the link with "congruence relations" (see [4], in particular 
the characterization of a congruence generated by a subset in Chapter 1), which 
is just another way to speak about kernel pairs. Its precise justification will 
appear in the proof of the next theorem. 

THEOREM 2. For any theory T in L, the following are equivalent: 
(a) There is a canonical isomorphism from Jt(T) to a variety in an expansion of 

L by operation symbols which assigns to a structure its (unique) expansion. 
(b) There is a canonical isomorphism from Jt(T) to a variety in an expansion 

of L which assigns to a structure its (unique) expansion. 
(c) Jt(T) is closed for products, equalizers and homomorphic images whose 

kernel pairs are in Jf(T). 
(d) T is equivalent to a set of sentences of the form 

Vx(3yzty A 3ly3I$), $ e A[At], 
A 

and satisfies conditions (*) and ( + ). 
(e) T has a definitional extension JT* in L* such that Jt(T*) is a variety and 

L-homomorphisms between models of T are L*-homomorphisms. 
If L has no relation symbol, these are equivalent to: 

(f) jft(T) is canonically isomorphic to a variety. 
(g) The forgetful functor for Jf(T) is monadic. 

If L has no operation symbol, this is equivalent to: 
(h) Jt(T) is a variety. 

PROOF, (a) => (b). Clear. 

(b) => (c). By Theorem 1, it suffices to prove that if 

A h 

fi 
is a diagram in^#(0) with (f}9 f2) = kernel pair of h9 91 and 33 in Jf(T) and h 

surjective, then S is in J£(T). 
Let V and L* be respectively a variety and an expansion of L as in (b), and let 

31* be the image of a model 3Ï of T by the isomorphism. We consider the 
following L*-expansion (£ of (£: if F i s a «-ary operation symbol of L* not in L 
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and cx, . . . 9cn are elements of (£, then F^(cx,. . . , cn) = h(F8*(bX9. . . , bn) ) 
where bt is any element of 93 such that h(bt) = ci9 i = 1, . . . , n\ it is the 
definitions of %, fx and f2, and the fact that fx and f2 are L*-homomorphisms 
(of 21* in 93*) that insure that F$ is a well-defined function. If R is a ft-ary rela
tion symbol of L* not in L, define i?g in any way such that Rç$*(bx, . . . , e„) => 
Rg(h(b{),. . . , /*(&„) ). Clearly /z is a (surjective) L*-homomorphism from 93* to 
(£. But F is a variety, and then must contain (£. By the nature of the isomor
phism, it follows that (£ is in Jt(T). 

(c) => (d). Let Tx be the set of consequences of T of the form \/x3ly3I(\p), 
$ e A[^l/]. We first show that T = Tx. 

Let 31 be a model of JJ. If <p is a universal-existential-positive consequence of 
r , Proposition 12 of [15] implies that there exists a consequence <p' of T of the 
form V3c3j7(;//), i// conjunction of atomic formulas, such that <j>' h <p (as in the 
proof of Theorem 1). But the form of <p' places it in Tx and then 3t satisfies any 
universal-existential-positive consequence of T. As in the proof of Theorem 1, 
this forces the existence of a diagram 

k i 

/ 
93' 

with //: an elementary embedding and 93' in^#(7'). We prove now that the kernel 
pair (fx, /2>:(£ =3 93' of h (in^#(0) ) is inJ?(T). 

Tx being equivalent to a set of universal and of positive sentences, the 
surjectivity of h and the fact that / is an embedding imply that 93" N Tx. 
Condition (*) being satisfied by J£(T) (by closure for equalizers and 
Propositions 9 and 10 of [15] ), for any sentence \/x3ly3I(\p) of 7̂  there exists a 
formula ^'(3c, y, z, w), i// a conjunction of atomic formulas, such that 

T h V x B ^ a i w ^ A i//) and T h V3c31yj3i7(i///). 

