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This paper describes the first of a two-part research effort to find the optimal detector and es-
timator that minimise the integrity risk in Receiver Autonomous Integrity Monitoring
(RAIM). In this first part, a new method is established to determine a piecewise linear ap-
proximation of the optimal detection region in parity space. The paper presents examples sug-
gesting that the optimal detection boundary lays in between that obtained using chi-squared
residual-based RAIM, and that provided by Solution Separation (SS) RAIM, as one varies
the alert limit requirement. In addition, these examples indicate that for realistic navigation
requirements, the SS RAIM method approaches the optimal detection region. The SS
RAIM detection tests will be employed in the second part of this work, which focuses on
the design of non-least-squares estimators to reduce the integrity risk in exchange for a
slight increase in nominal positioning error.
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1. INTRODUCTION. Receiver Autonomous Integrity Monitoring (RAIM) (Lee,
1986; Parkinson and Axelrad, 1988) is implemented in Global Navigation Satellite
Systems (GNSS) to protect users against potential integrity threats caused, for
example, by satellite failures. RAIM not only aims at detecting faults but also at evalu-
ating the integrity risk, which is the probability of undetected faults causing unaccept-
ably large errors in the estimated position (RTCA Special Committee 159, 2004).
Hence, both the detector and the estimator influence RAIM performance. This
two-part research work describes the design, analysis and evaluation of new
methods to determine the optimal detector and estimator, which minimise the integrity
risk in RAIM. This paper constitutes Part 1, which focuses on optimal detection
methods. Part 2 (Joerger et al., 2015) will address estimator design for integrity risk
minimisation.
The core principle of RAIM is to exploit redundant measurements to achieve self-

contained fault detection at the user receiver. With the modernisation of the Global
Positioning System (GPS), the full deployment of GLONASS, and the emergence of
Galileo and BeiDou, an increased number of redundant ranging signals becomes
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available, which has recently drawn a renewed interest in RAIM. In particular, RAIM
can help alleviate requirements on ground monitors. For example, researchers in the
European Union and in the United States are investigating Advanced RAIM
(ARAIM) for worldwide vertical guidance of aircraft (EU-US Cooperation on
Satellite Navigation, 2012).
One of the primary tasks in RAIM is to evaluate the integrity risk, or alternatively, a

protection level, which is an integrity bound on the positioning error. Integrity risk
evaluation is needed when designing a navigation system to meet predefined integrity
requirements, and it is needed operationally to inform the user whether to abort or to
pursue a mission. Integrity risk evaluation involves both assessing the fault detection
capability and quantifying the impact of undetected faults on position estimation
errors.
Both the RAIM detector and the estimator have been investigated in the literature.

With regard to fault detection, two RAIM algorithms have been widely implemented
over the past 25 years: chi-squared (χ2) RAIM (also called parity-based or residual-
based RAIM (Sturza, 1988; Brown, 1992)) and Solution Separation (SS) RAIM
(Brenner, 1996; Blanch et al., 2007). Fundamental differences between the two algo-
rithms have been pointed out in Joerger et al. (2014), but it remains unclear whether
SS or χ2 RAIM provides the lowest integrity risk. In parallel, with regard to estima-
tion, researchers have explored the potential of replacing the conventional Least-
Squares (LS) process with a Non-Least-Squares (NLS) estimator to lower the integrity
risk in exchange for a slight increase in nominal positioning error (Hwang and Brown,
2006; Lee, 2008; Blanch et al., 2012). The resulting methods show promising reduc-
tions in integrity risk, but are computationally expensive for real-time
implementations.
In response, this two-part research effort provides new methods to determine the

optimal detector and estimator in RAIM, which minimise the integrity risk.
Optimal design of the detector and of the estimator is respectively tackled in Part 1
(i.e., in this paper) and in Part 2 (i.e., in Joerger et al. (2015)).
In Section 2 of this paper, the SS and χ2 RAIM detectors are described using parity

space representations, which are essential because the parity vector is the simplest,
most fundamental expression of the detection capability. Joerger et al. (2014) shows
that the detection boundaries of SS and χ2 RAIM respectively describe a polytope
and a hyper-sphere in parity space. In addition, these two methods are computation-
ally efficient, which makes them good candidates for real-time navigation applications.
However, the circumstances under which SS provides a lower integrity risk than χ2

RAIM, or vice versa, have yet to be defined.
Multiple implementations of SS and χ2 RAIM have been derived, for example,

regarding the treatment of the worst-case fault magnitude as explained in Lee
(1995), Milner and Ochieng (2010) and Jiang and Wang (2014). In order to establish
fair grounds for analysis, the approach pursued in this paper is based on a common,
tight integrity risk bound defined in Section 2. Looser upper bounds are implemented
in the last sections of Part 2 (Joerger et al., 2015) to improve computation efficiency.
Section 3 aims at determining the shape of the optimal detection boundary, which

