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Generalizing Hopf’s Boundary Point
Lemma

Leobardo Rosales

Abstract. 'We give a Hopf boundary point lemma for weak solutions of linear divergence form uni-
formly elliptic equations, with Holder continuous top-order coefficients and lower-order coefficients
in a Morrey space.

1 Introduction

We illustrate how the Hopf boundary point lemma can be proved for divergence form
equations, given sufficient regularity of the coefficients. Here, we show the case when
the top-order coefficients are Holder continuous, while the lower-order terms are in
a Morrey space (see Definition 2.1).

The Hopf boundary point lemma states that if u € C(B;(0)) n C?(B;(0)) satisfies
a second-order linear equation

n n
> a'DiDju+ Y ¢ (x)Dju+du=0
i,j=1 i=1
over B,(0), for functions a’/ = a/’,c’,d € L>(B,(0)) for i,j € {1,...,n} with
{aij},'.',j:1 uniformly elliptic over B;(0) with respect to some A € (0, c0) (see Defi-
nition 2.4), and if u(x) > u(—e,) = 0 for all x € B;(0), then

((R))] lim inf M

> 0.
hN\O h

See the proof given by Hopf in [10] as well as [8, Lemma 3.4].
It is useful to have the Hopf boundary point lemma for divergence form equations.
We consider u € C(B;(0)) n W-2(B;(0)) a weak solution over B;(0) of the equation

n .. . n .
(1.2) Z D,-(a’]Dju+b'u)+Zc'Diu+du:0
ivj=1 i-1
for functions a'/, ¢’ € L?(B,(0)) and b*,d € L'(B,(0)) for each i, j € {1,...,n} (see

Definition 2.3). Assuming again that u(x) > u(-e,) = 0 for all x € B;(0), the aim is
to show that (1.1) holds.
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184 L. Rosales

The most recent result is given by [20, Theorem 1.1], which shows that (1.1) holds if

a'l = a’' € C>*(B,(0))

forsomea € (0,1) fori,je {1,...,n} with {a"j}l'.’)j:l uniformly elliptic with respect to
some A € (0, 00) (see Definition 2.4), and b’ = 0 while ¢’, d € L>°(B,(0)) for each i €
{1,...,n}. We also refer the reader to [20], which discusses previous generalizations
of the Hopf boundary point lemma, and gives examples showing the assumption a’/ €
C%*(B,(0)) foreach i, j € {1,...,n} cannot be relaxed.

Here, we prove in Theorem 4.1 that (1.1) holds under the more general assumption
that the coefficients in (1.2) satisfy for each i, j € {1,...,n},

a'l b’ € C¥*(B;(0)), ¢ eLi(By(0)), deL?(Bi(0))nL"(B;(0))

for some q > nand « € (0,1); see Remark 4.2(i). We also assume a'/(—e, ) = a/'(-e,)
foreach i,j e {1,...,n} with {a’/ ; i=1 uniformly elliptic over B;(0) with respect to
some A € (0,00). Additionally, we assume {b*}", d are weakly non-positive over
B;(0) (see Definition 2.5).

The space L"*(B;(0)) denotes a Morrey space (see Definition 2.1). Morrey spaces
were introduced in [19] to study the existence and regularity of solutions to elliptic
systems. Consequently, to prove Theorem 4.1 we must use the C* estimate of [19,
Theorem 5.5.5'(b)] stated here for convenience as Lemma 3.1.

Since their introduction, Morrey spaces have been studied in and outside the study
of partial differential equations. Recent work has been done in the study of elliptic and
parabolic partial differential equations involving data in the L** Morrey space. We
refer to the seminal work in this direction given by [18], which uses Morrey spaces to
prove regularity results for solutions to non-linear divergence-form elliptic equations
having inhomogeneous term a measure. To see further recent work resulting from
and related to [18] using L"* Morrey spaces to study elliptic and parabolic equations
in various settings, we refer the reader to [1-7,11-17].