But V3c3 yz3U(\pf), being then in 7}, must be satisfied in 93"; it is routine to 
check that this implies that V3c3 y3J(\p), and then any sentence of Tx, is true 
in E. But © is, by construction, substructure of 93' X 93' (the product i n ^ ( 0 ) ), 
which is in Jt(T}. It follows that (£ verifies also any sentence in the set T2 

of the universal consequences of T. Part (d) of Theorem 1 implies in particular 
that Tx U T2 = T, and then 6 1= T. Applying the hypothesis, we have that 
93" is in ^#(JT), and then also 91 because Jt(T) is closed for sandwiches (as in 
Theorem 1). This proves that T = Tx. 

Let T h Vx3ly3I(a(x, y, z) A /?(3c, y9 I) ) with ^ £ A [ i / ] and a G 
[yl/]\J/l*]. Then a is of the form R(F(x, y9 z) ) for some string of terms F and 
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some relation symbol R. For a given model 21 of T, consider the L-structure 2T 
on U% defined by F%, = F% for all operation symbols F and R^ = ( U%)n for all 
>2-ary relation symbols R. Then the identity function is a homomorphism 
from 21 to 2f, and the domain of its kernel pair is (isomorphic to) 21 itself. 
Hence 2T 1= T. But 21' N Vxyzfa), and then 21' 1= VJêa^BzGB). This implies 
that 21 1= Vx3ly3z(P). 

Hence we have shown that 

TV- \/x3]y3z(^(x, y, z ) ) 

implies 

7> \/x3ly3I$(x, y, I) ). 

In particular, 7̂  (and hence 7") is equivalent to a set of sentences of the form 
\fx(3yz\p A 3 y3z~\p) ), \p e A[;4f]. This insures also that T satisfies (*) (from 
the fact that it satisfies condition (*) ). It remains to show that ( + ) is also 
true. 

If 2t is a L-structure, an equivalence relation 6 on £/2I will here be called a 
A A 

congruence on 21 if it is a congruence on the L-reduct 21 of 21 in the usual 
algebraic sense (see [4] ). For a congruence 6 on 21, we denote by 21/0 the 

A A A 

L-expansion of 21/0 obtained by defining R^;Q = ( [7(21/0)) for all «-ary 
A A A 

relation symbols R (where [7(21/0) is the underlying set of 21/0). For a string a of 
n elements of A, we will write \a\ = n and (abusively) â e ^4. If â = (al9 . . . , #„) 
and â' = (a\, . . . , a'tl), the notation (â, a'} e 0 will mean { (ai9 a])\i = 
1, . . . , « } Ç 0. 

Let ^ G A[At] as in condition ( + ) & = (AJ = 1 ^. = Gy) = (F = G) ), 21 a 
model of J" and a, Z>, c in A such that 21 1= \p[a, b,~c\. For any 6', ~cf in >1 such that 
\F\ = \b\ and |c'| = |c|, we consider the relation 6[\P(a9 ft', C') ] = U^L0 0„ on 
(721 defined by 

0O = {(3, 5>|J e ^ } U { (FÇâ, F, c% GÇâ, F9 cr) > } 

U { (G(a, F, c'% F (a, F, c') > }, 

and for each n > 0, 

6n = { (dw, <^)| there exist c0 = rfw, c b . . . , cw = ^ in ,4 and 

4>n e A[if] such that F h VxB1^ . . . ym3zWn(x, yx, . . . ,y„ r z) ) and 

81 N ^ K - b ê0, • • • ^m-b êj A ^ K - b q , . . . , cm, ?n\ for some 

<4n-\>*n-\> e 0„_, and ?„,?,; in ^ } . 

Then one can check that 0[iK#, £', c') ] is the smallest congruence 0 on 
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21 containing (F(a, b'9 c'\ G(a9 b'9 c') > and such that for any \f/ e A[At] with 
T h Vx3 y3I(\p'(x9 y9 z) ), we have 

[31 1= \[/[âl9 â29 â3] A xP'[â\9 y2, 73] and <ô„ ^> e 0] =» <â2, Â£> G 0. 