minimises integrity risk while satisfying a false-alarm requirement. Blanch et al.
(2013a) demonstrates the tight relationship between the optimal detection region
and the solution separation statistics for a given set of navigation requirements. In con-
trast, in this work, the proposed algorithm approximates the optimal detection region
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using a piecewise linear boundary, whose segments are determined by solving a con-
strained minimisation problem. This method is computationally expensive, but
enables integrity risk evaluation (unlike (Blanch et al., 2013a)). It also provides the
means to show that the optimal detection region varies with navigation system
parameters, and that assuming realistic requirements, the SS polytopic boundary
can approach the optimal detection region. The SS RAIM test statistics will then
be used in the second part of this work, because they can be implemented in a
computationally-efficient manner.
In Part 2 (Joerger et al., 2015), new methods will be established to design NLS esti-

mators that directly minimise the integrity risk, subject to a false alarm constraint, and
using a SS detector. Parity space representations will be exploited again to ensure a
modest computational load, while substantially reducing the integrity risk as com-
pared to using a LS estimator. Finally, the SS detector and the NLS estimator will
be evaluated for an example aircraft approach application using Advanced RAIM
(ARAIM) with dual-frequency GPS and Galileo satellite measurements.

2. BACKGROUND ON RAIM. In this section, the integrity and continuity risks
are first defined, followed by notations for the least-squares estimator. Then, the base-
line detection test statistics for chi-squared (χ2) RAIM and Solution Separation (SS)
RAIM are derived and represented in parity space for an illustrative example. The
content of this section is used in both Parts 1 and 2 of this research to analyse
optimal integrity monitoring methods.

2.1. Integrity and Continuity Risk Definitions. The integrity risk, or probability
of Hazardous Misleading Information (HMI), is a joint probability defined as:

PHMI� ≡ P jε0j> ‘; jqj< Tð Þ ð1Þ
where ε0 is the error on the estimated parameter of interest (called ‘state’ of interest), ℓ
is a specified alert limit that defines hazardous situations (e.g., specified in (RTCA
Special Committee 159, 2004) for aircraft approach navigation), q is the detection
test statistic and T is the detection threshold.
Considering a set of n+ 1 mutually exclusive, jointly exhaustive hypotheses Hi, the

law of total probability can be used to express the integrity criterion as:

PHMI ¼
Xn
i¼0

P jε0j> ‘; jqj< T jHið ÞPHi � IREQ � PNM ð2Þ

where, in order to avoid introducing new notations, PHMI (PHMI = PHMI*− PNM) will
be referred to in the remainder of this work (both in Parts 1 and 2) as the integrity risk,
and where IREQ is the integrity risk requirement (also specified in RTCA Special
Committee 159 (2004) for example aviation applications). PNM is the prior probability
of two or more simultaneous faults that need not be monitored against (such that
PNM≪ IREQ). PNM is further described below, PHi is the prior probability ofHi occur-
rence, H0 is the fault-free hypothesis, Hi for i = 1, …, n are the fault hypotheses corre-
sponding to faults on satellite measurement ‘i’ and n is the number of Space Vehicles
(SV) in view, i.e., the number of single-SV faults.
This work addresses single-satellite faults, and assumes that faults occur rarely and

independently across SVs, so that PNM is small with respect to IREQ. Equation (2)
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expresses the integrity risk for the n fault hypotheses that must be monitored against,
and conservatively accounts for the remaining fault combinations using their prior
probability of occurrence PNM (as established in Blanch et al. (2013b) and Joerger
et al. (2014)).
Under the fault-free hypothesis H0, the detection threshold T is typically set based

on an allocated continuity risk requirement CREQ (e.g., also specified in (RTCA
Special Committee 159, 2004) for aviation applications) to limit the probability of
false alarms (Sturza, 1988). T can be defined as:

P jqj � T jH0ð ÞPH0 � CREQ ð3Þ
In addition, let n and m respectively be the number of measurements and number of
parameters to be estimated (i.e., the ‘states’) and let z� be the n× 1 vector of stacked
measurements. This work assumes that the Cumulative Distribution Function
(CDF) of nominal measurement errors is bounded by a zero mean Gaussian distribu-
tion with covariance matrix V� (DeCleene, 2000). Vector z� is pre-multiplied by V�1=2

�
to obtain the ‘normalised’ measurement equation:

z ¼ Hxþ vþ f ð4Þ

where z ¼ V�1=2
� z� is the normalised measurement vector, H is the n ×m normalised

observation matrix, x is them × 1 state vector, f is the n× 1 normalised fault vector and
v is the n× 1 normalised measurement noise vector composed of zero-mean, unit-vari-
ance independent and identically distributed (i.i.d.) random variables.
We use the notation:

v ∼ Nð0n×1; InÞ ð5Þ
where 0a×b is an a× bmatrix of zeros (in this case, it is an n × 1 vector of zeros) and In is
an n× n identity matrix.
In order to avoid making assumptions on unknown fault distributions, an upper

bound on the probability of HMI can be evaluated for the worst-case single-SV
fault magnitude fi under Hi:

P jε0j> ‘; jqj< T jHið Þ � max
fi

P jε0j> ‘; jqj< T j fið Þ ð6Þ

The worst-case fault magnitude fi, which maximizes the integrity risk givenHi, is found
using a straightforward line search algorithm (e.g., used in Lee (1995), Milner and
Ochieng (2010) and Jiang and Wang (2014)). For the fault-free case (i = 0), the follow-
ing notation is used: f0 = 0. The bound on the right hand side in Equation (6) will be
implemented in Section 3 of this paper, and for analytical purposes in Part 2 in Joerger
et al. (2015). Also in Part 2, for practical implementations, an alternative boundwill be
derived, which does not require determination of fi.

