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Homogeneous Einstein Manifolds with
Vanishing S Curvature

Libing Huang and Zhongmin Shen

Abstract. InûnitelymanynewEinsteinFinslermetrics are constructedon several homogeneous spaces.
By imposing certain conditions on the homogeneous spaces, it is shown that the Ricci constant con-
dition becomes an ordinary diòerential equation. he regular solutions of this equation lead to a two
parameter family of Einstein Finsler metrics with vanishing S curvature.

1 Introduction

Einstein metrics play an important role in Riemannian geometry and general relativ-
ity. In some sense, they are the best metrics, because they are the critical points of the
scalar curvature functional [4]. Akbar-Zadeh [1] generalizes this beautiful property to
Finsler geometry. Since then, the construction of new Einstein manifolds has become
a signiûcant theme in Finsler geometry.

he ûrst set of examples are those Finsler manifolds with constant �ag curvature.
A striking phenomenon is the abundance of such metrics. R. Bryant [6] constructs
an n-parameter family of Finsler metrics on the n dimensional sphere with constant
�ag curvature +1. Bao, Robles, and Shen [3] show that there exist inûnitely many
non-isometric Randers metrics on spheres, whose �ag curvatures are all +1. Using
the same technique, one can construct many Einstein Randers metrics on spheres.
Moreover, Wang, Huang, and Deng [11] observed that, among these metrics in odd
dimensions there is a 1-parameter family admitting a transitive group of isometries.
Hence, the number of non-homothetic homogeneous Einstein Finsler metrics on the
sphere could be inûnite. In contrast, it is conjectured by Böhm, Wang, and Ziller
[5] that there are only ûnitely many homogeneous Einstein Riemannian metrics on
compact coset space whose isotropy representation consists of pairwise inequivalent
irreducible summands.

Up to now, the known examples of homogeneous Einstein Finsler metrics are rare,
andmost of them are of Randers type; see, for example, [11, 12]. In this paper, we will
construct a new class of Finslermetrics on some homogeneous spaces that depend on
a one-variable function ϕ. his construction generalizes the Cheeger deformation in
Riemannian geometry and seems suitable for further study.
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Now we brie�y describe the construction as follows. Let π ∶ (M , g) → (B, ğ) be a
Riemannian submersion with totally geodesic ûbers. Each tangent space TxM has a
subspace ker π∗x that is tangent to the ûber; thus, every tangent vector y in TxM can
be decomposed to y0 + y1, where y1 ∈ ker π∗x and y0 ∈ (ker π∗x)⊥. Deûne a Finsler
metric F on M by letting

F(y)2 = g(y, y) ⋅ ϕ(s), s = g(y1 , y1)
g(y, y) ,

where the function ϕ ∶ [0, 1] → R+ will satisfy some open conditions (see (2.4)). If
ϕ(s) = 1 + єs for some constant є > −1, then the resulting metric F is just the Cheeger
deformation of the original metric g.
An important class ofRiemannian submersions is given by π ∶ G/H → G/K,where

G is a Lie group and H, K are compact subgroups of G with H ⊂ K. One can consult
[4, §9.79–§9.93] for concrete examples. hemain result of this paper can be roughly
stated as the following theorem.

heorem If the groups G, K, H satisfy conditions (I) and (II) in Section 2.1, then the

above Finsler metric F on G/H is Einstein if and only if the function ϕ satisûes a second

order ODE.

hemain technique used in this paper is the curvature formula introduced by the
ûrst author in [7]. On a homogeneous space G/H with Finsler metric F, this formula
allows one to compute the curvatures at theLie algebra level. Denote by g and h theLie
algebras ofG andH, respectively. Letm be a subspace of g complementary to h. hen
the metric F is simply aMinkowski norm on m. Let D be the trivial �at connection
onm; then D(d(F2/2)), theHessian of F2/2, deûnes aRiemannianmetric onm/{0}.
Traditionally, this metric is also deûned by

gy(u, v) =
1
2

∂2

∂s∂t
(y + su + tv)∣

s=t=0
, u, v ∈ m ≃ Ty(m/{0}), y ∈ m/{0}.

