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Fluid–structure interaction of a sphere rolling
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A comprehensive investigation, using experimental, computational and analytic methods,
is reported on the motion of, and the forces on, spheres of different density ratios rolling
freely down an incline in a fluid under gravity. The Reynolds number, based on sphere
diameter and terminal velocity, ranged up to 1000 for the experiments, and up to 250 for
the computer simulations. A modified Reynolds number, incorporating the density ratio,
gravitational acceleration and angle of incline, was found to govern the saturated state
of the flow. Transition from steady to unsteady flow was sensitive to mass ratio, with
lighter spheres undergoing earlier transition. Indeed, positively buoyant spheres develop
cross-slope oscillations prior to the onset of shedding. Also of interest, the transition to
chaotic wake flow occurs at Reynolds numbers lower than for a sphere forced to roll
at a constant speed. In addition to the average sphere motion, flow-induced vibrations
were predicted and measured, with quasi-periodic lateral oscillations found to increase
as the flow became more unstable, and to decrease with increased density ratio. The
study confirms the time-averaged results of a previous experimental study, although closer
inspection shows sensitivity to the relative surface roughness of the sphere and plane in
experiments; this sensitivity is masked in typical log–log plots of drag against Reynolds
number. Physical surface roughness appears to play a role analogous to the necessary
imposed gap between the sphere and plane in computations, removing the singularity in
drag that would prevent rolling for an incompressible fluid and perfectly smooth surfaces.
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1. Introduction

The conceptually simple process of a ball rolling down an inclined plane in a fluid has
relevance to applications in industry (e.g. particle technology and separation processes),
natural phenomena (e.g. sediment transport) and even sports. Several fundamental
questions concerning this problem remain open in the literature. It is still not entirely
clear which physical mechanisms allow the sphere to even move in the first place, and
which parameters and interactions determine the limiting rolling speed, since lubrication
theory predicts an infinite drag force for a vanishing gap between the ball and the wall. In
this paper, the dynamics of the wake and the fluid–structure interaction of a sphere rolling
without slipping down an inclined plane are explored through direct numerical simulations
and experiments, and some of these issues will be addressed.

At low Reynolds numbers Re = Ud/ν, where U is the translation velocity of the sphere
relative to the fluid, d is its diameter, and ν is the kinematic viscosity of the fluid, the flow
around a stationary sphere placed in an unbounded domain remains steady and attached
up to Re ≈ 20 (Masliyah & Epstein 1970; Pruppacher, Le Clair & Hamielec 1970; Dennis
& Walker 1971). After separation occurs, the recirculation zone in the wake has the form
of an axisymmetric vortex ring, and its length grows as the logarithm of the Reynolds
number (Taneda 1956). At Re ≈ 210, the flow loses its axisymmetry and undergoes a
supercritical transition to another steady state of planar symmetry, characterised by the
development of a two-threaded wake consisting of counter-rotating streamwise vortices
(Magarvey & Bishop 1961a; Tomboulides, Orszag & Karniadakis 1993; Johnson & Patel
1999; Tomboulides & Orszag 2000; Thompson, Leweke & Provansal 2001a). At Re ≈ 270,
a periodic undulation in the asymmetric wake is observed, indicating the onset to unsteady
flow via a supercritical Hopf bifurcation (Taneda 1956; Magarvey & Bishop 1961a;
Sakamoto & Haniu 1995; Thompson et al. 2001a; Schouveiler & Provansal 2002). As Re
increases further, fully formed vortices that take the form of hairpins are shed periodically
into the wake. Simulations by Mittal (1999) predicted a second transition in the range
350 < Re < 425, where the planar symmetry is broken and the hairpin vortices are shed
with varying orientations. In experiments by Sakamoto & Haniu (1990), this transition
does not appear until Re = 420. Mittal (1999) explained that this may be due to the fact that
the variations in the azimuthal angle of vortex formation from cycle to cycle are relatively
small close to the critical Re and can be overlooked in smoke or dye visualisations.

In addition to flows associated with fixed spheres, there are many studies that have
considered the fluid–structure interaction of free, elastically mounted or tethered spheres.
In the former category, early studies by Magarvey & Bishop (1961a,b) examined sphere
wake transitions in a liquid–liquid system, producing beautiful wake visualisations. Since
then, there have been many detailed experimental and numerical investigations of solid,
liquid or gas spheres rising or falling in a fluid medium. These include the studies of Jenny,
Bouchet & Dusek (2003, 2005), Veldhuis et al. (2005), Veldhuis & Biesheuvel (2007),
Veldhuis, Biesheuvel & Lohse (2009), Horowitz & Williamson (2010a,b) and Auguste
& Magnaudet (2018), amongst many others. These document the sphere trajectory,
wake structure and fluid forces, with the behaviour determined by the Galileo number
and mass ratio. In terms of vortex-induced vibration of tethered or elastically mounted
spheres, the studies of Govardhan & Williamson (1997, 2005) and Jauvtis, Govardhan &
Williamson (2001) have documented comprehensively the vortex-induced vibration (VIV)
of 1 degree-of-freedom or tethered spheres of various mass ratios. More recently, Behara,
Borazjani & Sotiropoulos (2011) examined VIV of a 3 degrees-of-freedom elastically
mounted sphere, numerically finding non-uniqueness in the vibration mode as a function
of reduced velocity. Lee, Hourigan & Thompson (2013) examined neutrally buoyant
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tethered spheres, showing that as the Reynolds number is increased above 800, sphere
motion becomes circular, leading to a spiral wake. The effect of imposed sphere rotation
for elastically mounted spheres was examined in a number of studies by Sareen et al.
(2018a,b) and Rajamuni, Thompson & Hourigan (2018), showing that constant rotation
leads to reduced vibration, unlike the response seen for a circular cylinder.

Amongst the studies conducted on spheres moving near boundaries are the works of
Cherukat & McLaughlin (1994), restricted to the Stokes regime, and Zeng, Balachandar
& Fischer (2005), who considered a sphere translating along a wall at a distance of 0.25
sphere diameters or greater. The transition to unsteadiness was found to occur earlier than
for an isolated sphere, and the critical Re decreases as the distance to the wall is reduced,
with a sudden increase at 0.25d. The unsteady flow again takes the form of hairpin vortices
and loops in the wake. Zeng et al. (2005) find that the wall has two opposing effects on the
flow stability: the first is a viscous one acting to delay the transition to unsteady flow, and
the second tends to destabilise the flow and is due to the asymmetry in the wake. When
the sphere is free to rotate, the torque induced by the presence of the wall leads in general
to a rotation in the prograde direction, which has little effect on the lift and drag forces.

Giacobello, Ooi & Balachandar (2009) conducted a numerical study of a transversely
rotating sphere in a free stream (i.e. far from a wall), for non-dimensional rotation rates
α = ωd/(2U) (where ω is the angular velocity of the sphere) in the range 0 ≤ α ≤ 1. They
showed that the transition to the steady double-threaded wake occurred at Re = 100, and
the transition to unsteady vortex shedding at Re = 250, for α ≥ 0.08. Additionally, they
found that the shedding was suppressed for α ≥ 0.50 at Re = 300.

More recent studies (Zeng et al. 2009; Stewart et al. 2010b; Rao et al. 2012) have
considered the stability of the wake and the dynamics of the flow around spheres
translating and rotating very close to a wall (gap size 0.005d) at moderate Reynolds
numbers, in the range 10–1000, covering both steady and unsteady regimes. These studies
show that the wall and the imposed body rotation have a great impact on the wake
structures and instabilities. For α > 0, a compact zone of recirculating fluid is created and
the unsteady flow is marked by the shedding of hairpin vortices. For α < 0, a streamwise
vortex pair appears in the wake, and as Re is increased, the wake undergoes a transition to
an antisymmetric mode.

For the forward-rolling sphere with α = 1, Stewart et al. (2010b) showed experimentally
that the wake remains attached and steady for Re < 125, and has a structure similar to
that of an isolated sphere, with a double-threaded wake of counter-rotating vortices. The
transition to unsteady, periodic flow, still with planar symmetry, occurred between Re =
125 and Re = 150. Through direct numerical simulations, Rao et al. (2012) determined
the critical Reynolds number for the unsteady transition to be Rec = 139, and identified
a second transition at Re = 192 to asymmetric unsteady flow, where the wake exhibits
oscillations in the lateral directions. Both transitions were classified as supercritical. An
overview of the wake structures and transitions of a sphere moving near a wall is given by
Thompson, Leweke & Hourigan (2021).