2.2. Baseline Least-Squares Estimator and Detectors Used in RAIM. This section
describes the estimate error ε0 obtained using a Least-Squares (LS) estimator, and the
test statistics q for two of the most widely-implemented detection methods in RAIM:
chi-squared (χ2) RAIM and Solution Separation (SS) RAIM.
Let x be the state of interest, for example the vertical position coordinate, which is

often of primary concern for aircraft approach navigation. Let α be an m× 1 vector
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used to extract x out of the full state vector:

αT ¼ 0TmA×1 1 0TmB×1

h i
ð7Þ

where, in the order in which states are stacked in x,mA andmB are the number of states
respectively before and after state x. Assuming that H is full rank and that n≥m, the
LS estimate of x is defined as:

x̂0 ≡ sT0 z ð8Þ
where

sT0 ¼ αTP0HT ; and P0 ¼ HTH
� ��1 ð9Þ

The LS estimate error appearing in the integrity risk Equation (2) is defined as:

ε0 ≡ x̂0 � x ¼ sT0 ðvþ fÞ ð10Þ
ε0 ∼ NðsT0 f; σ20 ≡ αTP0αÞ ð11Þ

In parallel, the χ2 RAIM detection test statistic is derived from the (n−m) × 1 parity
vector p, which lies in the (n−m)-dimensional parity space, or left null space ofH, and
can be expressed as (Sturza, 1988; Potter and Suman, 1977):

p ≡ Qz ¼ Qðvþ fÞ ð12Þ
where the (n−m) × n parity matrix Q is defined as:

QQT ¼ In�m and QH ¼ 0ðn�mÞ×m ð13Þ
The χ2 RAIM detection test statistic is the square of the norm of p, and can be written
as (Sturza, 1988; Potter and Suman, 1977):

q2χ ≡ pTp ð14Þ

q2χ follows a non-central chi-square distribution with (n−m) degrees of freedom and

non-centrality parameter λ2χ (Potter and Suman, 1977). The following notation is used:

q2χ ∼ χ2 n�m; λ2χ

� �
ð15Þ

where

λ2χ ¼ fTQTQf ð16Þ

As an alternative to χ2 RAIM, a second integrity monitoring method called SS RAIM
(Brenner, 1996; Blanch et al., 2007) is investigated. Without loss of generality, it is
assumed that under the single-SV fault hypothesis Hi, the faulty measurement is the
first element of z. The measurement Equation (4) can be partitioned following the
equation:

AT
i z

BT
i z

� �
¼ AT

i H
BT
i H

� �
xþ AT

i v
BT
i v

� �
þ AT

i f
0ðn�1Þ×1

� �
ð17Þ
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with

Ai ≡
1

0ðn�1Þ×1

� �
and Bi ≡

0ðn�1Þ×1
In�1

� �
ð18Þ

Equation (17) is employed to distinguish the full-set solution x̂0 in Equation (8),
obtained using all n measurements in z, from the subset solution x̂i, derived using
only the (n− 1) fault-free measurements BT

i z under Hi. Under the assumption that
n− 1≥m, and assuming that BT

i H is full rank, x̂i is defined as:

x̂i ≡ sTi z; for i ¼ 1; . . . ; n ð19Þ
where

sTi ¼ αTPiHTBiBT
i ; and Pi ¼ HTBiBT

i H
� ��1 ð20Þ

It follows that, under Hi, the estimate error εi is given by:

εi ≡ sTi ðvþ fÞ ∼ Nð0; σ2i ≡ αTPiαÞ ð21Þ
The solution separations are defined as (Lee, 1986; Brenner, 1996):

Δi ≡ x̂0 � x̂i ¼ ε0 � εi; for i ¼ 1; . . . ; n ð22Þ
Δi can also be expressed as (Blanch et al., 2007; Joerger et al., 2014):

Δi ¼ sTΔiz and Δi ∼ N sTΔif; σ
2
Δi

� �
with σ2Δi ¼ σ2i � σ20 ð23Þ

where

sΔi ¼ s0 � si ð24Þ
In addition, the normalised solution separations can be defined as:

qi ≡ Δi=σΔi ∼ N sTΔi� f; 1
� �

for i ¼ 1; . . . ; n ð25Þ
where

sΔi� ¼ sΔi=σΔi ð26Þ
Of particular significance in this work is the fact that for single-measurement faults, qi
can be written in terms of the parity vector p as (Joerger et al., 2014):