For each y in m/{0}, the spray vector η at y is uniquely determined by the relation

gy(η, v) = gy(y, [v , y]m), v ∈ m.

he connection operator N at y is deûned by

Nv = 1
2
Dvη −

1
2
[y, v]m , v ∈ m.

By using the spray vector and the connection operator, one can compute the Ricci
curvature via the following formula (cf. [7, Corollary 4.9]):

Ric(y) = − tr(ad(y) adh(y)) + Dη(trN) − tr(N2), y ∈ m/{0}.

he Finslermetric F is said to beRicci constant (Einstein for short) if there is a constant
number κ such that Ric(y) = κF2(y) holds for any y in m/{0}.

It shouldbenoted that there are several versions ofRicci curvature inFinsler geom-
etry. For example, Li and Shen [10] introduced a version that shares many properties
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with its Riemannian counterpart. It is deûned via Berwald connection as a contrac-
tion of the hh-curvature tensor

Rici j = R i
m

m j .

he Finsler metric F is said to be of isotropic Ricci curvature if Rici j = (n − 1)κ(x)g i j
for some scalar function κ. In Riemannian geometry, Schur’s lemma asserted that in
dimensions greater than two, having isotropicRicci curvature implies that it is actually
constant. Up to now, it is not known whether Schur’s lemma holds for any version
of Ricci curvature tensor in Finsler geometry. However, it is proved in [10] that if
the non-Riemannian quantity χ vanishes, the above-mentioned two versions of Ricci
curvature coincide. We will show that our constructions naturally have vanishing S

curvature, and thus χ = 0. Consequently, these examples are Ricci constant for any
version of Ricci curvature tensor.

he paper is arranged as follows. In Section 2, we introduce conditions (I) and (II)
and give a detailed deduction of the Ricci curvature, which turns out to depend only
on the function ϕ and its derivatives. In Section 3, we present several examples that
satisfy conditions (I) and (II), thus leading to inûnitelymany new Einstein manifolds.

2 Computation of the Ricci Curvature

Let G/H be a compact homogeneous space, where G is a compact semi-simple Lie
group with Lie algebra g, and H is a closed connected subgroup with Lie algebra h.
Let Q be a negativemultiple of the Killing form of g; namely, the equality

Q(u, v) = − 1
c2

tr (ad(u) ad(v)) , u, v ∈ g

holds for some positive constant c2. henQ is anAd(G) invariant inner product on g.
Consequently, we have

(2.1) Q([u, v],w) + Q(v , [u,w]) = 0, u, v ,w ∈ g.
Letm be the orthogonal complement of h in g. he above equality implies that [h,m]
is orthogonal to h, thus [h,m] ⊂ m.

2.1 Conditions (I) and (II)

We say that the pair (G ,H) satisûes condition (I) if
(1) m = m0 +m1 is an orthogonal decomposition with respect to Q, where the sub-

spaces m0,m1 are Ad(H) invariant, namely, [h,mk] ⊂ mk , k = 1, 2;
(2) [m0 ,m1] ⊂ m0, [m0 ,m0] ⊂ h +m1, [m1 ,m1] ⊂ h +m1.
Condition (I) implies that k = h+m1 is a Lie subalgebra of g and (g, k) is a symmetric
pair. Below we will always assume that (G ,H) satisûes condition (I).

We say that the pair (G ,H) satisûes condition (II) if the following hold:
(3) here is a constant c such that

Q([y0 , y1], [y0 , y1]) = c ⋅ Q(y0 , y0)Q(y1 , y1),
for any y in m.

527

https://doi.org/10.4153/S0008439519000067 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439519000067


L. Huang and Z. Shen

(4) here are constants c0, c1 such that

− trh (adh(y) ad(y)) = c0Q(y0 , y0) + c1Q(y1 , y1),
for any y in m.