Our underlying goal is to illustrate how the Hopf boundary point lemma can be
shown in other settings for divergence form equations. To this end, the proof of The-
orem 4.1 is given in five steps that demonstrate the necessary theoretical ingredients.
The structure of the proof is taken from the proof of [9, Lemma 10.1], which shows
one generalization of the Hopf boundary point lemma to divergence form equations.

We only assume working knowledge of real analysis and ready access to the refer-
ence [8]. Otherwise, the crucial estimate Theorem 5.5.5(b) is carefully stated in the
current setting as Lemma 3.1. In Section 2, we begin by stating our basic definitions
and some preliminary calculations needed in Section 3 to prove the necessary exis-
tence result Lemma 3.3. We also state the weak maximum principle needed, Lemma
3.2. In Section 4 we prove the Hopf boundary point lemma, Theorem 4.1.

2 Preliminaries

We will work in R" with n > 2. We denote the volume of the open unit ball B;(0) c
R" by w, = |, 5,(0) dx - Standard notation for the various spaces of functions shall be
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used; in particular, C1(U, [0, 00)) will denote the set of non-negative continuously
differentiable functions with compact support in an open set U € R”.

We begin by giving the definition of a family of Morrey spaces, to which we will
relax the assumptions on the lower-order terms given in [20].

Definition 2.1 Suppose a € (0,1) and U € R” is an open set. We say d € L"%(U) if
d € L'(U) with finite L>*(U) norm, defined by

1
d|1e = su 7f d dy.
o= s [ WOy

Remark 2.2 If g > n, U ¢ R” is a bounded open set, and ¢ € L1(U), then ¢ €
LY*(U) fora =1- 2 €(0,1), with

1

1,,
leleqo < ([ ) e,

Next, we state what it means for u to be a weak supersolution (resp. solution, sub-
solution) to a linear divergence form equation. The assumptions on the coefficients
are to ensure integrability.

Definition 2.3 LetU c R" bean open set, and suppose a’/, ¢’ € L*(U), b',d, g, f' €
L'(W) foreach i, je {1,...,n}. Wesay u € L>°(U) n W"2(U) is a weak solution over
W of the equation
Di(aiiju + biu) + ZciDiu +du<g+ ZDifi

i,j=1 i=1 i=1
(resp. >, =) if for all { € CL(U; [0, 00))

f Z aiijuD,-(+ Z ( b'uD;({ - ci(Diu)() —duldx > f -gC+ ZfiD,-(dx

i,j=1 i=1 i=1

(resp. <, =).
The next two definitions hold throughout.

Definition 2.4 Let A€ (0,00), U € R", and suppose we have functions a”/: U - R
foreachi,je {l,...,n}. Wesay {a'/}"._ are uniformly elliptic over U with respect to

i,j=1
Aif
aij(x)fifj > A|&)? for each x € U and & € R”.

i,j=1

Definition 2.5 Let U ¢ R" be an open set, and suppose b’,d € L'(U) for each
ie{l,...,n}. Wesay {b'}"_,, d are weakly non-positive over U if

[ ac-yp'picax<o
i=1

for each { € CL(U, [0, 00)).

https://doi.org/10.4153/CMB-2017-074-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-074-6

186 L. Rosales

Proving Theorem 4.1 will require the existence result Lemma 3.1, which in turn we
prove using a well-known existence result given by [8, Theorem 8.34].We must thus
discuss mollification and Morrey spaces.

Definition 2.6 Let Q = B1(0)\B1(0),andletv € C°(B1(0); [0, 00)) bea standard
mollifier. For 8 € (0, 1) let vs(x) = 5;v(%) and define y5: R" \ {0} - R" by

X X

yo(x) = ((1—48)|x|+38) =k

=(1-48)x+30
x|

Using these functions, we make the following definitions.