Let f:A -» 9l/#[^(Zz, 6', c') ] be the canonical homomorphism and 2?(Q 4̂ X 
.4) be the domain of the kernel pair of f. Of course (a, a') e B if and only if 
(a, a'> e <9[̂ (â, 6', c ' )] . Let if/ G A[.4f] with T h V3c(3yzi// A 3]y3z$'). 
For (âl9 â~2) ^ B9 there exist unique bl9 b2 such that there exist q , c2 with 
3t 1= yl/[âl9 bl9 c,] A i//[â2, 62, c2]. Then <6,, 62> is in 5 . By (*), there 
exist \$J" G A[^4f] and cf, c2, dl9 d2 in 4̂ such that 

« 1= A?=1(^[â., fc., cil A *"[*/, 6,, C/, 2,.] ) and 

T h V3c31yz3i7(^,,(x, y, z, 17) ). 

But (a1? â2) being in 5 , this implies that (b]9 b2) and (c{9 ~c2) will also be 
there, by the property of 0[\p(a"9 b'9 c') ] mentioned above. This shows that 
93 \= \/x(3yz\p' A 31Jr3zi//). Hence 93 t= T, and by the closure property, 
VL/OMâ, F9 c') ] 1= T. 

In particular, 3t/0[i/<â, 6', c') ] 1= V3c3]y3zV/. But <F(â, 6, c)9 G(â9 6, c) > and 
(F(a9 P9 c'% G(a9 F, c') > are both in 6[xP(â9 F9 c') ], and this forces 

<6, F) G 0[xP(â9 F9 c') ], 

that is, (b9 b') G 0n for some integer «. This means that there exist 

* ! , . . . , * „ e A[ ir ] 

satisfying T7 h V3c31y1 . . . ym^3I(\pt) for / = 1, . . . , n9 and strings di9 d\9 ~e{, ~ë[9 

b(i9 j) for / = 1,. . . , n and j = 0, 1, . . . , m(i) such that 

_ / n _ _ _ 
31 N flÂ, 6, c] A A (^-K, 6(0, i), • • • ,b(m(i) - 1, /), ?,] A 

A ^.[<, 6(1, / ) , . . . , 6(m(/), i), ê/] )) A 6 (0, /i) 

= 6 A 6(/w(/i), /i) = i " A J A (6(0, i) = 4 + 1 A 6(m(/), i) = 2 /+1) ) 

and where, if ^ = (rfl9. . . , <ir) and d\ = (< / ] , . . . , ^ ) , we have, for each 

/ G {1, . . . , r } , J7 = j ; or 

{dl9 d't) = {Fj(â9 F9 c'), Gj(â9 F9 c') } for some y e {1 , . . . , * } . 

Expressed in infinitary logic, all this shows that 
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T h Vxy'z'3yï(û)T(û')T(v)T(v')T{ (w(h, k) )v\h, k integers} 

V Mx, y, z) A A ($y{i){ûy{iy wy(z)(l, /), . . . , wy{l)(m(y(i) ), z), vy(/)) A 
\y e T W = 1 

A ^ Y ( I ) ^ ( I ) ' *V(o(0' ^ ' • ' ' ' ^ ( Z ) ^ W O ) - *> 0 , ^y(o) ) ) A 

A (wy(nj(0, ny) = y A ivy(/Iy)(m(Y(/iy) ), ny) = y') A 

A | A (wy(i)(0, /') = wy(/ + 1) A ïvy(0(m(y(i) ), /) = Ï7y(z+1))) j 

with (wy(i), Wy(i)) of the required form, and where (u)T = {wy}y€Er a n d u
y
 = 

{wy(i), . . . , wy(„ )}, similarly for U\ v, v7 and w(h, k\ and F is the set of all strings 
WV(i)> • • • > ^ ) ) w i t h ^Y(/) e A[^/] and r h Vx3% . . . ym(y(l))3z^yil). 