Using a coupled lattice-Boltzmann/detached eddy technique, Zhang et al. (2017) showed
that the presence of the wall generates a net lift force on the sphere, which is determined
primarily by the vortex structures in the wake, and that enhanced rolling destabilises these
vortices and causes the sphere to exhibit an oscillatory behaviour in the translational
direction. In their study, the fluid viscosity and slope angles were varied, whereas the
diameter of the sphere and the densities of the fluid and the sphere were constant.

Analytical works concerning the flow around a sphere near a wall and the associated
fluid forces include the studies of Dean & O’Neill (1963) and O’Neill (1964), who solved
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the Stokes equations for a sphere rotating around an axis parallel to the wall, and a
sphere translating along a wall without rotation, respectively. Goldman, Cox & Brenner
(1967) later validated these results, after having made some corrections to the numerical
procedure of Dean & O’Neill (1963). Since the numerical results converged poorly for
very small gap sizes G (less than 0.002d), they developed asymptotic solutions for the
limiting case of vanishing gap, showing that the local flow can be described accurately
by lubrication theory. This theory predicts that the drag on a sphere rolling along a
wall, both with perfectly smooth surfaces, in an incompressible Newtonian fluid diverges
like ln(d/G) as the gap size approaches zero, due to the generation of a pressure peak
increasing towards positive infinity in front of the body, and another peak decreasing
towards negative infinity behind it. This implies that a sphere in contact with a solid surface
would be impossible to move along this surface, which is contrary to common observation,
and that any rolling or sliding motion along the wall would therefore involve a liquid film
of finite thickness between the two, i.e. the absence of solid-to-solid contact. Since the
predicted film thickness that would produce drag results compatible with experimental
measurements (Carty 1957) is of atomic dimensions, i.e. outside the range of validity of
the flow model, Goldman et al. (1967) concluded that this model, based on lubrication
flow of a fluid with constant properties between two smooth bodies, is insufficient to
account for the data obtained in experiments on rolling spheres. Among the list of possible
explanations for this discrepancy are non-Newtonian and compressibility effects, as well as
cavitation, which may occur in a liquid when the pressure drops below the vapour pressure.
Cavitation bubbles have indeed been found experimentally in the gap region of a rolling
sphere in Stokes flow by Ashmore, del Pino & Mullin (2005). Surface roughness may also
play a role in this problem, since it may lead to contact between the two solids, while at the
same time providing an effective finite gap. This effect was discarded by Goldman et al.
(1967), since the experimental data of Carty (1957) appeared to show no dependency on
the roughness of the sphere. Further experimental measurements of the drag coefficient
for spheres rolling down an incline were provided by Garde & Sethuraman (1969), Jan
& Shen (1995) and Wardhaugh & Williams (2014), which also revealed no evidence of a
roughness effect. We will reconsider this aspect in the present paper.

In this study, we investigate numerically and experimentally the fluid–structure
interactions that occur when a sphere rolls under gravity on an inclined plane. The next
section describes the problem set-up and the governing equations and parameters for the
fluid flow and sphere motion. The numerical and experimental methodologies employed
are explained in § 3. The results are presented in detail in § 4, including flow structures
from simulations and experiments, transitions between steady and unsteady states, and
force coefficients, as well the characteristics of the flow-induced sphere oscillations in the
unsteady regime. A discussion of the effects of surface roughness and gap size found in
our study is also included. Conclusions are given in § 5.

2. Problem definition

We consider the configuration shown schematically in figure 1. A sphere of mass ms and
diameter d is rolling (without slip) along a solid plane surface inclined by an angle θ

with respect to the horizontal, driven by gravity (acceleration g), in a fluid of density ρ at
rest with respect to the wall. In the numerical simulations, the coordinate system (x, y, z)
moves with the sphere, its origin being at the sphere centre. The sphere can translate in
the x- and y-directions with velocities us and vs. In the absence of slip, this leads to the
angular velocities ωy = (2/d)us and ωx = −(2/d)vs. Assuming that the sphere stays in
contact with the wall, its velocity in the z-direction is zero. The forces acting on the sphere
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Figure 1. (a) Schematic of a sphere rolling along an inclined wall under gravity, including the various forces
and torques acting on the body in the x–z plane shown (see text). In addition, there are equivalent forces (Ry, Dy)
and viscous torques (Tx, Tz) in the other two planes. Note that there is no restriction on the rotation about any
axis, with the angular velocity vector given by Ω = (ωx, ωy, ωz). (b) The physical configurations for negatively
and positively buoyant spheres.

include the fluid forces (drag Dx and Dy, lift L, torques Tx, Ty, Tz), the mechanical reaction
forces from the wall (normal force N, tangential forces Rx and Ry) and gravity/buoyancy.
The magnitude of the latter is |ms − mf | g, where mf = (1/6)πd3ρ is the displaced fluid
mass. When the mass (or density) ratio β = ms/mf is greater than 1, the configuration
represents the ‘standard’ situation of a sphere rolling down an inclined wall. When β < 1,
the problem corresponds to a positively buoyant sphere rolling up an inclined wall from
underneath (see figure 1).

2.1. Governing equations
The evolution equations for this problem are the continuity and Navier–Stokes equations
for the motion of the fluid, along with the Newtonian laws of motion for the acceleration of
the body. If u is the velocity of the fluid, then the continuity equation for an incompressible
flow is

∇ · u = 0, (2.1)

and the Navier–Stokes equations in the (non-inertial) frame of reference attached to the
sphere becomes

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν ∇2u − dus

dt
, (2.2)

where p is the pressure, and us = (us, vs, 0) is the sphere velocity.
The centre-of-mass sphere velocity and angular velocity vector are obtained by applying

linear and angular momentum balance to provide the governing equations of motion for
the sphere (see e.g. Baruh 1999):

ms
dus

dt
=
∑

F , (2.3)

IG · dΩ

dt
+ Ω × (IG · Ω) =

∑
M/G, (2.4)

where
∑

F and
∑

M/G are the sums of all forces and moments plus torques about the
centre of gravity, G, exerted on the sphere. Here, Ω = (ωx, ωy, ωz) is the angular velocity
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vector describing the rotation of the sphere about the three Cartesian coordinate axes, and
IG is the moment of inertia tensor for a sphere about the centre of gravity, which is given
by

IG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2
5

ms

(
d
2

)2

0 0

0
2
5

ms

(
d
2

)2

0

0 0
2
5

ms

(
d
2

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.5)

By considering the various forces and their moments together with the viscous torques
sketched in figure 1, and using the fact that the sphere is rolling without slip to give

(us, vs) = (ωyd/2, −ωxd/2) (2.6)

(which also allows eliminating the wall reaction forces Rx and Ry), one obtains the
following equations for the x- and y-components of the sphere acceleration:

dus

dt
= 5

7ms

[
ms

(
1 − 1

β

)
g sin θ − Dx + 2

d
Ty

]
, (2.7)

dvs

dt
= 5

7ms

(
Dy − 2

d
Tx

)
. (2.8)

In addition to its translation, the sphere can rotate around the z-axis. Directly from (2.4),
the corresponding component of the angular velocity, ωz, evolves according to

dωz

dt
= 10

msd2 Tz. (2.9)

2.2. Non-dimensional equations
Non-dimensionalisation of the above evolution equations is achieved in a way similar to
that for the problem of a freely rolling cylinder studied by Houdroge et al. (2020). The
specificity of these configurations is the absence of a prescribed velocity scale. The other
problem parameters nevertheless allow the definition of a characteristic velocity, which
can be used for normalisation. We first consider the acceleration scale a = |β − 1| g sin θ

relevant for this problem. One can then derive a velocity scale V = √
(d/2)a and a time

scale τ = d/V .
Using d, τ , V and ρV2 as units of length, time, velocity and pressure, respectively, the

continuity and Navier–Stokes equations can be rewritten in non-dimensional variables,
denoted by an asterisk (∗):

∇∗ · u∗ = 0, (2.10)

∂u∗

∂t∗
+ u∗ · ∇∗u∗ = −∇∗p∗ + 1

Re∗ ∇∗2u∗ − du∗
s

dt∗
, (2.11)

with the newly defined Reynolds number

Re∗ = dV
ν

= 1
ν

√
d3

2
|β − 1| g sin θ. (2.12)
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The non-dimensional forms of (2.7)–(2.9) for the motion of the sphere become

du∗
s

dt∗
= 10

7β

[
1 − 3

8
u∗2

s
(
CD,x − CT,y

)]
, (2.13)

dv∗
s

dt∗
= 15

28
u∗2

s

β

(
CD,y − CT,x

)
, (2.14)

dω∗
z

dt∗
= 15

4
u∗2

s

β
CT,z. (2.15)

In this set of equations, CD and CT are the non-dimensional drag and torque coefficients,
defined as

CD = D/

[
1
2

π

(
d
2

)2

ρu2
s

]
and CT = T/

[
1
2

π

(
d
2

)3

ρu2
s

]
. (2.16a,b)

The lift coefficient CL, which will also be discussed, is defined similarly to the drag
coefficient.