(i) Given d € L'(Q), we extend d(y) = 0 for y € R" \ Q and define the
usual convolution d * v5:R" — R. We also define the weighted convolution
devs:R"~ {0} > Rbyd®vs =Jys((d * vs) o ys), where Jys = | det(Dys)]|.

(i) Given {b'}", c C**(Q), define b’ x v5: Q) > Rforie{l,...,n} by

n

b x vy = Z((Dj(ei -ygl)) o )/5) (b ®vs).
j=1

We will use these convolutions to prove the existence result, Lemma 3.3. For this,
we need the following calculations.

Lemma 2.7 Denote Q = B(0) \ By,(0). Suppose b’ € C>*(Q) fori e {1,...,n}
and d € L>*(Q) with a € (0,1).
(i)  Ford € (0, 3), the convolutions satisfy
o dxvseC®(R"), |d *vs|pe(a) < |d|pre(a), and d  vs — d in L'(Q) as
0N 0.
cedevs € C°(R" \ {0}), |d ® VgHLl,a(Q) < zn”dHLl,a(Q), and d ® vs —
din L'(Q)asd \ 0.
o There exists Cy.7 = Cy.7(n) € (0, 00) so that

bi * Vg € Cm(ﬁ), ”bl * V6”C0,zx(5) < C2,7 Z Hbj”co,a(ﬁ)a
j=1

and b’ xvs - b as 8 \ 0in L1(Q) foreach i€ {1,...,n}.

(i) If{b'}",,d are weakly non-positive over Q, then {b* x vs}" |, d ® vs are weakly
non-positive over ).

Proof We leave some details to the reader, which follow from standard real analysis.
First, consider (i). We discuss each item separately.

* Sincev € CZ°(B1(0);[0, c0)) isa standard mollifier, d+vs € C°(R") and d*vs - d
in L'(Q) as § \ 0 are well-known real analysis facts.
Next, fix x € R" and p € (0, o). Using the definition of the convolution, Fubini’s
theorem, a change of variables and the extension d(y) = 0 for y € R" \ Q, the
definition of the L>® norm, and [ v5(z) dz = 1, since v € C°(B;(0);[0,00)) is a
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standard mollifier, we compute

1 1
it o DNy <m [ [l 2lvae) dedy

1
< | —— d(y-2z)|d d
_/pn—1+a -/QOB,,(x)| (y Z)| YVS(Z) z

1
< | — d d d
== N L AAOLE
< [ 1dllecayvs(2) dz = [d] 1o,

|d * vs[rre(a) < |d] 1e(a)-

* Observe that y5 € C*°(R" \ {0}) and y; converges smoothly over Q to the identity
as 6 \ 0. Using these facts, Definition 2.6(i), and the previous item, we can show
devseC?(R"~{0})andd ®vs > dinL'(Q)asd \ 0.

Fix any x € R"” and p € (0, 00). By Definition 2.6 we can check that

This verifies

ys(€Q) = Bi-5(0) N B1(0) and ys(B,(x)) S B(1ss6)p (y5(2))-

Using this together with Definition 2.6(i), ys as a change of variables, & € (0, é),
a € (0,1), and the previous item, we compute

1 1
d®vy(y)|dy =—— f d d
i Sy BNy = [ 00y

1
— d d
pn-l+e ~[QﬂBz,,(y5(x)) | *V5(y)| y

2" ey < 2 [d] o).

We conclude that ||d @ vs || p1e(q) < 2"[d] rre(q)-
* Observe that y5: Q — (B;_5(0) ~ B1,5(0)) is invertible, with

Vs € C°°(Bl_5(0) N B%M(O);a);
since y4 converges smoothly over Q to the identity as § « 0, we conclude that
1 ifj=i,
Di(e; -yt
((Diei-v3")) o ys) — {0 o

uniformly over Q as § \ 0foreachi, je {l,...,n}. Using these facts, together with
Definition 2.6(ii) and the previous item applied to b’ ® v4 for each j € {1,...,n},
we can show b’ x v5 € C*(Q) and b’ * vs — b’ in L'(Q) as § \ 0 for each
ie{l,...,n}.