qi ¼ sTΔi�z ¼ uTi p ð27Þ
where

ui ¼ QAiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AT

i Q
TQAi

q for i ¼ 1; . . . ; n ð28Þ

with

AT
i ¼ 0Tði�1Þ×1 1 0Tðn�iÞ×1

h i
ð29Þ

i.e., QAi is the ith column of Q. Vector ui is the unit direction vector of the ith ‘fault
mode line’, which can be represented in parity space (see Figure 1 in the next
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paragraphs) to visualise the noise-free impact on p of a fault on the ith measurement
with magnitude varying from −∞ to +∞. Equation (27) expresses the fact that the
n solution separations are projections of the parity vector on their corresponding
fault mode lines.
Equations (14) and (27) show that both qχ and qi are derived from the parity vector

p. It has been proved in Joerger et al. (2014) that for any test statistic q lying in the
parity space, the least-squares estimate error ε0 and q are statistically independent,
so that the joint probability in Equation (6) can be expressed as:

P jε0j> ‘; jqj< T j fið Þ ¼ P jε0j> ‘; j fið ÞP jqj< T j fið Þ ð30Þ

The integrity risk bound obtained by substituting Equation (30) into Equation (6), and
the result into Equation (2) is used in the remainder of this paper for both χ2 and SS
RAIM. This PHMI -bound differs from typical SS RAIM approaches (Brenner,
1996) because: (a) it does not use a position-domain-bound to account for the
worst-case fault, and (b) it requires that the correlation between SS test statistics be
evaluated in Section 3. A complete derivation of a conventional SS RAIM approach
starting from Equation (1) can be found in Joerger et al. (2014). Based on this
common definition for χ2 and SS RAIM, differences in PHMI, or more precisely in
probability of no-detection P(|q| <T | fi), can be displayed in parity space.

2.3. Parity Space Representations for an Illustrative Single-State Example. In this
section, both χ2 RAIM and SS RAIM are represented in parity space for an illustrative
single-state example used in Potter and Suman (1977) and Joerger et al. (2014). Let us

Figure 1. Detection boundaries for χ2 (Circle) and SS (Hexagon) in parity space.
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consider a scalar state x and a 3 × 1 measurement vector z that are expressed as:

z ¼ Hxþ vþ f ð31Þ
where

H ¼ 1 1 1½ �T and v ∼ Nð03×1; I3Þ ð32Þ
Sincem= 1 and n = 3, the (n−m) parity space is two-dimensional, which is convenient
for display. The fault vector f represents three single-measurement faults, correspond-
ing to three fault hypotheses Hi, for i = 1, …, 3, with unknown fault magnitude fi.

f ¼
f1
0
0

2
4

3
5 or f ¼

0
f2
0

2
4

3
5 or f ¼

0
0
f3

2
4

3
5 ð33Þ

Their three fault mode lines, with direction vectors ui defined in Equation (28), are
represented in Figure 1.
For χ2 RAIM, the probability of no detection, which is the second term of the

product in Equation (30), is given by: Pðq2χ < T2
χ jfiÞ. In contrast, for SS RAIM, the

probability of no detection is a joint probability given by:

P jq1j< T1; jq2j< T2; jq3j< T3j fið Þ ð34Þ
It follows from Equations (14), (27) and (34) that the detection boundaries for χ2 and
SS RAIM are a circle (or a hyper-sphere in higher-dimensional parity space) and a
polygon (or a polytope), respectively.
Consistent with Equation (3), the SS detection thresholds can be computed using the

following equation: P jq1j � T1 ∪ jq2j � T2 ∪ jq3j � T3jH0ð Þ ¼ CREQ (where ‘∪’ cap-
tures a union of events, whereas commas in Equation (34) represent an intersection),
for which a close approximation is given by:

Ti ¼ Q�1 CREQ;i

2PH0

	 

for i ¼ 1; . . . ; n ð35Þ

CREQ ¼
Xh
i¼1

CREQ;i; e:g:; CREQ;i ¼ CREQ

n
ð36Þ

where the function Q−1{} is the inverse tail probability distribution of the two-tailed
standard normal distribution (Q{} = 1−Φ{}, whereΦ{} is the standard normal cumu-
lative distribution function).
Blanch et al. (2007) suggests that for a practical application the difference is negli-

gible between the probability of no detection for an optimised continuity risk require-
ment allocation versus the equal allocation expressed in Equation (36). In this
example, because all three measurements contribute equally to estimation and detec-
tion, and because each fault occurrence is assumed equally likely (PH1 = PH2 =PH3),
the optimal CREQ-allocation actually is the equal allocation in Equation (36).
Following Equation (36), if the SS detection thresholds are all equal (T1 =T2 = T3),
then the polygon is a hexagon. In Figure 1, detection happens if the parity vector p
lands outside the detection boundary. Therefore, the probability of no detection is
the probability of being inside the dash-dotted circle for χ2 RAIM, and inside the
hexagon for SS RAIM.
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Thus, χ2 RAIM and SS RAIM each generate a different detection boundary, but it is
unclear which one actually provides the highest probability of detection under a given
fault hypothesis. Section 3 will show that the answer to this question depends on the
navigation requirements ℓ and CREQ.