The dynamics of the rolling sphere problem in the configuration considered here,
governed by (2.10)–(2.15), depends on two parameters: the modified Reynolds number
Re∗, and the density ratio β. For comparison with cases where the sphere rolls with a fixed
velocity, a Reynolds number based on the mean asymptotic velocity ūs is also used in the
following: Re = ūsd/ν.

The non-dimensional asymptotic sphere velocity is a function of the drag and torque
coefficients, as can be seen by setting du∗

s /dt∗ = 0 in (2.13), and by considering
time-averaged values:

ū∗
s =

(
8/3

C̄D,x − C̄T,y

)1/2

. (2.17)

The (squared) dimensional version of (2.17) leads to an expression for the effective mean
drag coefficient C̄′

D, which includes the torque:

C̄′
D = C̄D,x − C̄T,y = 8

3
1
ū2

s

⎡
⎢⎣ 1

d
2

(β − 1)g sin θ

⎤
⎥⎦ . (2.18)

In both of these expressions, the overbars indicate time means once the system reaches its
asymptotic state. This effective drag can be determined experimentally, from the measured
mean velocity (ūs) of a sphere rolling down a plane, and the parameters of the given set-up
(d, β, θ ).

3. Methodology

3.1. Numerical scheme
The solver employed for the numerical simulations is based on code that has been tested
and used extensively for studies of flows around bluff bodies, such as cylinders (Thompson,
Leweke & Williamson 2001b; Ryan, Thompson & Hourigan 2005, 2007; Rao et al. 2011;
Houdroge et al. 2020) and spheres (Thompson et al. 2001a, 2006; Rao et al. 2012; Lee
et al. 2013), also including flow–structure interactions.
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In summary, the time-dependent incompressible Navier–Stokes equations for the fluid
are solved in a cylindrical domain, whose axis is perpendicular to the wall and passes
through the sphere centre. A spectral-element approach is used in an azimuthal plane of the
domain, together with a Fourier expansion in the azimuthal direction. The spectral-element
method is a formulation of a finite-element method that uses high-order Lagrangian
interpolants, together with an efficient Gauss–Legendre–Lobatto quadrature, to evaluate
the integrals needed to approximate the solutions of the partial differential equations. It has
the advantage of converging much faster than a typical fixed-order finite-element method,
where the grid is refined to improve resolution, considering that the error decreases
exponentially with the order of the approximating polynomial. It nevertheless retains
some of the flexibility for modelling complex geometries that finite-element methods
provide. The (nodal) approach adopted is described in detail in Karniadakis, Israeli
& Orszag (1991) and Thompson et al. (2006). The spatially discretised equations are
integrated forward in time using a three-step time-splitting approach, where the advection
and solid-movement terms, the pressure and the diffusive terms are treated separately
and sequentially, thus uncoupling the velocity and pressure terms in the Navier–Stokes
equation and treating the problem as the solution of successive steps. When the body is
rolling freely, its motion needs to be calculated simultaneously. This is best done in a fully
coupled way, i.e. time stepping is iterative, in order to increase the stability (and accuracy)
of the coupled solver, which is most important for small mass ratios.

More details about the numerical scheme and its implementation can be found in the
literature cited above.

3.2. Boundary conditions
As indicated, the simulations are conducted in an accelerating frame of reference with
its origin at the sphere centre of mass. The sphere is allowed to translate in the x- and
y-directions, with the z (vertical) position fixed, and it is allowed to rotate about each of
the moving-frame Cartesian axes. At the outer boundaries, including the top boundary and
bottom rolling surface, the velocity vector is given by

(u, v, w) = −(us, vs, 0). (3.1)

Since the outer cylindrical boundary is situated 150d from the cylinder centre, and the
top boundary is positioned at 100d, the imposition of Dirichlet velocity conditions should
have a minimal effect on the wake flow near the sphere. On the sphere itself, the velocity
is determined by the angular velocity vector defining the rotation of the sphere. Thus

(u, v, w) = (ωx, ωy, ωz) × (x, y, z) (3.2)

at each point on the surface. For all boundaries, higher-order Neumann pressure boundary
conditions are used, as described in Karniadakis et al. (1991) and Karniadakis & Sherwin
(1999), to maintain the formal temporal accuracy of the time-splitting scheme.

3.3. Mesh and resolution study
The cylindrical mesh used in the numerical study is illustrated in figure 2. It consists of
macro-elements in the azimuthal plane (r–z), each with N × N internal nodes, and uses
Fourier planes to represent the variation in the azimuthal direction (ϕ) (Tomboulides &
Orszag 2000; Stewart et al. 2010a). It has increased resolution in the vicinity of the sphere
and near the wall. In order to avoid a singularity in the mesh, a small gap is introduced at
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Figure 2. Schematic of the cylindrical mesh used in the simulations. On the left is a close-up view of the
macro-elements near the sphere in the azimuthal plane.

the contact point between the sphere and the wall, similar to the gap height considered by
Stewart et al. (2010a) and Rao et al. (2012). As shown in these studies, for gaps below 1 %
of the diameter, the wake structure and transition behaviour are rather insensitive to the size
of the gap. This is not true for the drag and viscous torque exerted on the sphere, which
are known to be sensitive to the gap, as discussed above. Most of the numerical results
presented in the following were obtained using gap size G = 0.005d. This parameter was
varied when analysing the comparison of experimental and numerical results concerning
the drag force.

A spatial and temporal resolution study was carried out by varying the number of
nodes in each macro-element of the azimuthal plane, the number of Fourier planes in
the azimuthal direction, and the time step. The Reynolds number was fixed at Re∗ = 241,
which corresponds to a Reynolds number based on the mean asymptotic rolling velocity of
Re ≈ 347, and corresponds to the upper Reynolds number for which detailed comparisons
with experiments were made. The range up to this value covers the first transitions found
for a sphere rolling in a straight line, at Re = 139 (steady → periodic) and at Re = 192
(loss of planar symmetry) (Rao et al. 2012). At Re∗ = 241, the wake evolves towards a
chaotic state, hence the resolution study is conducted only over the first 30 time units,
before small perturbations are amplified, which affects the further flow evolution. The
parameter β was chosen as β = 2.2, in line with many of the runs in the experimental
study. The reference mesh consisted of 1365 4 × 4 macro-elements in the cross-azimuthal
plane, and 144 Fourier planes. The reference time step was �t∗ = 0.0064.

Table 1 shows the results from the resolution study, where the maximum absolute
differences in the rolling velocity, drag and torque relative to cases with finer spatial (r–z),
azimuthal or temporal resolution are given at t∗ = 10. This comparison time was chosen
so that the effect of weak chaos would not be a significant factor in the time histories
deviating. In addition, figure 3 shows time traces of the sphere velocity, lift, drag and
torque coefficients starting from rest, for different spatial and temporal resolutions.

These results indicate that increasing the resolution, with respect to the reference
case, leads to only minor modifications in the simulation predictions. For example, the
maximum difference in the velocity, drag or torque between the finest resolution cases
and the reference case is 0.1 %, indicating that the flow and fluid–structure interaction is
well resolved. Therefore, the reference mesh and time step were used for the majority of
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N × N ϕ-planes �t∗ |u∗
s − u∗

fine| |CD − CD,fine| |CT − CT,fine|
r–z resolution 4 × 4 144 0.0064 0.095 % 0.11 % 0.065 %

5 × 5 144 0.0064 0.013 % 0.022 % 0.051 %
(fine) 6 × 6 144 0.0064 — — —

Azimuthal resolution 4 × 4 144 0.0064 0.00026 % 0.0012 % 0.0028 %
(fine) 4 × 4 192 0.0064 — — —

Time step resolution 4 × 4 144 0.0064 0.032 % 0.082 % 0.019 %
4 × 4 144 0.0032 0.014 % 0.025 % 0.019 %

(fine) 4 × 4 144 0.0016 — —

Table 1. Results of the resolution study. The configuration is a sphere starting to roll from rest, for Re∗ = 241
and β = 2.2. The last three columns show the moduli of the differences in sphere velocity, and drag and torque
coefficients at t∗ = 10, with respect to the comparative finest resolution cases shown. This indicates that the
temporal and spatial resolution chosen for the bulk of the simulations provides accuracy of considerably better
than 1 %, for both velocities and force coefficients.