Next, using the definition of the C>* norm and Definition 2.6(ii), we compute
foreachie {1,...,n},

Hbi * V8Hc0,a(5) <

2 (DjCei-¥5)) 0 ysll comgamy 1 T¥6 ]l coe iy 1 (0 # v6) © V5 con iy -
j=1
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We also compute, again using the definition of the C%* norm,

[(b7 % vs) o ys Hco,n(ﬁ) <

max{l, sup M}HV*WHCM(

_ _ e By1_5(0)\B1,4(0))
x,y€Q,x4y |x )’| AL

for each j € {1,...,n}. Since ys(x) = (1-48)x + 307 for x € R” ~ {0}, we can

find C,.7 = C.7(n) € (0, 00) so that for each § € (0, 1), we have

_ lys(x) —ys(¥)|*
[(Djei¥5) © ¥l oy 1775 | coe ary max {1 sup ﬁ—y/}
x,y€Q,x#y X= y|

<Gy

for each i, j € {1,...,n}. These three calculations taken together imply

n
1" volcon @) < Caz Z; 1675 Vsl con BB,y 00)
Jj= 2

for each i € {1,...,n}. To conclude ||b" Vol coa@y € Co7Xja Hbj“co)a(ﬁ) as
needed, it therefore suffices to verify

Hb] * Vs ”Co’a(Bl_aS(O)\B%ﬂ;(O)) < Hb]Hco,u(a).

This follows from the fact that v € C2°(B;(0);[0, 00)) is a standard mollifier and
the definitions of the convolution and the C®% norm. For example, given x, y €

By1-5(0) \ B1,5(0), we can compute

16 % vs(x) = b % vs(y)| < f b/ (x +82) - bi(y + 82)|v(2) dz
< e = 7116 | cre -

We leave the details to the reader and conclude the required estimate
. n .
”bl * VBH(;O,«(E) < C2‘7 Z Hb] HCO,&(E)
=1

foreachie{l,...,n}.

Next, consider (ii). Proving that {b' « vs iy, d ® v are weakly non-positive over

Q) is done in two steps. First, we check using the definition of the convolution that
{b" * vs}iL,, d  vs are weakly non-positive over Bi_5(0)  B1,5(0); we leave this to
the reader. Second, using

y5:Q —> B1_5(0) ~ B1,5(0)
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as a change of variables, we can check that for { € Ci (€3]0,00))

f(d ®vs)( - Zn:(bi *v5)D;(dx

i=1

= [@ev) o) = 2 (0 e va)(Dy(er v (DL 073') d

i,j=1
= [ (@evs)(Coyi) = (b 5 v)Dy(Co 77" dx <0,
=
since {b7 * Vs } > d * vs are weakly non-positive over By_s(0) \ B1,5(0). [ |

3 Estimate and Existence Lemmas

In this section we prove the necessary a priori gradient estimate, existence, and weak
maximum principle results needed to prove Theorem 4.1.

Lemma 3.1 (Morrey estimate) Suppose A, ] € (0,00), a € (0,1), and let QO = B;(0) ~
B% (0). There is C31 = C31(n, A, J, a) € (0, 00) such that if

(i) a",b'eC®*(Q)andc',deL"(Q)fori,je{l,...,n},

(ii) {a"j}:.’,j:1 are uniformly elliptic over Q with respect to A,

(iii) Z?,j Hainco,a(ﬁ) + Y ( Hbi”co,a(ﬁ) + ”Ci”Ll’“(Q)) + HdHLW(Q) <

and if u € C4*(Q) is a weak solution over Q of the equation

n n n
Di(a’Dju+b'u)+ ) c'Diu+du=g+Yy Dif

1 i=1 i=1

i,j

with g € L"*(Q) and f € C**(Q), then
il gty < Coa (Il + Iglisecey * 35 1f lenegn)-
i-1

Proof This is [19, Theorem 5.5.5'(b)] (with u,G,e, f replaced respectively by
@, Q, {f'}1,, ). The C"*-conditions (that is, the “C),-conditions” as stated in [19,
Definition 5.5.2]) are implied by (i). To see the dependence C3; = Cs1(n,A, ], «)
more clearly, cf. [19, Theorem 5.5.2(b)]. [ |

Next, we state for convenience the more general version of [8, Theorem 8.16], using
the remark on [8, p. 193].