3. OPTIMAL PIECEWISE LINEAR DETECTION REGION IN RAIM. This
section describes a method to establish the optimal piecewise linear detection region
in RAIM. This optimisation method is used as an analytical tool to determine
which of the χ2 or SS test statistics gives the best detection capability, and under
what circumstances.

3.1. Optimal Piecewise Linear Detection Boundary. Blanch et al. (2013a) recently
developed an approach, based on the Neyman-Pearson (NP) theorem, to visualize the
optimal no-detection region by determining the set of points in parity space that con-
tribute to reducing the integrity risk. This NP approach does not include a process to
evaluate the integrity risk PHMI.
In contrast, in this section, a Piecewise Linear (PL) boundary is implemented to ap-

proximate the optimal detection region, which minimises the integrity risk. In this case,
PHMI can be evaluated using an algorithm similar to SSRAIM,which is described below.
With regard to computation, the two approaches are intensive: the NP method

involves sampling the parity space point by point, whereas the PL approximation
determines a finite number of parameters based on the PHMI -bound defined in
Section 2. The processing load for the PL approach can be reduced in future work
using looser PHMI -bounds.
In this paper, the NP and PL algorithms are exploited to make an informed decision

on whether to use χ2 versus SS test statistics, depending on navigation requirements.
The focus is on χ2 and SS RAIM because these methods are computationally efficient
and widely implemented.
The method’s main idea for establishing the optimal detection boundary is illu-

strated in Figure 2 for the illustrative example described in Equations (31) to (33).
To design a new detector, the method first uses the n SS test statistics (n= 3 in this
case), which are projections of the parity vector p on the n fault lines (represented in
grey). But the method also includes new test statistics, defined as projections of p
onto lines selected at regular angular intervals (displayed in black), with unit direction
vectors u4, u5 and u6.
As illustrated in Figure 1 with the hexagonal detection region for SSRAIM, each test

statistic generates two segments of the piecewise linear boundary. Let d be the total
numberof detection test statistics. The higherd is, the finer the resolutionof the detection
boundary becomes. For clarity of exposition in the figures of this section, a total of d= 6
test statistics are considered, with detection thresholds T1, …, Td.
With this structure in place, finding the optimal detection boundary narrows down

to determining the threshold values T1, …, Td that minimise the integrity risk in
Equation (2), while meeting the false alarm requirement in Equation (3). This
problem can be formulated as a constrained minimisation problem:

min
T1;...;Td

Xn
i¼0

max
fi

P jε0j> ‘j fið ÞP jq1j< T1; . . . ; jqd j< Td j fið ÞPHi

( )
ð37Þ

subject to: 1− P(|q1| <T1, …, |qd| <Td | H0)PH0≤CREQ
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The quantity to minimise is a bound on the integrity risk expressed in
Equation (37) by substituting Equation (30) into Equation (6), and the result into
Equation (2).
It is worth noting that the d test statistics qi are mutually correlated, so that the joint

probability in Equation (37) cannot be written as a product of probabilities. Still, this
joint probability can be numerically evaluated by stacking the test statistics qi in a d× 1
vector q. Let MU be an (n−m) × d matrix such that MU ¼ u1 . . . ud½ �T , and let f i
be a n× 1 single-measurement fault vector whose only non-zero element is the ith
element of value fi. The d× 1 vector of test statistics q follows a multivariate normal
distribution with covariance matrix MT

UMU and with mean vector MT
UQf i that can

be evaluated given fi. In this case, the joint-probability evaluation is accomplished
by integration over a hyper-box with edge lengths defined by the thresholds Ti, for
i = 1, …, d, following the methods in (Drezner and Wesolowsky, 1989) and (Genz
and Bretz, 2002). As mentioned earlier, this multiple integration process is computa-
tionally expensive, and in this paper, is only used for analytical purposes in two illus-
trative examples.
Equation (37) describes the detection region as a union of half-planes, and is consist-

ent with the assertion proved in Blanch et al. (2013a), which states that the optimal de-
tection boundary defines a closed, convex curve. Equation (37) is also written as a
‘mini-max’ problem. The maximisation is dealt with, in this paper, using a brute
force approach based on multiple line-searches over fi, for i = 1, …, n. These line
searches are repeated at each iteration of the minimisation process.
The problem formulation in Equation (37) can be modified into an unconstrained

minimisation problem using the method of Lagrange multipliers (by forcing the in-
equality constraint to equality), or alternatively using barrier or penalty methods
(Luenberger and Ye, 2008). The first option is selected here, and Equation (37)

Figure 2. Concept of Piecewise Linear Detection Region.
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becomes:

min
T1;...;Td ;θ

Pn
i¼0

max
fi

P jε0j> ‘j fið ÞP jq1j< T1; . . . ; jqd j< Td j fið ÞPHi

þθ CREQ � 1þ P jq1j< T1; . . . ; jqd j< Td jH0ð Þ� �
8<
:

9=
; ð38Þ

where θ is the Lagrange multiplier, to be simultaneously determined with the optimal
values of Ti.
In Equation (38), the parameters to be optimised T1,…, Td are limits of integration

for the objective function. This facilitates the derivation in the Appendix, using the
Leibniz integral rule, of analytical expressions for the objective function’s gradient
vector and Hessian matrix. An iterative Newton method can then be implemented
to determine the optimal parameter values (Luenberger and Ye, 2008). Convergence
issues are beyond the scope of this paper since the optimisation method is not currently
intended for practical implementation. The computational load of this piecewise-
linear approximation will be readdressed in future work.