2.0
6 × 6 × 144 �t∗  = 0.0016

�t∗  = 0.0064
�t∗  = 0.00325 × 5 × 144

4 × 4 × 192
4 × 4 × 1441.5

CD,x CD,x

–CL –CL

CT CT

1.0

0.5

0

2.0

1.5

1.0

0.5

05 10 15 20 25 30

t∗
5 10 15 20 25 30

t∗

us
∗ us

∗

(b)(a)

Figure 3. Sphere downslope velocity, drag and lift coefficient, and torque coefficient, as functions of time,
starting from rest, for Re∗ = 241 and β = 2.2. Variation with (a) nodes (N × N) within each macro-element,
and number of Fourier planes (Nϕ), and (b) time step.

the simulations. In some cases, a larger number of Fourier planes (up to 288) was used
to obtain a better-resolved wake structure far downstream, since the azimuthal resolution
deteriorates with increasing distance from the sphere in the polar grid. For most of the
subsequent simulations described in the results sections, the velocity field after the first
time step was perturbed using a white noise perturbation at a level of 10−4 to accelerate
the coupled fluid–structure evolution as the initially stationary sphere begins rolling down
the slope.

3.4. Experiments
Experiments were conducted in two water tank facilities of similar dimensions. Figure 4(a)
shows a schematic of the first set-up, located at IRPHE Marseille, which was used
primarily for trajectory measurements and visualisations of the sphere wake. The
tank has dimensions 150 × 38 × 50 cm3 (length × width × height). The surface for
the rolling sphere was provided by a Plexiglas plate measuring 100 × 35 × 2 cm3
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Water tank

Sphere Release

Spacer

150 cm

1 cm

Plexiglas

plate

Laser

light

Aluminium frame

us

θ

(a) (b)

Figure 4. (a) Schematic of the first experimental set-up, used for trajectory measurements and wake
visualisations. (b) Photo of the sphere holder/release mechanism in the second set-up, used for drag
measurements.

(length × width × thickness) mounted on a sturdy aluminium frame. Its inclination
angle could be varied by inserting spacers of different heights underneath one of the two
cylindrical bearings supporting the frame. A vertical tube allowed placing the spheres in a
small holding cup at the top of the slope, which could be tilted for the release. Trajectories
were recorded from below, through the transparent tank wall and Plexiglas plate, using
a Nikon digital video camera with resolution 1920 × 1080 pixels and frame rate 25 Hz.
Spatial scaling was obtained by placing a rule on the plate in the field of view. The recorded
video sequences were processed using image-tracking software (Brown 2020) to determine
the position and velocity of the sphere as a function of time. In order to visualise the wake
of the sphere, a solution of Fluorescein, slightly denser than the water in the tank, was
introduced with a thin metal cannula on the upper part of the plate, which generated a thin
layer of dye there. When the sphere rolled through this layer, the dye was trapped in the
wake and carried along with the sphere, revealing the vortical structures developing behind
it. The dye was illuminated with the light from an Argon laser, which made it fluoresce.

A second set-up, located in Monash University’s FLAIR laboratory, was used
to determine the effective drag coefficient. A higher precision is needed for these
measurements, in particular concerning the inclination angle θ of the surface. The water
tank has dimensions 160 × 30 × 35 cm3 (length × width × height). The slope surface
panel, consisting of an acrylic plate with dimensions 100 × 28 × 1 cm3 (length × width
× thickness), had one end hinged to a second bottom plate (110 × 28 × 2 cm3) using
precision ball bearings, with the other end being free for the slope angle adjustment. A
waterproof digital inclinometer (model DWL 280 by Digi-Pas) was used to measure and
adjust the angle along the length and width of the slope surface, with accuracy 0.05◦.
The spheres were initially held at the top end of the sloping panel by a curvature holder
mounted on a straight stainless steel rod (see figure 4b). After waiting at least 2 min for the
residual water motion to calm down, the spheres were released by gently lifting the holding
rod. A Nikon digital camera with resolution 1920 × 1200 pixels and a 60 Hz frame rate
was used to record the sphere motion for analysis. After the sphere reached a stable rolling
velocity (typically at ∼10 cm from the release position), a stopwatch was used to measure
the travel time between two preset points separated by 20 cm, in order to calculate the
mean velocity. The water temperature was measured using a digital thermometer to allow
for the viscosity and density to be calculated according to Huber et al. (2009). For each
sphere and slope angle combination, 10 test runs were conducted, and the measurements
were averaged to obtain the final result.
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Material ρs (g cm−3) d (mm) Re range

Acrylic 1.19 4.0, 4.8, 6.4, 7.9 15–250
Teflon (PTFE) 2.17 4.8, 6.0, 7.0, 10.0 100–550
Steel 7.83 5.0, 7.9 200–900

Table 2. Properties of the spheres used in the experiments.

Table 2 shows the properties of spheres that were used in the experiments. They were
made from different materials, including acrylic, Teflon and steel, to achieve different
density ratios and Reynolds number ranges. Their diameter was measured using a slide
calliper with accuracy ±0.05 mm.

In all experiments, the inclination angle of the wall was smaller than 6◦, which is well
below the limit where the sphere motion starts to deviate from pure rolling, and above
which a combination of rolling and sliding is observed (Wardhaugh & Williams 2014).

4. Results

In the following, we first present results concerning the wake properties and sphere
motion for low and intermediate Reynolds numbers up to Re∗ ≈ 250, where a sequence
of asymptotic states is observed, characterised by steady, periodic and quasi-periodic
flow, and different symmetry properties. Most of the quantitative results were obtained
from numerical simulations, where a constant gap ratio G/d = 0.005 was used. They are
complemented by experimental observations for similar Reynolds numbers and density
ratios, but with an unknown (effective) gap ratio, i.e. the average gap between the sphere
and rolling surfaces due to the presence and interaction of surface elements on both
surfaces. We then analyse in more detail the gap (or roughness) dependency of the effective
mean drag coefficient, using both numerical and experimental results.

4.1. Mean sphere velocities and fluid forces
Figure 5(a) shows the variation of the non-dimensional asymptotic mean velocity ū∗

s of
the sphere, as a function of the modified Reynolds number Re∗ and for various density
ratios. The values are located around 1, which means that the velocity scale used for the
non-dimensionalisation is indeed of the order of the terminal sphere velocity. The line
passing through the data corresponds to the speed obtained from (2.17) using force and
torque coefficients from the uniform rolling case. Clearly, ū∗

s increases with Re∗, which
according to (2.17) and (2.18) corresponds to a decrease of the effective drag coefficient.
The Reynolds number based on the asymptotic velocity (Re) is shown in figure 5(b). It
varies almost linearly with Re∗, and the two are approximately equal for Re∗ ≈ 100. The
density ratio β, which was varied over two orders of magnitude, has a negligible effect on
the mean sphere velocity in the asymptotic state for β > 1. However, for lower mass ratios,
there is some deviation as cross-slope motion becomes more substantial. Approximate
quadratic fits relating Re and Re∗ are

Re ≈ −27.37 + 1.197 Re∗ + 0.001458 (Re∗)2 (4.1)

and
Re∗ ≈ 23.31 + 0.7553 Re − 0.0003783 (Re)2. (4.2)
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Figure 5. Dependence of (a) the mean asymptotic sphere velocity ū∗
s and (b) the corresponding Reynolds

number Re on Re∗, as determined from numerical simulations with gap ratio G/d = 0.005. The grey symbols
represent experimental measurements. The discrepancy with the numerical results is discussed in § 4.5. On
this point, the dotted lines correspond to predictions based on (2.17), (4.2), (4.6), (4.7) and (4.8) for gap ratio
G/d = 5 × 10−6, showing an approximate match to the experimental data.

While these relationships are for gap ratio G/d = 0.005, (2.17), (4.6), (4.7) and (4.8) can
be used to extend them to any gap ratio. For example, figures 5(a,b) show predictions
for gap ratio G/d = 5 × 10−6, for ū∗

s and Re against Re∗, which approximately match the
experimental variations.

Figure 5(a) also contains the results obtained in the experimental study, using different
spheres. In addition to a noticeable scatter of the data, the experiments yield significantly
lower sphere velocities throughout the considered Reynolds number range. This difference
is due to a higher effective drag coefficient measured in the experiments, which is likely
related to differences in the (effective) size of the gap between the sphere and the wall.
This point is analysed further in § 4.5.