Lemma 3.2 (Weak maximum principle) Suppose g > n and A, k € (0, o0). Denote
Q = B(0) ~ B, (0). There is C3 5 = C32(n,q, A, k) € (0, 0) so that if

() a'leL=(Q),b,ci e LI(Q) fori,je{l,...,n}andd e L1(Q),

(ii) {a"j};?’jzl are uniformly elliptic over Q with respect to A,

(iii) {b'}",,d are weakly non-positive over Q,

(iv) Xy ( HbiHLq(n) + ”Ci”Lq(Q)) +|d] 4

L2(Q) <k,
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and ifu € C(Q) n W*2(Q) is a solution over Q) of the equation

D,-(aiiju +blu) + ZciD,-u +du<g+ ZD,-fi

n
i,j=1 i=1 i=1

with g € L1 (Q) and f* € L1(Q) foreach i € {1,...,n}, then

n
infou> infmin{0,uk = Cua Il 1 g, + 21 lsen )

We use Lemmas 3.1 and 3.2 to show we can solve linear divergence form equa-
tions with lower-order terms in a Morrey space. This will allow us to get the barrier
functions in step 2 of the proof of Theorem 4.1.

Lemma 3.3 Supposeq > nand A € (0, 00). Denote o = l—g and Q = B;1(0) \m.
Also suppose we have functions
(i) a",b'eC™(Q),c"eL1(Q) fori,je{l,...,n} andd € L3 (Q) nL"*(Q),
(ii) {a"}} ., are uniformly elliptic over Q with respect to A,
(iil) {b'}",,d are weakly non-positive over Q.
Then there is a ¢ € C*(Q) that is a weak solution over Q of the equation
D;(a’D;p +b'g) + ic’Dgp +dp=0
i=1

n
i,j=1
with

o(x) = {O Jor x ¢ 9B (0), and ¢(x) € [-1,0] for each x € Q.

-1 forxe 09B1(0),

Proof We follow the proof of [8, Theorem 8.34, p. 211] and use it directly.
Define for § € (0, ;) and each i € {1,...,n}

(3.1) bé:b"*vtg, cg:ci*v(;, ds=d®vs

by Definition 2.6. Now consider the weakly defined operator over Q,

n n
Lsu= Y Dij(a’Dju+bsu)+> csDiu+dsu.
i,j=1 i=1
Then (i),(ii),(iii), (3.1), and Lemma 2.7 imply that L satisfies [8, (8.5),(8.8),(8.85)] over
Q, with

K= 3 1a%] e *+ 3 (155l conca + lebliegay) + 1dsli=(ay-
i,j=1 i=1
We can thus apply [8, Theorem 8.34] (with b',c’,d, g, f' replaced respectively by

b, s, ds,0,0) over Q = B;(0) By (0) with operator Ls to conclude that the gener-
alized Dirichlet problem

0  over dB;(0),

Lsu=0inQ), wu-=
® {—1 over dB1(0),
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is uniquely solvable in C"%(Q). Letting 5 € C*(Q) be this unique solution, and
comparing [8, (8.2)] with Definition 2.3, we conclude that ¢ is a weak solution over
Q of the equation
n n

Di(a"Djps + bsps) + Z csDips +dsps =0
- i=1

i,j

0
with ¢s(x) = { )

1
(3.2)
for x € 9B;(0),

for x € 0B, (0).
We also apply Lemma 3.2 (with f*, g = 0 foreachi € {1,...,n}) to get
(3.3) ¢5(x) € [-1,0] for each x € Q.