3.2. Sensitivity to Navigation Requirements. The optimal piecewise linear detec-
tion boundary is used here to make an educated choice between χ2 RAIM and SS
RAIM. The canonical example in Equations (31) to (33) is considered again, with
the example parameter values: PHi ¼ 10�3 for i = 1, …, 3, and CREQ= 10−3. The ana-
lysis is carried out for a range of values of the non-dimensional parameter ℓ/σ0 (which
is the ratio of the alert limit over the estimate error standard deviation).
First, the optimal piecewise linear boundary is represented in Figure 3 (thick black

lines) for a small value of ℓ/σ0 (ℓ/σ0 = 0.3). Segments of the optimal boundary are of
equal length, so that the optimal boundary approaches a circle. This can be observed
again in the zoomed-in window on the upper-right hand side of Figure 3, where the
optimal boundary is close to the χ2 circular boundary, and far from the corner of
the SS hexagon.
This result is confirmed using the Neyman-Pearson (NP)-based approach (Blanch

et al., 2013a), which, by sampling the parity space point by point, provides a precise
depiction of the optimal no-detection region (grey area in Figure 3). In Figure 3,
the optimal no-detection region closely matches the χ2 RAIM circular boundary.
Thus, the χ2 RAIM method approaches the optimal method for ℓ/σ0 = 0.3.

However, as ℓ/σ0 increases, the optimal detection boundary changes. Figure 4 shows
that for ℓ/σ0 = 15, segments of the optimal piecewise linear boundary are no longer
of equal length. The optimal region starts looking like a hexagon, which corresponds
to the SS detection boundary. This can be seen again in the zoomed-in window where
the optimal NP boundary starts filling in the corner of the SS hexagon.
The next two paragraphs describe the dominating factors causing the optimal detec-

tion region to change with ℓ/σ0. First, the constraint in the problem statement of
Equation (37) is independent of ℓ/σ0. Thus the optimal area is only shaped by the ob-
jective function, i.e., by the integrity risk PHMI, which is a sum of probabilities over
multiple hypotheses. The probability density function for PHMI is represented in
parity space for ℓ/σ0 = 0.3 and ℓ/σ0 = 15 in Figures 5 and 6, respectively. In this mul-
tiple hypothesis formulation, the density function is a composite of seven peaks of
probability density, corresponding to the fault-free hypothesis H0, and to the three
fault hypotheses for positive and negative values of the fault magnitude. The continuity
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risk requirement defines an area near the origin corresponding to relatively small fault
magnitudes, which are difficult to detect.
Figure 5 shows what appears to be a single peak in probability density for small

values of ℓ/σ0. When ℓ/σ0 is small, the probability of the estimate error ε0 exceeding
ℓ rises rapidly, even for small, difficult-to-detect fault magnitudes. It follows that the

Figure 3. Optimal Piecewise Linear (PL) detection boundary for ℓ/σ0 = 0.3

Figure 4. Optimal Piecewise Linear (PL) detection boundary for ℓ/σ0 = 15
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worst-case fault magnitudes (which maximise PHMI) remain close to zero, and the
seven peaks are all brought together near the origin. In contrast, as ℓ/σ0 increases in
Figure 6, small-magnitude faults do not cause hazardous information so that the
worst-case fault magnitudes become larger, and the six probability density peaks
corresponding to fault hypotheses spread apart along the fault mode lines.
Therefore, as ℓ/σ0 increases, the optimal detection boundary changes from a circular
area (χ2) to a polygon (SS).
In practice, the alert limit ℓ must be substantially greater than σ0 or the fault-free

integrity risk alone (i.e., the term of the sum in Equation (2) for which i = 0) will
exceed the integrity risk requirement IREQ. Moreover, comparing the scales of the
z-axes in Figures 5 and 6 provides a clue as to the difference in orders of magnitude
of PHMI as ℓ/σ0 changes. Therefore for most realistic practical requirements (i.e., for
large values of ℓ/σ0), the optimal detection boundary approaches SS. This result com-
pletes and reinforces the findings of previous papers (Joerger et al., 2014; Blanch et al.,
2013a).