The predicted mean drag, lift and torque coefficients are shown in figure 6, as functions
of the Reynolds number Re, which makes it possible to compare the present results for a
freely rolling sphere to those for a sphere translating at constant speed in a straight line,
i.e. without flow-induced unsteady motion. The force coefficients are almost identical for
the two cases. This is expected for low Re, where the flow is steady and the sphere velocity
is constant. It is, however, also the case at higher Re (� 130–150), for which unsteady flow
and sphere motion is found (see below). As for the mean sphere velocity, the dependence
on the density ratio is weak. However, for very light spheres, there is measurable deviation
as significant cross-slope oscillations develop. Again, this is discussed in more detail in
§§ 4.3 and 4.4.

It should be noted that the mean lift force is negative, i.e. directed towards the wall,
which is different from that observed for a rolling circular cylinder (Houdroge et al. 2020).
For these two cases, the flows in the gap region and their wakes are qualitatively different
so the change of sign is not necessarily surprising. Perhaps a useful reference point for the
expected force on a sphere is the negative lift experienced by a translating, rotating sphere
such as a table tennis ball subject to top-spin. This is consistent with the predicted negative
lift of a rolling sphere.

Interestingly, by considering an expansion including just linear terms in Re, Krishnan &
Leighton (1995) derived the asymptotic result (i.e. G/d → 0) for small Reynolds number
that CL(G/d → 0) = 0.167. While the drag coefficient is a strong function of gap ratio,
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Figure 6. Predicted mean drag and lift coefficients of the freely rolling sphere, as functions of mean Reynolds
number Re for G/d = 0.005. The solid lines represent the results for uniform rolling, i.e. rolling in a straight
line at constant speed.
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Figure 7. Predicted lift coefficient as a function of Reynolds number, Re, for G/d = 0.005 for the uniform
rolling case. The dashed line shows an empirical fit for the steady Reynolds number range provided by Lee &
Balachandar (2010, equation (3.15)).

this is not the case for the lift coefficient, which, at least for small gaps, is only weakly
dependent on the gap ratio. Figure 7 shows the predicted variation of the lift coefficient
for Reynolds numbers down to 0.1 for the uniform rolling case. Again, the gap ratio is
G/d = 0.005. Note that a similar variation was predicted by Lee & Balachandar (2010),
who extended the work of Zeng et al. (2009), although their Reynolds number resolution
was lower and they restricted their predictions to the steady regime (Re ≤ 100). Indeed, for
Reynolds numbers below approximately 2.5, the lift coefficient does become positive in
line with the theoretical prediction. The numerical prediction at Re = 0.1 of CL = 0.173 is
only a few per cent different to that predicted analytically (0.167) by Krishnan & Leighton
(1995). The extension of the lift coefficient variation to higher Reynolds numbers may be
important for particle scouring and surface cleaning applications, as discussed by Krishnan
& Leighton (1995).
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(a) (b) (c)

Figure 8. Particle paths in the centre plane in the neighbourhood of the cylinder as a function of Reynolds
number in the steady regime. Panels (a–c) show paths for Re = 1, 10 and 100, respectively. The sphere is
rolling to the left.

Particle paths in the neighbourhood of the sphere are shown in figure 8 for Re = 1, 10
and 100. These images show the effect of Reynolds number on the outer flow in the steady
regime. The main effects of increasing Reynolds number are to decrease the boundary
layer thickness at the surface of the sphere, and to break the forward–backward symmetry
associated with the development of the wake, especially for Re > 10. The local flow in the
vicinity of the gap is invariant, as will be examined in more detail in § 4.5.

4.2. Transition to unsteady flow
Rao et al. (2012) investigated numerically the wake of a uniformly forward-rolling sphere
and predicted that the transition from steady to unsteady, periodic flow occurs at Rec =
139, and that a second, mirror-symmetry-breaking transition occurs at Re = 192. In the
configuration investigated here of a sphere rolling freely under gravity, the asymptotic
sphere motion and wake structure are also steady at low Reynolds number. On increasing
the Reynolds number, a supercritical transition to an unsteady periodic regime is again
found, with the threshold depending on the density ratio β. The critical Reynolds number
can be determined from the evolution of the amplitude of a fluctuating quantity. According
to the Stuart–Landau model for supercritical bifurcations (see e.g. Provansal, Mathis
& Boyer 1987; Thompson & Le Gal 2004), the square of the amplitude should be
proportional to the Reynolds number increment above the critical value. This value can
therefore be found by extrapolating the amplitude squared to zero.

Figure 9 shows the square of the amplitude of the unsteady component of the drag
coefficient, Co

D, as a function of the Reynolds number Re∗ for various density ratios.
The determination of the critical value for the uniform rolling case (Re = 140.6) for
the current set-up is also shown in figure 9(a). This is slightly larger than but close to
the value found by Rao et al. (2012), with the difference likely resulting from increased
grid resolution around the gap. Note that for mass ratios below unity, zero cross-stream
movement is enforced because otherwise the development of significant cross-stream
motion affects the saturated drag coefficient values. Effectively, this allows the initial
centre-plane mirror-symmetric transition to be studied in isolation. However, it does
indicate that breaking of mirror symmetry occurs well below the prediction of Re = 192
for the uniform rolling case.

Figure 10 collects the resulting critical Reynolds numbers as a function of a convenient
plotting parameter 1/

√
β – chosen to spread the points so that a smooth curve joining the
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Figure 9. Variation of the square of the amplitude of the drag fluctuation with Reynolds number, for various
density ratios. Linear fits are used to determine the critical value for the onset of the unsteady regime.
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Figure 10. Transition Reynolds number: Rec as function of the inverse of the square root of the density ratio.

data points could be constructed. The onset of unsteady flow (and sphere motion) occurs at
lower Reynolds numbers for lighter spheres, which is behaviour opposite to that found for
a freely rolling circular cylinder (Houdroge et al. 2020). This is not particularly surprising
given the differences in body geometry and different flow near the gap region. For heavier
spheres, e.g. β = 3, the predicted transition value is slightly above that for the uniform
rolling case. In the limit of very heavy spheres (β → ∞), the threshold approaches the
critical Reynolds number for uniform rolling (Rec = 140.6). This is expected because, as
the sphere’s weight is increased, it should respond increasingly less to the variation in
unsteady fluid forcing as it rolls.

Insight into the effect of allowing the cylinder to oscillate on the onset of
wake unsteadiness is provided by the following analysis. Taking the incompressible
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Navier–Stokes equations (2.2) and expanding the velocity into a time mean plus an
unsteady perturbation component, u = ū + u′, and taking the time average, gives

ū · ∇ū + u′ · ∇u′ = − 1
ρ

∇p̄ + ν ∇2ū. (4.3)

This assumes that we are close to the steady–unsteady transition so that the perturbations
are purely sinusoidal.

Subtracting this from the Navier–Stokes equations with the velocity and pressure
expansions gives

∂u′

∂t
+ ū · ∇u′ + u′ · ∇ū + u′ · ∇u′ − u′ · ∇u′ = − 1

ρ
∇p′ + ν ∇2u′ − dus

dt
. (4.4)

Then taking the dot product with the perturbation field, rearranging and integrating over
the fluid domain (V) and an oscillation period (T) gives∫ t+T

t

∫∫∫
V

∂ 1
2 (u′ · u′)

∂t
dV dt =

∫ t+T

t

∫∫∫
V

u′ ·
[

− ū · ∇u′ − u′ · ∇ū − u′ · ∇u′

+ u′ · ∇u′ − 1
ρ

∇p′ + ν ∇2u′
]

dV dt

−
∫ t+T

t

∫∫∫
V

u′ · dus

dt
dV dt. (4.5)

The integral on the left-hand side is the change in the perturbation energy per unit mass
over an oscillation cycle. At saturation, this will be zero, but nevertheless the terms on
the right-hand side contribute to the energy exchange, feeding or removing energy from
the unsteady perturbation field. The final term on the right-hand side represents the mean
energy transfer to the fluid from sphere oscillations. To examine a particular case, figure 9
indicates that for β = 0.8, unconstraining the sphere causes lowering of the transition
Reynolds number relative to the uniform rolling case. Non-negligible sphere oscillations
are observed to occur at Re∗ = 122, corresponding to Re ≈ 140.4, which is slightly below
the uniform rolling transition of Re = 140.6. For this particular case, the last term on the
right-hand side of (4.5) was evaluated and found to be positive, i.e. the effect of allowing
sphere oscillations causes energy transfer to the unsteady perturbation field, leading to
earlier transition, consistent with the previous analysis based on the direct simulations and
the Stuart–Landau model.

This equation shows that it is the phase relationship between sphere acceleration and the
perturbation field that effects transition. This phase difference must be a function of mass
ratio, although it is not clear how it can be determined prior to undertaking the simulations
or experiments.