Next, we aim to apply Lemma 3.1 to ¢;. By (i), (3.1), Remark 2.2, and Lemma 2.7
we can conclude that

1 lcsuqy + 3 (1ohlcneqy * Ieblisecey) + 1dslisecan <
1,]= i=

where, with C,; = C;7(n) by Lemma 2.7, we let
J= z HainCOv“(ﬁ) + Z ( C2,7||bi|\co,a(5) + \\ci|\Ll,a(Q)) +2"|d pre(a).-
i i=1

Thus, by (3.2), Lemma 3.1, and (3.3), we conclude that
los| cra(@) < Csialgslria) < Coawn,

where C31 = C31(n, 14, J,a) € (0, 00) do§not depend on §. B
We conclude that there is ¢ € C>*(Q) so that g5 — ¢ in the C'(Q)-norm as
0 N 0. Lemma 2.7(i) and (3.2),(3.3) imply that ¢ is the desired solution. [ |

4 The Hopf Boundary Point Lemma
We are now ready to state and prove our main result.

Theorem 4.1 (Hopf boundary point lemma) Suppose g > n and A € (0, 00). With

a=1- g, suppose

(i) a'l, b e CO*(By(0)), ¢’ € L(By(0)) fori,je {1,...,n} and d e L7 (B,(0)) n
L"*(By(0)),

(ii) {a"}} ., are uniformly elliptic over By(0) with respect to A,

(iil) {b'}",,d are weakly non-positive over B;(0),

(iv) a'i(-e,) =a’'(~ey,) foreachi,je{l,...,n}.

Ifu e C(B1(0)) n WH2(B,(0)) is a weak solution over By(0) to the equation

n n
Di(a"Dju+b'u)+> ¢'Diu+du<0
ihje1 izl

and u(x) > u(—e,) = 0 for all x € By(0), then liminf}, o W > 0.
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Proof Set O = By(0) \ B1(0), and using (i) define ], k, K € (0,00) by

7= 10l cnuay + 2 (18l cneay + ¢/ Ly + Idliiagays
Jj i=1

™M= ¢

i
(41) l(nb liscoy + e’ Liagay) + 141, g -

\M=

Ha HCM(Q)"'Z(HZJ lLaca) + € zaey) + 14l 1 g3

note that we used Remark 2.2 to conclude ¢’ € L*(Q). The proof now proceeds
through five major steps.

Step 1: Freezing at the origin and the barrier ¢.
Consider the operator L given by

Lu= Y a"(-e,)Djju over Q.
i,j=1
Then (i),(ii), and (iv) imply that L satisfies [8, (6.1),(6.2)]. Applying [8, Theorem 6.14]
(with a’/, b’, ¢, f replaced respectively by a’/(-e,),0,0,0)) over Q = B;(0) \ B1(0)
with operator L, we conclude that the Dirichlet problem

) 0  over dB;(0),
Lu=0inQ, u-=
-1 over dB; (0),

has a unique solution lying in C**(Q). If we let ¢ € C**(Q) be this unique solution,
we conclude that ¢ satisfies

n

0
(4.2) > aij(—eq)Dijo =0over Q@ with ¢(x) = { )
i\j=1 -

for x € 9B;(0),
for x € 9B (0).

Using (i),(ii), and (iv) again, we see L satisfies [8, (3.1),(3.2),(3.3)]. Thus, the strong
maximum principle (see [8, Theorem 3.5]) (with a’/, b’, ¢, f replaced respectively by
a'i(-e,),0,0,0), implies ¢(x) € (-1,0) for all x € Q. This now means that the clas-
sical Hopf boundary point lemma (see [8, Lemma 3.4]) (with xo, al bt e, f replaced
respectively by —e,, a’/(-e,),0,0,0) implies D, ¢(-e,) < 0.