Here and a�er, we use y0, y1 to denote the m0, m1 component of y ∈ m, respectively.
Let {e i} and {eα} be orthonormal basis of m0 and m1, respectively. For each y in m,
deûne

(2.2)
A0 =∑

α
Q([y0 , eα], [y0 , eα]) ,

A1 =∑
i

Q([y1 , e i], [y1 , e i]) .

It is easy to see that condition (3) implies that

A0 = cn1Q(y0 , y0), A1 = cn0Q(y1 , y1),
where n1 = dim(m1) and n0 = dim(m0).

Remark Condition (4) is not restrictive. It will automatically hold if m0, m1 are
ad(h)-irreducible. In that case c0, c1 are closely related to theCasimir constants. How-
ever, condition (3) is really restrictive.

2.2 The Finsler Metric and its Spray Vector

We will ûrst consider homogeneous spaces satisfying condition (I). For such spaces,
one can deûne a function F on m/{0} by letting

(2.3) F(y)2 = Q(y, y) ⋅ ϕ(s), s = Q(y1 , y1)/Q(y, y), y ∈ m/{0},
where ϕ is a positively valued function deûned on [0, 1].

Lemma 2.1 he above F is aMinkowski norm if and only if the function ϕ satisûes

the following regularity conditions

(2.4)
ϕ + (1 − s)ϕ′ > 0, 2ϕ + (1 − 2s)ϕ′ + 2s(1 − s)ϕ′′ > 0,

ϕ − sϕ
′ > 0, (ϕ − sϕ

′)(ϕ + (1 − s)ϕ′) + 2s(1 − s)ϕϕ′′ > 0.

Moreover, F is an Euclidean norm if and only if ϕ(s) = a + bs, where the constants a

and b satisfy a > 0 and a + b > 0.

Proof Let {e i} and {eα} be Q-orthonormal basis of m0 and m1, respectively. hen
wemay write y0 = y i e i and y1 = yα eα for y ∈ m. he function F(y) is now a positively
valued function of {y i , yα} and it is homogeneous of degree 1. Direct computation
shows that theHessian matrix of F2/2 is given by

Θ =
⎡⎢⎢⎢⎣
(ϕ − sϕ′)δ i j + 2s2ϕ′′ l i l j −2s(1 − s)ϕ′′ l i lβ

−2s(1 − s)ϕ′′ lα l j (ϕ + (1 − s)ϕ′)δαβ + 2(1 − s)2ϕ′′ lα lβ

⎤⎥⎥⎥⎦
,

where l i = y iQ(y, y)−1/2 and lα = yαQ(y, y)−1/2.
We ûrst consider the case s ≠ 0, 1. In this case y0 ≠ 0 and y1 ≠ 0. It is easy to see

that the orthogonal complement of y0 in m0 lies in the eigenspace of Θ with eigen-
value (ϕ−sϕ′). hus, themultiplicity of (ϕ−sϕ′) is at least n0−1. Similarly, ϕ+(1−s)ϕ′
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is an eigenvalue with multiplicity at least n1 − 1. Now let ζ, λ be a solution of the
system

λ = (ϕ − sϕ
′) + 2s2(1 − s)ϕ′′ ⋅ (1 − ζ)

= ϕ + (1 − s)ϕ′ + 2s(1 − s)2
ϕ
′′ ⋅ (1 − 1/ζ).

hen λ is a root of the following quadratic equation

(2.5) λ
2 − (2ϕ + (1 − 2s)ϕ′ + 2s(1 − s)ϕ′′) λ

+ (ϕ − sϕ
′)(ϕ + (1 − s)ϕ′) + 2s(1 − s)ϕϕ′′ = 0.

It is straightforward to check that y0 + ζ y1 is an eigenvector of Θ with eigenvalue λ.
Since the discriminant of the above equation is

(2s(1 − s)ϕ′′ + (1 − 2s)ϕ′) 2 + 4s(1 − s)(ϕ′)2 ≥ 0,

the two real solutions of (2.5) are the remaining eigenvalues of Θ. In this way we
have found all the eigenvalues of Θ. By continuity, the eigenvalues have the same
expressions when s = 0 or 1.