4.3. Asymptotic wake states
At low Reynolds numbers, before the transition to unsteadiness, the sphere rolls
asymptotically at constant velocity down the inclined plane. Its wake is steady and exhibits
two counter-rotating threads of streamwise vorticity emerging from the recirculation zone
behind the sphere, similar to the case of a uniform rolling sphere. In the following,
we illustrate the different asymptotic wake stages as the Reynolds number is increased
beyond the threshold of unsteadiness, for density ratio β = 2.2, which is the value used
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(a) (b) (c)

(i) (i) (i)

(ii) (ii) (ii)

Figure 11. Periodic wake of the freely rolling sphere for Re∗ = 130 and β = 2.2 just above the critical
Reynolds number for shedding. Visualisations from numerical simulation using tracer particles, covering one
shedding cycle. (ai,bi,ci) View from above; (aii,bii,cii) simultaneous view from the side. The sphere is moving
right to left.

(a)

(b)

(c)

Figure 12. Characteristic plan views of wake vortex structures for (a) Re∗ = 136, (b) Re∗ = 153 and (c) Re∗ =
241 for β = 2.2. Visualisations from numerical simulations using the Q-criterion (Q = 0.01; Hunt, Wray &
Moin 1988). The sphere is rolling right to left.

in the visualisation experiments. For Reynolds numbers above the critical value, the
wake bifurcates to a new asymptotic state characterised by the periodic shedding of
hairpin vortices that are symmetric with respect to the sphere’s vertical centre plane.
These vortex loops are convected downstream, close to the wall near Re∗

c , and further
away as the Reynolds number increases. The wake structure in this regime is illustrated
in figure 11, which shows simultaneous plan and side view visualisations of the flow
at Re∗ = 130 > Re∗

c over one shedding cycle, obtained by using tracer particles in the
numerical simulations.

On increasing the Reynolds number, both planar symmetry and strict periodicity are
quickly lost. As seen in figure 12(b) for Re∗ = 153, vortex loops are shed at quasi-periodic
intervals, but the planar mirror symmetry about the vertical centre plane has completely
disappeared.

At even higher Re∗, e.g. at Re∗ = 241 shown in figure 12(c), the wake becomes more
chaotic, with vortex loops becoming stronger and less symmetric about the centreline.
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(a)

(b)

(c)

Figure 13. Numerical passive tracer visualisations of the wakes of freely rolling spheres for (a) Re∗ = 136,
(b) Re∗ = 153 and (c) Re∗ = 241, matching the Reynolds numbers of the experimental dye visualisations
shown in figure 15. Each panel shows the view from above (top) and the view from the side (bottom). In
each case, β = 2.2.

Periodicity is also further reduced. Overall, vortices resembling hairpins continue to be
shed in an irregular quasi-periodic manner with substantial sideways movement. This
behaviour is similar to that found for a sphere rolling at constant speed at Reynolds
numbers above the second transition (Re > 192; Rao et al. 2012) and also for a
non-rotating sphere in a free stream without a wall (Re > 650; Mittal & Najjar 1999).

These stages are further illustrated by the series of snapshot visualisations from the
numerical simulations in figure 13, showing plan and side views of the wake using
passive tracer particles to highlight the vortex structures. These images correspond to
the Reynolds number sequence Re∗ = 136, 153, 241. Recall that the critical Reynolds
number for shedding is approximately Re∗ = 123 for β = 2.2. By Re∗ = 136 (Re ∼ 163),
although the saturated state is mirror-symmetric and periodic, cross-slope oscillations are
almost neutrally stable. This can be seen in figure 14, which shows the cross-slope velocity
as a function of time. The initial non-zero cross-slope velocity at small times is due to
perturbing the flow after the first time step to accelerate transitions, as explained in the
methodology section. Thus cross-slope oscillations should develop at only slightly higher
Reynolds numbers. The tracer visualisations at Re∗ = 153 and 241 indicate clearly how
cross-slope oscillations dominate the wake state at higher Reynolds numbers.
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Figure 14. Cross-slope velocity evolution for Re∗ = 136 and β = 2.2. This shows that cross-stream
oscillations are only very weakly damped for this Reynolds number.

Since the sphere motion parallel to the wall is not restricted, the unsteady wake
oscillations above the first transition threshold are accompanied by variations of the sphere
velocity. As long as the wake remains symmetric, the sphere moves only in the x-direction
down the slope, with a fluctuating velocity magnitude. When the symmetry is lost, lateral
forces appear and make the sphere also move sideways. The flow-induced vibrations of the
sphere are presented in more detail in the next subsection.

The wake states described here occur for spheres with a moderate density ratio (β =
2.2). For much lighter spheres, in particular positively buoyant ones with β < 1, the force
and velocity traces indicate that the first bifurcation from steady flow immediately leads to
an asymmetric wake accompanied by lateral sphere vibrations (see figure 17). Indeed,
long-time simulations at Reynolds numbers below the onset of the steady–unsteady
transition found for spheres restricted to downslope motion only, already show growing
cross-slope oscillations. Again, this is discussed further in § 4.4.

The experimental observation of the mirror-symmetric wake mode identified in
the numerical simulations proved to be extremely difficult, or even impossible. The
experimental counterparts of the numerical wake structures in figures 11–13 are shown
in figure 15. At the lowest Reynolds number, Re∗ = 136, unlike the behaviour observed
in the numerical simulations, the wake is always found to be asymmetric with respect to
the centre plane, and the sphere always exhibited irregular motion in the lateral direction.
A likely explanation involves imperfections of the experimental configuration, such as
irregularities of the sphere geometry or a non-perfect flatness of the Plexiglas plate, and
in particular the presence of dust particles on the slope surface. With the extremely small
forces driving the sphere motion at low Re∗, encountering the tiniest speck of dust may
deviate the sphere trajectory temporarily sideways, before the pull of gravity redirects it
again down the slope. As discussed above, the numerical simulations show that cross-slope
oscillations are almost neutrally stable at this Reynolds number, so this behaviour is not all
that surprising. The large-scale shape of the dyed sphere wake in figure 15(a) may simply
be the result of the imperfection-induced sphere motion. However, it is also possible that
the onset of sphere oscillations occurs at lower Reynolds numbers for smaller gaps, noting
that the drag and side force coefficients are indeed strongly gap-dependent.

At higher Reynolds numbers, the match between the experimental and numerical
simulations is much better. The experimental dye (figure 15) and numerical tracer
(figure 13) visualisations for Re∗ = 153 and 241 show similar wake structures, structure
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(a)

(b)

(c)

Figure 15. Experimental dye visualisations of the wake of freely rolling spheres for (a) Re∗ = 136,
(b) Re∗ = 153 and (c) Re∗ = 241. Views from above, β = 2.2 in all cases.

sizes, sideways motion, wavelengths and complexity. Relative to the uniform rolling
case, the onset of cross-slope motion and loss of periodicity occur at considerably lower
Reynolds numbers. The shedding of vortex loops persists up to higher Re∗, as seen in the
dye visualisation example of figure 16.

4.4. Unsteady forces and sphere vibrations
In this subsection, the time-dependent force coefficients and fluid velocities predicted by
the numerical simulations are presented for various Reynolds numbers (100 ≤ Re∗ ≤ 200)
and density ratios (0.8 ≤ β ≤ 10), again for the single gap ratio G/d = 0.005. The effect
of the gap size is addressed in the next subsection.

Figure 17 shows the numerically determined time evolution of the drag, lift and side
force coefficients, and of the downslope and lateral velocity component of the sphere,
which is initially at rest. In these plots, the velocity scale used to non-dimensionalise the
force coefficients is the instantaneous speed, i.e.

√
(v∗)2 + (u∗)2, noting that substantial

cross-slope velocities are induced for higher Reynolds number and low mass ratios. The
asymptotic state can take some time to be reached, depending on the Reynolds number and
mass ratio. For Re∗ = 100 and β = 0.8, the final asymptotic state has not been reached
even after t∗ = 300, which corresponds to a downslope distance of approximately 300d
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(a)

(b)

Figure 16. (a) Oblique side view of an experimental dye visualisation of vortex loops in the rolling sphere
wake at Re∗ = 412 and β = 2.2. (b) Similar views of passive tracer visualisations from simulations for β = 2.2.
Top to bottom: Re = 136, 153 and 412. Note that the reflection from the plane surface has also been mimicked
in these images. Animations of these visualisations are also available as supplementary movies 1–4, available
at https://doi.org/10.1017/jfm.2023.250.

from the initial position! The initial transient is shorter for the lighter, less inert spheres,
as expected, similar to case of the freely rolling circular cylinder (Houdroge et al. 2020).