3.3. Optimal detection boundary for an Example GPS Satellite Geometry. In this
section, the optimal NP and PL boundaries are derived for the example GPS satellite
geometry displayed in Figure 7. In this case, the state vector x in Equation (4) com-
prises three position coordinates and one receiver clock bias. Since the number of sat-
ellite measurements n is six, and the number of states m is four, the parity space has
dimension (n−m) = 2. Example parameter values are the same as in Section 3.2:
PHi ¼ 10�3 for i = 1, …, 3, and CREQ = 10−3.
Figure 8 shows the optimal detection boundaries for ℓ/σ0 = 10−4, and for ℓ/σ0 = 7. In

both cases, the ‘SS boundary’ is displayed for the optimal CREQ-allocation, which, in
this example, is no longer the equal allocation. The optimal allocation and the

Figure 5. Density function of the probability of HMI for ℓ/σ0 = 0.3
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corresponding detection thresholds are found by solving Equation (38) for the six SS
RAIM test statistics. In practical applications, optimal allocation does not cause large
PHMI -reductions as compared to equal allocation (Blanch et al., 2007), but it does in
this particular example.
In parallel, the optimal PL boundary is defined using the six SS test statistics, with

parity space directions the solid grey lines in Figure 8 (along vectors ui, for i = 1,…, 6)

Figure 6. Density function of the probability of HMI for ℓ/σ0 = 15

Figure 7. Azimuth-elevation sky plot for an example GPS satellite geometry.

462 MATHIEU JOERGER AND OTHERS VOL. 69

https://doi.org/10.1017/S0373463315000983 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000983


as well as six additional statistics, determined by projecting the parity vector on the
grey dash-dotted lines (for example, along vectors uiþ6 ¼ ui þ uiþ1ð Þ=jjui þ uiþ1jj for
i = 1, …, 5, and u12 ¼ u1 þ u6ð Þ=jju1 þ u6jj). These lines are placed right in-between
fault lines to accentuate their impact on the detection boundary as compared to SS
RAIM.
For example, in Figure 8(a), the optimal NP and PL boundaries expectedly match

the circle corresponding to the χ2 circle (as explained in Section 3.2). The SS boundary
does not match the circle quite as well, especially considering the corners of the SS
polygon where the angular separation between fault lines is largest.
However in Figure 8(b) the optimal NP, PL, and SS boundaries are no longer circu-

lar. All three approaches provide fairly consistent boundaries, except for small differ-
ences at the corners of the polygon, where probability densities under H0 become
extremely small. The PL method enables evaluation of the integrity risk PHMI. Let
PHMI,χ be the integrity risk derived from χ2 RAIM. In this example, the integrity
risk is reduced to 0·92 PHMI,χ for SS RAIM versus 0·91 PHMI,χ using the PL
method. In this case, the SS RAIM integrity performance approaches that of the
optimal PL method.
In Part 2 of this work (Joerger et al., 2015), the Least-Squares (LS) solution separ-

ation (SS) detection test statistics are used as a starting point, because they provide a
computationally-efficient, practical approximation of the optimal detection region
when using a LS estimator.

4. CONCLUSION. This paper is Part 1 of a two-part research effort, which pre-
sents new methods to minimise the integrity risk by design of the RAIM detector
and estimator for applications in future multi-constellation GNSS-based navigation.
In this paper, a piecewise linear approximation of the optimal detection region in

parity space was established. Unlike previously published approaches, this optimisa-
tion method enables integrity risk evaluation, but would require significant refinement
in future work for real time implementations.

Figure 8. Optimal Piecewise Linear (PL) detection boundary for the example GPS satellite
geometry in Figure 7, (a) for ℓ/σ0 = 10−4, and (b) for ℓ/σ0 = 7
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However, the method is immediately useful in that it provides a means to
determine, for example scenarios, which of Solution Separation (SS) or chi-squared
(χ2) RAIM yields the lowest integrity risk. The focus is placed on these two
algorithms because they are computationally efficient and widely implemented.
The paper shows, with the aid of two example measurement equations, that the
optimal detection region varies with navigation system parameters, and that for real-
istic requirements, the SS detection region can approach the optimal boundary.
Therefore, the new RAIM methods in Part 2 of this work will be devised using SS
test statistics.
Part 2 of this research in Joerger et al. (2015) will investigate the potential of redu-

cing the integrity risk using a Non-Least-Squares (NLS) estimator. In addition, per-
formance analyses will be carried out to evaluate the new RAIM method, using the
SS detector and NLS estimator, for an example aircraft approach applications using
multi-constellation Advanced RAIM.
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APPENDIX. GRADIENT AND HESSIAN DERIVATION FOR THE
OPTIMAL DETECTOR

The derivation of the optimal piecewise linear detection region in parity space was
formulated as a constrained minimisation problem over detection thresholds T1,…, Td

in Equation (37). This Appendix provides the main steps of the gradient vector and
Hessian matrix derivation, which allows us to efficiently solve Equation (37) using
Newton’s method.
The integrity risk, i.e., the objective function in Equation (37), can be bounded using

the following inequality:

Xh
i¼0

P jε0j> ‘; jq1j< T1; . . . ; jqd j< Td j fið ÞPHi

� P jε0j> ‘; jH0ð ÞPH0 þ
Xh
i¼1

aiP jq1j< T1; . . . ; jqd j< Td j fið Þ
ðA1Þ

where

ai ¼ P jε0j> ‘j fið ÞPHi ðA2Þ
and where, to lighten the notation, the maximum over fi is not expressed. Equation
(A1) uses the fact proved in Joerger et al. (2014) that ε0 and qi, for i = 1,…, d, are stat-
istically independent. The coefficient ai and the term corresponding to the fault-free
hypothesisH0 on the right hand side of Equation (A1) are independent of the detection
thresholds. The minimisation problem over thresholds T1, …, Td can therefore be re-
written as:

min
T1;...;Td

Xh
i¼1

aiP jq1j< T1; . . . ; jqd j< Td j fið Þ
( )