Jt{T) being closed for products, there must exist y e T for which we can 
remove the disjunction and replace ' T " by "y" in this sentence. This gives 
condition ( + ). 

(d) => (e). Proceed as in (d) =» (e) of Theorem 1 to obtain L* and 71*. We need 
to do more to eliminate the need of the sentences of the form 

v*woK*, >o A +(x, y')-»y = y'\ 

For each consequence of T of the form \/x3]y3z~(<p(x, y, z) ) with <p e 
A[J1/] and for each consequence of T7* of the form 

VxWG^x) , G2(x), G3(3c) ) A VJ7(<Ky, #,(>0, H2(y) ) ) ), 

for some strings of terms Gl5 G2, G3, 7/l9 i / 2 ^n ^*> ac*d t o ^* t n e sentence 
V*(G2(x) = fT1(G,(x))). 

Call Tj* the new theory. Then conditions (*) and ( + ) insure that Tf is 
equivalent to its consequences of the form V5c(<p(3c) ), <p e A [At]: if V5c3 y3J\p 
is a consequence of T with ^ e A[^4/], then the long sentence in ( + ) induces a 
sentence in T* of the form 

v*rr(...( A (̂Gj(x, y, r>, G ^ , y, i%...)).. •); 

but the existence of sentences of the form 

Vxy'z'(Gt£c9 y\ z>) ) = H[(G\(X9 y\ F ) ) 

in 7i* and the special form of the long sentence imply the unicity of y without 
the presence of Vx3ly3z~\p. Finally, T* being a definitional extension of T by 
new operations defined by formulas in 3 A [At], the same is true of Tf. 

(e) => (a) =̂> (f) => (g). Obvious or well-known. 
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(g) =» (c). Let U and If be respectively the forgetful functors for J({T) and 
~#(0). L having no relation symbol, the fact that U preserves limits implies that 
Jt(T) is closed for products and equalizers. Let 

k 
be a diagram in^#(0) w i t h / surjective, (fh f2) = kernel pair i n ^ ( 0 ) of / and 
% 33 i n ^ ( r ) . We must show that S is i n ^ r ) . 

It is easy to verify that Iff is a split coequalizer (in Set) of (Uf9 Uf2) (see [12] 
for this concept). By Beck's Theorem (see again [12]), there is a unique 
homomorphism g:33 -> ® in J?(T) such that Ug = Iff and US) = lf&. Again, 
the absence of operation symbol (and the surjectivity off) forces (g:23 —» 2)) = 
</:» -» ©). 

(h) «* (d). Easy. 

REMARKS. (1) It is known how to construct, from the monadicity of the 
forgetful functor, an unbounded language in which Jt(T) is a "variety" (see for 
example [5] ). For (g) => (f), we had to show that there exists a finitary language 
permitting this. We could have deduced it from the result of Richter [14] 
mentioned in the introduction, but we preferred the more direct and elementary 
proof (of (g) => (c) ) given. 

(2) Consider, for a given theory T, the following 4 properties: (i) T is a 
variety; (ii) JtÇT) is closed for limits and homomorphic images (i.e. T satisfies 
Theorem 15 of [15]); (hi) T satisfies Theorem 2; (iv) The models of T are 
precisely the reducts of the objects of some variety (in an extended language). 
Again (i) => (ii) => (hi) => (iv) and no implication can be reversed. The same 
example (of groups) as in Remark 2 after Theorem 1 can be used to show that 
(ii) ^> (i). A counterexample, due to Diaconescu, to (iii) => (ii) can be found on 
page 47 of [15] (this also invalidates Theorem 3 of [7] ), and one to (iv) =̂> (iii) on 
page 166 of [1]. 

(3) In a language without operation symbol, then of course the property, for a 
theory, of verifying Theorem 2 is a uniform one, by (h). The answer in the 
general case is unknown to us: a proof like the one of Rabin ( [13], Theorem 11), 
which forms the basis of the Proposition 6 of [15], creates considerable diffi
culties here because of the necessary presence of operation symbols. 
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