At Re∗ = 100, except for the lowest mass ratio case, the force coefficients reach
a constant value as the flow attains a steady state. For β = 0.8, as discussed, the
fluid–structure system is unstable to cross-slope oscillations. Hence the onset of
cross-slope oscillations depends on the mass ratio of the sphere with positively buoyant
spheres developing such oscillations prior to the downslope unsteady transition. At
Re = 150, above the transition to unsteady downslope flow, the asymptotic state is
strongly dependent on mass ratio. For β = 10, the final state appears to be quasi-periodic
but without cross-slope oscillations. Decreasing the mass ratio to β = 3 results in the
development of cross-slope oscillations and an increasingly chaotic asymptotic flow state.
For the positively buoyant case β = 0.8, the wake does not even transition through a
near-periodic symmetrical shedding state with large cross-slope oscillations developing
rapidly. The final state is very irregular with maximum cross-slope velocities almost 50 %
of the downslope component. Because of this, the final average downslope velocity is well
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Figure 17. Time evolution (from rest) of the force coefficients and sphere velocity components for different
Reynolds numbers and density ratios.

below that seen in the two heavier sphere cases. Strongly irregular fluctuations and lateral
forces are observed for all density ratios at Re∗ = 200.

It may be noted that when irregular lateral forces appear, the running mean of the
corresponding coefficient CD,y is not zero, which can result in a sideways drift of the
sphere (see below).

The two components of the sphere velocity are presented in figures 17(m–o). As
expected, the cross-slope velocity v∗

s is zero when the flow is steady (Re∗ = 100) and
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Figure 18. Position of the sphere (a–c) along and (d– f ) across the slope, from the numerical simulations.

plane-symmetric (Re∗ = 150 and β = 10), since the sphere rolls in a straight line down
the slope in these cases. In the more irregular asymmetric states at Re∗ = 200 (and for
β = 0.8, 3 at Re∗ = 150), the lateral sphere velocity oscillates around zero, most of the
time with a small non-zero mean. The evolution of the x-velocity down the slope depends
on both Re∗ (asymptotic mean value) and β (i.e. the duration of start-up transient and the
amplitude of the oscillations in the unsteady states).

Figure 18 shows the position of the sphere along and across the slope as function of time,
and figure 19 gives the approximately adjusted coordinates, representing the deviations
from the mean trajectory. The sphere rolls in a straight line at constant speed when the flow
is steady, and exhibits vortex-induced vibrations when the flow is unsteady. Even close to
the transition at Re∗ = 150, the oscillations are irregular. As Re∗ is increased to 200, the
flow becomes more chaotic. Particularly noticeable for β = 3 at both Re∗ = 150 and 200,
the frequency of the lateral vibration is only about half that of the inline oscillation (see
also figure 23). Such a low frequency is also present in the evolution of the lateral force
coefficient for a uniform rolling sphere, in the regime just above the onset of asymmetric
wake flow (Rao et al. 2012).

The time traces of the adjusted sphere position can be used to obtain the oscillation
amplitude of the sphere in the unsteady regime, although well above the transition to
unsteady flow, the amplitude variation becomes chaotic. Figure 20 shows that the inline
vibration amplitude (A∗

x ) increases with the Reynolds number Re∗ and decreases with the
density ratio β.

So far, only results from the numerical simulations at constant gap size between the
sphere and the wall have been shown. In the experiments, it is likely that an effective
gap (of unknown size) existed, due to the surface roughness of the sphere and/or wall
and the presence of impurities. Keeping this in mind, it is nevertheless possible to make a
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Figure 19. Fluctuating position of the sphere (a–c) along and (d– f ) across the slope, obtained by subtracting
the values of the mean trajectory. The time interval shown represents the asymptotic state after the initial
transient.
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Figure 20. Amplitude of oscillation, scaled by the sphere diameter in the direction of the slope. Symbols
correspond to different density ratios, as before.

few comparisons between numerical and experimental results concerning the flow-induced
sphere vibrations. The next subsection will take a closer look at the influence of gap size
and roughness on the effective drag forces, which can be deduced from the observed sphere
velocity.
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Figure 21. Experimental trajectory of the sphere as it rolls through the field of view (from left to right). The
image is stretched in the vertical direction by a factor 10, in order to emphasise the lateral sphere motion. Here,
Re∗ = 241 and β = 2.2.

For the comparison with the simulations, an experimental case at moderately high
Reynolds number (Re∗ = 241) is chosen, for which the effect of impurities such as
dust particles generating spurious lateral sphere motions are expected to be weak (see
§ 4.3, figure 15). Figure 21 illustrates how the trajectory of the sphere rolling down the
transparent inclined plate in the water tank is determined, by tracking the sphere in the
corresponding video sequence. From this, the absolute and adjusted inline and lateral
positions of the sphere as functions of time are calculated. The results in figures 22(c,d),
which have been filtered to reduce high-frequency noise, are very similar to the numerical
predictions for the same case shown in figures 22(e, f ). The non-dimensional mean velocity
of the sphere, given by the slope in figure 22(a), is approximately 25 % lower than in the
simulations. According to (2.17) and (2.18), this implies a higher effective drag coefficient,
which is likely to be related to the effective gap size. Despite this difference, the amplitudes
and frequencies of the inline and lateral sphere vibrations in figures 22(c,d) are very similar
to the numerically predicted ones, suggesting that these frequencies are dependent on the
outer flow and not on the gap flow.

Figure 23 shows a collection of numerically and experimentally determined frequencies
of the sphere vibrations for a moderately buoyant case. The frequencies ( f ) are expressed
in the form of a non-dimensional Strouhal number, defined as St = fd/ūs. They are given
as function of the Reynolds number Re based on ūs, in order to allow a comparison with the
results for a uniform rolling sphere. The vibration frequencies of the freely rolling sphere
are very close to the wake frequencies for uniform rolling, for both the inline motion and
the lateral displacement.

4.5. Effects of roughness and gap size
When comparing the predictions from numerical simulation and experimental
measurements of a freely rolling sphere driven by gravity, a significant discrepancy was
found concerning the non-dimensional asymptotic rolling velocity (figure 5). Since this
velocity is determined mainly by the drag coefficient (2.17), which in turn depends on
the size of the gap between the sphere and the surface (see figure 24), it is reasonable to
assume that part of the observed difference between the results may be due to a difference
in the effective gap size. Whereas this size was fixed and constant in the simulations, it was
uncontrolled and unknown in the experiments. As mentioned in the Introduction, surface
roughness had been considered in the past as a possible source for causing an effective gap
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Figure 22. Sphere coordinates obtained from the visualisation illustrated in figure 21 for Re∗ = 241 (Re =
270) and β = 2.2: (a,b) non-dimensional positions along and across the slope; (c,d) adjusted positions
(deviations from the mean trajectory); (e, f ) similar adjusted positions from the numerical simulation at the
same Reynolds number.

between the two solids. However, this idea was discarded by Goldman et al. (1967), and
more recently again by Wardhaugh & Williams (2014), since various experimental studies
on freely rolling spheres did not show evidence of a dependency of the drag on roughness.

Figure 25 shows a collection of experimental results concerning the effective drag
coefficient C̄′

D (see (2.18)) of a sphere rolling down an incline under gravity, including
the present measurements, which are in good agreement with previous work. They are
presented as functions of the Reynolds number Re, based on the mean velocity, in the
usual log–log scaling. This representation, in combination with the relatively large scatter,
in particular in the intermediate Reynolds number range, hardly allows the identification
of small differences associated with variations in the surface roughness.
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Figure 23. Strouhal numbers of the sphere motion compared to the wake frequencies of the uniform rolling
sphere (Rao et al. 2012). The upper and lower branches correspond to fluctuations in the inline and lateral
directions, respectively.
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Figure 24. Predicted evolution of the mean effective drag coefficient with the gap ratio at two Reynolds
numbers, for a uniform rolling sphere.

In the present study, we have carried out a series of measurements with spheres made
of the same material rolling down the same inclined surface, where the asymptotic rolling
velocities were determined with high accuracy. The difference between the spheres was
their diameter and therefore, assuming a similar surface structure, their relative roughness.
The results from these experiments are shown in figure 26.