Step 2: Scaling and the barrier ¢..
For eache € (0,%) and i,j € {1,...,n}, define (over Q or Q)

ue(x) =u(e(x +e,) —ey),
(4.3) al(x) = a¥(e(x+en) —en), bl(x)=eb (e(x+en)—en),
ci(x) =ec’(e(x +en) —e), de(x)=e*d(e(x +e,) —ey).
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Observe that (using the change of variables y = ex and Definition 2.1)

Haé] Hco,a(ﬁ) < ”aij”co,a(ﬁ)’

wy  Ploe@seWlonay Il <,
HCéHLLa(Q) <e” HCi lzre(a)s Hcé lracay < €” HciHL‘i(Q)’
el < & Wdlsmay el g g <1l g g

foreach i,j € {1,...,n}, since € € (0, ;) implies {e(x + e,) — e, : x € Q} ¢ Q. As
well, we have by (ii) and (iii),
{a} are uniformly elliptic over Q with respect to A,

(4.5) .
{b.}1,, d. are weakly non-positive over Q.

Using (4.4) and (4.5) we conclude by Lemma 3.3 that for each ¢ € (0, i) there is
@e € C%(Q) that is a weak solution over Q of the equation

(4.6) Z Di(aéij(pe + bé(pe) + Z c;'D,-<pE +dep.=0

ij=1 i=1

with ¢claq = ¢laa  and ¢, € [-1,0] for each x € Q.

Step 3: Comparing ¢ and ¢..
Define the functions
(4.7) ge=->.cDip—dep and fi=->( all - aéj(—en)) Djp-blg
i=1 =1
fori e {1,...,n}. Then (4.2), (4.6), and (4.7) imply that y. = ¢. — ¢ € C**(Q) is a
weak solution over Q of the equation

(4.8)

n
i,j=

Di(adDjye +biye) + Y ciDiye + deye = ge + », D f!
1 i=1 i=1
with l{/€|ag =0.
We wish to apply Lemma 3.1 to y,. Before we do so, we will use Lemma 3.2 to
estimate || 11(q). For this, we make the following three computations.
First, by (4.4), € € (0, i), a=1- % > 0, and with k as in (4.1),

Z (16l Laga)y + lcelLacay) + HdeHLg(Q) <k.

i=1

Second, using (4.7), ¢ € C>*(Q) by (4.2), Holder’s inequality, and (4.4),
Igel ooy < Iglcray (2 leilzancay + Idel o)

a 1 i a
< oleray ( X @l |aay + € 1d] Loy )

n
2|
i=1
n
e
i=1
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Third, we similarly compute for each i € {1,..., n} using (4.7), (4.3), and (4.4),

£ sy < Dolleria (Y @i lad - al (=en)lcqay + Ibilacay )
j=1
n / i
<lgloray( X e 2@l a7 cou ) + €16 L aqey )
j=1

These three computations together with (4.8) imply that we can apply Lemma 3.2
(with u = y,, —y,) to conclude

n .
sup yel <Caa( Igel ooy + 2 1feurcon)
<C a 1/qy i Zad
32”‘/’”0(9)(26 0l e | aay + € d] Loy

+ Cualolao( ¥ 2% ‘/qna”nw(m@e 16 o)
1] 1

<e€ C32max{2‘x )1}H¢HC1(Q)K

where C; 5 = C5,(n, 9,4, k) and k, K as in (4.1) do not depend on €. Thus

o a +%
(4.9) ”V’e”L‘(Q) <€ C3.2max{2 Wy q,wn}Hgl)Hcl(Q)K.