ðA3Þ
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subject to:

1� P jq1j< T1; . . . ; jqd j< Td jH0ð ÞPH0 � CREQ ðA4Þ

The terms that are a function of the thresholds Ti are the joint probabilities of |qj| <Tj

for j= 1, …, d, given �f i for i = 1, …, h in the objective function in Equation (A3), and
givenH0 in the constraint Equation (A4). These terms appear in a sum after modifying
the problem formulation in Equations (A3) and (A4) into an unconstrained minimisa-
tion problem, e.g., using the method of Lagrange multipliers given in Equation (38).
For clarity of exposition, we consider a simplified objective function ψ (for d= 3),
which lets us capture the main steps of the derivation for the modified objective func-
tion in Equation (38) (the derivation is extendible to arbitrary d). ψ is defined as:

ψ T1;T2;T3ð Þ ≡P jq1j< T1; jq2j< T2; jq3j< T3ð Þ
¼ ∫

T3

�T3
∫
T2

�T2
∫
T1

�T1
fðq1; q2; q3Þdq1dq2dq3

ðA5Þ

where q1, q2, and q3 are correlated random variables, and φ() is the probability density
function for a non-zero mean multivariate normal distribution. The following deriv-
ation applies in the special case where variables q1, q2, and q3 have zero mean, as is
the case in the constraint Equation (A4).
For the minimisation problem over detection thresholds T1, T2, T3, the first element

of the gradient vector can be expressed, using the Leibniz integral rule, as:

∂ψ T1;T2;T3ð Þ
∂T1

¼ ∫
T3

�T3
∫
T2

�T2
fðT1; q2; q3Þdq2dq3

þ ∫
T3

�T3
∫
T2

�T2
fð�T1; q2; q3Þdq2dq3

ðA6Þ

The expression in Equation (A6) cannot easily be evaluated because q1, q2, and q3 are
correlated. Let ζ be an infinitesimally small number. Equation (A6) can be rewritten
and approximated as:

∂ψ T1;T2;T3ð Þ
∂T1

¼ lim
τ!0

1
τ

∫
T3

�T3
∫
T2

�T2
∫
T1þτ=2
T1�τ=2 fðq1; q2; q3Þdq1dq2dq3

þ ∫
T3

�T3
∫
T2

�T2
∫
�T1þτ=2
�T1�τ=2 fðq1; q2; q3Þdq1dq2dq3

2
4

3
5

≈
1
ζ

∫
T3

�T3
∫
T2

�T2
∫
T1þζ=2
T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

þ ∫
T3

�T3
∫
T2

�T2
∫
�T1þζ=2
�T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

2
4

3
5

ðA7Þ

The above expression enables the use of existing numerical methods (Drezner and
Wesolowsky, 1989) to evaluate the right hand side term in Equation (A7), by integra-
tion of the tri-variate normally distributed random vector q1 q2 q3½ �T over a box.
The second and third elements of the 3 × 1 gradient vector are obtained in the same
manner as in Equation (A7), by taking the partial derivatives of ψ( ) over T2, and
T3, respectively.
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The same method is used to determine the off-diagonal and diagonal elements of the
Hessian matrix, which are respectively expressed as:

∂ψ T1;T2;T3ð Þ
∂T1∂T2

≈
1

ζ2

∫
T3

�T3
∫
T2þζ=2
T2�ζ=2 ∫

T1þζ=2
T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

þ ∫
T3

�T3
∫
�T2þζ=2
�T2�ζ=2 ∫

T1þζ=2
T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

þ ∫
T3

�T3
∫
T2þζ=2
T2�ζ=2 ∫

�T1þζ=2
�T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

þ ∫
T3

�T3
∫
�T2þζ=2
�T2�ζ=2 ∫

�T1þζ=2
�T1�ζ=2 fðq1; q2; q3Þdq1dq2dq3

2
6666664

3
7777775

ðA8Þ

∂2ψ T1;T2;T3ð Þ
∂T2

1

≈
1

ζ2

∫
T3

�T3
∫
T2

�T2
∫
T1þζ
T1

fðq1; q2; q3Þdq1dq2dq3
� ∫

T3

�T3
∫
T2

�T2
∫
T1

T1�ζ fðq1; q2; q3Þdq1dq2dq3
� ∫

T3

�T3
∫
T2

�T2
∫
�T1þζ
�T1

fðq1; q2; q3Þdq1dq2dq3
� ∫

T3

�T3
∫
T2

�T2
∫
�T1

�T1�ζ fðq1; q2; q3Þdq1dq2dq3

2
6666664

3
7777775

ðA9Þ

Equations (A7) to (A9) provide the main results needed to determine the gradient
vector and Hessian matrix of the modified objective function in Equation (38).
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