A discussion is now presented to address the observed discrepancy between the results
of the direct numerical simulations and the experiments. At the gap ratio G/d = 0.005
imposed throughout the numerical study, the computed drag coefficient was significantly
lower than the drag calculated from the experimental runs at equivalent Reynolds numbers,
as shown in figure 26, which focuses on the experiments with the acrylic spheres in the
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Figure 25. Mean effective drag coefficient as a function of Reynolds number, determined in various
experimental studies. The present results cover the range 15 < Re < 900.
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Figure 26. Close-up of the Re–C̄′
D relation for spheres of the same material (acrylic), but of different

diameters, compared to the values obtained from numerical simulations using different gap ratios.

range 15 ≤ Re ≤ 250 and the numerical predictions for 30 ≤ Re ≤ 125 and 0.0002 ≤
G/d ≤ 0.01. Additionally, figure 24 gives the detailed variation of the computed C̄′

D
versus the gap ratio for Re = 50 and 100. It is clear from these figures that the effective
drag is particularly sensitive to the imposed gap and tends to increase as the latter
decreases. Extrapolating the curves of figure 24 towards an equivalent gap at which the
computed drag coefficient matches the experiments, we find that the numerical simulations
would have to be carried out with a gap ratio of the order of 10−4–10−5, suggesting
an effective gap (and equivalent surface roughness) of order 10−6–10−7 m. This would
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require an increased resolution in the gap region and a reduced time step, thus very large
computational costs, beyond the scope of the present study. It is important to note that
while the drag is sensitive to the imposed gap, the large-scale flow field remains practically
independent of it (see Stewart et al. 2010a).

Another significant observation from figure 26 is that the drag coefficients of the acrylic
spheres of different diameters follow the same trend, but are translated upwards in the
direction of the y-axis as the diameter is increased. This trend is consistent with each
sphere having a similar absolute surface roughness, leading to a smaller effective gap ratio
for larger spheres.

As described in the Introduction, the problem of a sphere moving along a wall at a
fixed height was solved by Goldman et al. (1967) and O’Neill & Stewartson (1967) using
the Stokes approximation. When there is contact between the particle and the wall, their
solutions suggest that the fluid exerts an infinite resistance force opposing the movement
of the sphere, thus inhibiting its motion. In addition, the lift force is predicted to be zero,
while as the sphere is moved closer to the wall, the rotational to translational velocity
approaches 1/4. The idealised mathematical model used to describe this flow problem is
therefore insufficient to provide a complete understanding of the physics behind the rolling
of the sphere.

Since those studies, others have extended the theoretical analysis to consider finite
Reynolds number effects (Krishnan & Leighton 1995; Cherukat & McLaughlin 1994;
Zeng et al. 2009; Lee & Balachandar 2010) and the likely effect of surface roughness
(Krishnan & Leighton 1995; Prokunin 2003). These further studies still indicate that the
drag force remains infinite for surfaces in contact; however, the effect of surface roughness
is to maintain an effective gap between the surfaces, while the interaction between surface
roughness elements can provide a retarding frictional force to enable effective rolling
without slip (Krishnan & Leighton 1995), which is observed in practice, at least for small
slope angles (Wardhaugh & Williams 2014). Thus although Goldman et al. (1967) noted
that the Carty (1957) data lie on a single curve for Re < 60 and therefore eliminated the
effect of surface roughness, the present investigation shows that the data can actually
follow different curves within this range. This can be attributed to the fact that the current
experiments resulted in more data points and a more detailed examination of the outcome
than in Carty (1957).

The Stokes flow analysis of Goldman et al. (1967) provides a prediction of the drag on a
rolling sphere in the limit of zero Reynolds number. The solution can be constructed from
the combination of expansions for translational and rotational motion. Assuming that the
sphere rolls so that the rotational and translational speeds are the same, which is the case
here, the effective drag is predicted to be

C̄′
D0 = 1

Re

[−44.2 log10(G/d) + 34.0
]
, (4.6)

again combining the drag and torque contributions as in (2.18). This is obtained directly
from expressions for the drag and viscous torque provided in Goldman et al. (1967), with
the coefficients evaluated explicitly for the more convenient log10 based expression given
here. For small gaps, one could expect that the total effective drag can be expressed as the
sum of a gap drag, given by the above expression, and what one might call the wake drag,
C̄′

D,wake, i.e.

C̄′
D ≈ C̄′

D0(Re, G/d) + C̄′
D,wake(Re). (4.7)

Here, it is assumed that the wake drag varies with Reynolds number, but has little
dependence on the gap ratio for small gaps. Figure 27 shows the wake drag variation
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Figure 27. Predicted wake drag (C′
D,wake) as a function of Reynolds number (square symbols) for G/D =

0.005. Overlaid are wake drag predictions (blue circles) using all the numerical data from figure 26, covering
gap ratios 0.0002 ≤ G/d ≤ 0.01. An approximate quadratic fit over 5 ≤ Re ≤ 300 is shown by the solid curve.

for G/d = 0.005 and Reynolds numbers up to 300. Also shown in this figure are values
calculated from the numerical data shown in figure 26, covering gap ratios 0.0002 ≤
G/d ≤ 0.01, showing a good collapse of the results according to the assumed variation
given by (4.7). For 1 ≤ Re ≤ 300, C̄′

D,wake varies only over the relatively modest range
1–1.5, with an approximate quadratic fit for Re > 5 given by

C̄′
D,wake = 1.70 − 0.136(log10 Re) − 0.0716(log10 Re)2, (4.8)

as shown by the solid line in figure 27.
Note that the wake drag should approach zero as the Reynolds number and gap approach

zero, given that the simulated flow (drag force) should approach the Goldman solution
given by (4.6). It is expected that this behaviour would be seen at small Reynolds numbers
(Re � O(1)) as the gap size is reduced further so that the Goldman approximation becomes
more accurate. In any case, for Re ≤ 1 and G/d = 0.005, the wake drag contribution is
order 1 % or less than the overall drag. It is only at significantly higher Reynolds numbers
that it becomes an important contribution. By Re = 100, there is approximately an even
split between the gap and wake drag components.

For Re = 100, figure 26 shows that the maximum effective drag from experiments
occurs for the largest sphere (d = 7.9 mm). Using (4.7) to estimate the corresponding
effective gap gives an estimate G ≈ 2 × 10−8 m. While indeed very small, this is not
necessarily beyond the bounds of expected surface roughness for polished acrylic surfaces
(see e.g. Al Rifaiy 2010).

5. Conclusions

In this study, various aspects of a sphere rolling down an incline under the effect of gravity
were examined using theory, direct numerical simulations and experiments.

Amongst the most interesting findings is the role the density ratio β plays in the
flow transition. Considering the transition from steady to periodic flow, the critical
Reynolds number Rec is not constant, but instead varies with the density ratio. More
specifically, moving from heavy to light spheres, Rec initially increases slightly from
the predicted value for uniform rolling Rec = 141.6, before decreasing to significantly
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smaller values, e.g. to Rec = 134.5 at density ratio β = 0.2. The transition to unsteady
flow is considerably more complex than for the uniform rolling case. For positively
buoyant spheres (β < 1), increasing cross-slope oscillations occur prior to the onset
of the downslope steady-to-unsteady transition. For heavier spheres, e.g. for β = 2.2,
cross-slope oscillations develop soon after the unsteady transition, leading to a chaotic
flow state at much lower Reynolds numbers than for the uniform rolling case. Indeed, in the
experiments, it was not possible to observe the mirror-symmetric flow state, possibly due
to the almost neutral stability of cross-slope oscillations, so that any small perturbations,
such as the presence of small dust particles or surface irregularities perturbing the sphere
motion, can lead to the loss of mirror symmetry.

The scaling adopted in the theoretical development, combined with the direct numerical
simulations, allowed for a classification of the results as function of two non-dimensional
parameters: a newly defined Reynolds number Re∗, based on a characteristic velocity
scale, that mostly governs the asymptotic state of the flow, and the density ratio β,
which influences the initial transient and the magnitude of the sphere oscillations. The
inline and lateral displacement amplitudes extracted from the computations both increase
with Reynolds number, as the flow becomes increasingly unstable, with significantly
larger lateral than inline oscillations. Increasing the density ratio leads to smaller sphere
oscillations.

The experimental study was able to bridge the gap in the literature concerning the
effective drag coefficient of a rolling sphere, by broadly validating the results published
by Carty (1957). The results show distinct variations of drag coefficient versus Reynolds
number for spheres of different sizes. If the roughness of each sphere is assumed similar,
then one interpretation is that the effective gap ratio caused by a constant absolute
surface roughness decreases for larger-diameter spheres, leading to higher drag. Significant
differences were found between the drag measurements in the experiments (where the
effective gap size was unknown) and predictions from numerical simulation for a gap
G/d = 0.005, which highlights the strong sensitivity of the drag force to the distance
between the sphere and the wall. Numerical simulations using much smaller gaps show
that the predictions approach the drag variation seen in experiments, and highlight the
dominance of the gap-induced drag over the wake-induced drag. Further work is required
to develop a deeper understanding of the details of the rolling mechanism.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2023.250.
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