Now we shall use Lemma 3.1. For this we make three computations.
First, using (4.4), € € (0, i), a=1- g > 0, and with J as in (4.1),

3 ot lneqa + z (16 oy + il zreacay) + Idelacay < 7.
i,j=

Second, using Definition 2.1, (4.7), and (4.4), we compute
n

Igelecay <lgloray( D Ielliaca + ldelzrecay)
1

n

<Iplera( D eIl mecay + €] acay ) -
i=1
Third, for each i € {1,..., n} using (4.3) and (4.4), we compute

n
erl”co,a(ﬁ) 5H§0Hc1,a(5)( Z ||a€ - “e]( en)ch(Q) (12 ch(g))

=1

-

SHS"Hcl,a(ﬁ)( Zea Hainco,u(ﬁ) +e*[b’ Hco.u(ﬁ)) :

)

~

https://doi.org/10.4153/CMB-2017-074-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2017-074-6

Generalizing Hopf's Boundary Point Lemma 195

These three computations, (4.8), Lemma 3.1, and (4.9) imply that
el cuncary < Coa (el ay + Igelecay + X 1 oy )
i=1
1+1
<e%C31Cs, maX{Z‘an 1, w,,}|| (p” CI(Q)K

n
+Coalgloray( X ele ey + € ldl peay)
i=1
n

+ C3.1 HQDHCM(E) ( Z

n
€107 couay + 2. €16 concar )
i,j=1 i=1

o o
<e€ C3_1C3_2max{2 wy ,wn}||¢||cl(Q)K

+€e%Cs, H (PH Cl,a(a)]a

where C;; = C51(n, 1, J, «) and J as in (4.1) do not depend on €. Recalling that C; , =
Cs2(n,q, A, k) and k, K as in (4.1) do not depend on ¢; then

(4.10) EE% IDp¢e(—€n) = Dng(—en)| < ?i% ”V/eucl,a(ﬁ) =0.
Step 4: Fixing € and comparing u, and ¢..

By Step 1 and (4.10), we can fix € € (0, 1) so that
(4.11) D,pc(-e,) <0.

Recalling u € C(B,(0)) with u(x) > u(—e,) = 0 for x € B;(0), we can define i, €
C(Q) n Wh(Q) by

(4.12) ile = (ue + Ocp) with 0, = aBir;(fo) ue > 0.

Observe by (4.3) that u, is a weak solution over Q of the equation
n . . no

Di(adDjue +blue) + Y ciDiue + deue < 0.
i,j=1 i=1

Then (4.2), (4.6), and (4.12) imply . is a weak solution over Q of the equation

n .. . n .

> Di(ad Djie + blile) + Y ctDitie + deitle < 0 with #le[pq > 0.
ij=1 i=1

We conclude by Lemma 3.2 that inf, %, > 0.

Step 5: Computing the derivative of u at the origin.
Using (4.3), (4.11), (4.12), and inf i > 0, we conclude that

(h-Den) el -Den)

hr}?\l(l)lf h B0 h
.. _QE‘PG((% ~1e,) -0,
> hrhn\lgf p = D,pc(-e,)>0. W
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It is typical to make some remarks relaxing some of the assumptions on the co-
efficients in certain cases; see, for example, [20, Remark 1.2(b)]. We make two more
similar remarks.

Remark 4.2 We can relax some of the assumptions of Theorem 4.1.
(i) We need not assume o =1— g; it merely suffices that

a'l b e C*%(B1(0)), ¢ eLi(B;(0)), deL?(By(0))nL"(By(0))

with g > n and general « € (0,1).
(ii) We can more generally assume u(—e,) < 0. We can see this by setting #i(x) =
u(x) — u(—e,) for x € Q, and noting that for { € C1(Q;[0, 00)),

f Z a''D;iD;{ + Z (b'aD;{ - ¢(Dih){) — dirl dx

i,j=1 i=1

:/ Zn: aiijuDi(+Zn:(biuDiC—ci(Diu)C)—du(dx

i,j=1 i=1
Fu(=ey) f A0~ 3 b'D,¢dx >0,
i=1
since {b; }1",, d are weakly non-positive over Q.
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