Recall that F is aMinkowski norm if and only if Θ is positive deûnite, if and only
if all its eigenvalues are positive. hus, the ûrst assertion is proved.

In addition, F is Euclidean if and only if theHessianmatrixΘ is a constant matrix.
Looking at the upper right corner shows that this can happen if and only if ϕ′′ = 0.
So the second assertion is also proved. ∎

For each v in m, we have Dv y = v, Dv y1 = v1, thus

Dv(Q(y, y)) = 2Q(y, v), Dv(Q(y1 , y1)) = 2Q(y1 , v1).
Direct diòerentiation yields

(2.6) Dv s = ξ ⋅ (Q(y1 , v1) − sQ(y, v)) ,
where ξ = 2/Q(y, y). By using (2.6), we have

(2.7) gy(y, v) = Dv(F2/2) = (ϕ − sϕ
′)Q(y, v) + ϕ

′ ⋅ Q(y1 , v1).
Further diòerentiation yields

(2.8)
gy(v ,w) = DwDv(F2/2) = (ϕ − sϕ

′)Q(v ,w) + ϕ
′ ⋅ Q(v1 ,w1)

+ ξϕ
′′ ⋅ (Q(y1 , v1) − sQ(y, v))(Q(y1 ,w1) − sQ(y,w)) .

Lemma 2.2 If the homogeneous space G/H satisûes condition (I) and the Finsler

metric is given by (2.3), then the spray vector at y has the expression η = ψ ⋅ [y0 , y1],
where ψ = ϕ′/(ϕ − sϕ′).

Proof We only need to check that the above η satisûes gy(v , η) = gy(y, [v , y]m), for
any v inm. Notice that since [m0 ,m1] ⊂ m0,we have η ∈ m0; so η1 = 0. Consequently,

Q(y1 , η1) − sQ(y, η) = −sψQ(y, [y0 , y1]) = −sψQ(y0 , [y0 , y1]) = 0,

where in the last equality we have used (2.1). By using (2.8) we have

gy(v , η) = (ϕ − sϕ
′)Q(v , η) = ϕ

′ ⋅ Q(v , [y0 , y1]) .
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By using (2.7), we have

gy(y, [v , y]m) = (ϕ − sϕ
′)Q(y, [v , y]m) + ϕ

′ ⋅ Q(y1 , [v , y]m1) = ϕ
′ ⋅ Q(y1 , [v , y])

= ϕ
′ ⋅ Q(v , [y, y1]) = ϕ

′ ⋅ Q(v , [y0 , y1]) .
It is clear that gy(y, [v , y]m) = gy(v , η). So the lemma is proved. ∎

2.3 The S Curvature

Recall that the connection operator N is deûned by N = 1
2Dη −

1
2 adm(y) and is

related to the S curvature via S = tr(N) + tr adm(y). Since G is compact, we have
tr adm(y) = 0, so S = tr(N) = 1

2 tr(Dη).
For each v in m, we have

(2.9) Dvη = Dvψ ⋅ [y0 , y1] + ψ ⋅ [v0 , y1] + ψ ⋅ [y0 , v1].
It is readily seen that Dvη always belongs to m0. When v belongs to m0, we have

Dvψ = ψ
′ ⋅ Dv s = −sξψ′ ⋅ Q(y, v) = −sξψ′ ⋅ Q(y0 , v).

Hence, when v belongs to m0, equation (2.9) can be written as

(2.10) Dvη = −sξψ′Q(y0 , v) ⋅ [y0 , y1] + ψ ⋅ [v , y1].
Now, let {e i} be a basis of m0 and let {eα} be a basis of m1, such that they consist

an orthonormal basis ofm with respect to Q. Using (2.10), we have

tr(Dη) =∑
i

Q(e i ,De i η) +∑
α

Q(eα ,Deαη) =∑
i

Q(e i ,De i η)

=∑
i

Q(e i , −sξψ′ Q(y0 , e i) ⋅ [y0 , y1] + ψ ⋅ [e i , y1])

=∑
i
−sξψ′Q(y0 , e i)Q(e i , [y0 , y1])

= −sξψ′Q(y0 , [y0 , y1]) = 0.

So we have proved the following proposition.

Proposition 2.3 If the homogeneous spaceG/H satisûes condition (I) and the Finsler

metric is given by (2.3), then the S curvature vanishes identically, regardless of the func-

tion ϕ.

2.4 The Ricci Curvature

Now we proceed to compute the Ricci curvature. Since S curvature vanishes, Ricci
curvature has the simple expression

Ric = − trm (ad(y) adh(y)) − tr(N2)

= − trm (ad(y) adh(y)) −
1
4

tr (adm(y) ○ adm(y))

− 1
4

tr(Dη ○ Dη) + 1
2
tr (Dη ○ adm(y)) .
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On the right-hand side, the ûrst two terms do not involve the metric F, but the last
two terms do. We will treat the last two terms separately.

Lemma 2.4 We have

tr(Dη ○ Dη) = 2sξψψ
′ ⋅ Q([y0 , y1], [y0 , y1]) − ψ

2 ⋅ A1 ,

where A1 is the quantity deûned in (2.2).

Proof For each v inm, the vector Dvη belongs tom0. It follows that Dη ○ Dηmaps
m into m0. We only need to consider the trace of Dη ○ Dη on the subspace m0. For
each v in m0, we have from (2.10) that

Q(y,Dvη) = Q(y0 ,Dvη) = Q(y0 , −sξψ′Q(y0 , v) ⋅ [y0 , y1] + ψ ⋅ [v , y1])
= ψ ⋅ Q(y0 , [v , y1]) = −ψ ⋅ Q(v , [y0 , y1]) .

It follows that

DDv ηψ = ψ
′ ⋅ DDv ηs = −sξψ′Q(y,Dvη) = sξψψ

′
Q(v , [y0 , y1]).

By using this fact we obtain

DDv ηη = DDv ηψ ⋅ [y0 , y1] + ψ ⋅ [Dvη, y1]
= sξψψ

′
Q(v , [y0 , y1]) ⋅ [y0 , y1] + ψ ⋅ [Dvη, y1].

Let {e i} be anorthonormal basis ofm0 with respect toQ. Utilizing the above equation
yields

tr(Dη ○ Dη) =∑
i

Q(e i ,DDe i ηη)

=∑
i
sξψψ

′
Q(e i , [y0 , y1])Q(e i , [y0 , y1]) + ψ ⋅ Q(e i , [De i η, y1])

= sξψψ
′
Q([y0 , y1], [y0 , y1]) + ψ ⋅ (X1),

where

(X1) =∑
i

Q(e i , [De i η, y1]) =∑
i

Q(De i η, [y1 , e i])

=∑
i

Q(− sξψ
′
Q(y0 , e i) ⋅ [y0 , y1] + ψ ⋅ [e i , y1], [y1 , e i])

= −ψA1 +∑
i
−sξψ′Q(y0 , e i) ⋅ Q([y0 , y1], [y1 , e i])

= −ψA1 − sξψ
′∑

i
Q(y0 , e i)Q([[y0 , y1], y1], e i)

= −ψA1 − sξψ
′
Q(y0 , [[y0 , y1], y1])

= −ψA1 + sξψ
′
Q([y0 , y1], [y0 , y1]) .

Combining the above results completes the proof. ∎

Lemma 2.5 We have

tr (Dη ○ adm(y)) = −ξψ′ ⋅ Q([y0 , y1], [y0 , y1]) + ψ ⋅ A1 − ψ ⋅ A0 ,

where A0, A1 are deûned by (2.2).
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Proof For each v in m, we have

D[y ,v]s = ξ ⋅ (Q(y1 , [y, v]1) − sQ(y, [y, v]))
= ξQ(y1 , [y, v]1) = ξQ(y1 , [y, v])
= −ξQ(v , [y, y1]) = −ξQ(v , [y0 , y1]) .

It follows that

D[y ,v]η = ψ
′
D[y ,v]s ⋅ [y0 , y1] + ψ[[y, v]0 , y1] + ψ[y0 , [y, v]1]

= −ξψ′Q(v , [y0 , y1]) ⋅ [y0 , y1] + ψ[[y, v]0 , y1] + ψ[y0 , [y, v]1] .
Using the above equation, we have

tr (Dη ○ ad(y)) = −ξψ′ ⋅ (X2) + ψ ⋅ (X3) + ψ ⋅ (X4),
where

(X2) =∑
i

Q(e i , [y0 , y1])Q(e i , [y0 , y1]) = Q([y0 , y1], [y0 , y1]) ,

(X3) =∑
i

Q(e i , [[y, e i]0 , y1]) =∑
i

Q([y1 , e i], [y, e i]0)

=∑
i

Q([y1 , e i], [y, e i])

=∑
i

Q([y1 , e i], [y1 , e i]) = A1 ,

(X4) =∑
i

Q(e i , [y0 , [y, e i]1]) =∑
i

Q(e i , [y0 , [y0 , e i]1])

= trm0 (ad(y0) adm1(y0)) = trg (ad(y0) adm1(y0))
= trg (adm1(y0) ad(y0)) =∑

α
Q(eα , [y0 , [y0 , eα]])

=∑
α

Q([eα , y0], [y0 , eα]) = −A0 .

Notice that in the computation of (X3), we have used the fact that

∑
i

Q([y1 , e i], [y0 , e i]) = 0.

One can prove this fact by expanding Q(y0 , y1) = 0. hus, the lemma is proved by
plugging the above results. ∎

Combining the above lemmas yields the following proposition.

Proposition 2.6 If the homogeneous space G/H satisûes condtion (I) and the Finsler

metric F is given by (2.3), then the Ricci curvature satisûes

(2.11) Ric(y) = − trm (ad(y) adh(y)) −
1
4

trm (adm(y) adm(y))

− (sψ + 1)ψ′
Q(y, y) Q([y0 , y1], [y0 , y1]) + ( 1

4
ψ

2 + 1
2
ψ) ⋅ A1 −

1
2
ψ ⋅ A0 ,

where ψ = ϕ′/(ϕ − sϕ′) and A0, A1 are deûned by (2.2).
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2.5 The Main Theorem

Suppose further that the pair (G ,H) satisûes condition (II); thenwe can immediately
simplify the last three terms in the above curvature formula. Next we examine the
ûrst two trace terms.

Lemma 2.7 If the pair (G ,H) satisûes condition (II), then we have

− trm (ad(y) adh(y)) = c0Q(y0 , y0) + c1Q(y1 , y1).

Proof As an operator on g, the image of ad(y) adh(y) always lies in m. So we have

trm (ad(y) adh(y)) = trg (ad(y) adh(y))
= trg (adh(y) ad(y)) = trh (adh(y) ad(y)) .

Using condition (II) proves the lemma. ∎

Lemma 2.8 If the pair (G ,H) satisûes condition (II), then we have

− trm(adm(y) adm(y)) = c2Q(y, y) − 2c0Q(y0 , y0) − 2c1Q(y1 , y1).

Proof he image of adm(y) ad(y) lies in m, so we have on the one hand that

trm (adm(y) ad(y)) = trg (adm(y) ad(y)) = trg (ad(y) adm(y))
= trg (ad(y) ad(y)) − trg(ad(y) adh(y))
= −c2Q(y, y) − trm (ad(y) adh(y)) .

As operators on m, ad(y) adh(y) is the same as adm(y) adh(y), so we have on the
other hand that

trm (adm(y) ad(y)) = trm (adm(y) adm(y)) + trm (adm(y) adh(y))
= trm (adm(y) adm(y)) + trm (ad(y) adh(y)) .

Comparing the above two results yields

trm (adm(y) adm(y)) = −c2Q(y, y) − 2 trm (ad(y) adh(y)) .

Applying Lemma 2.7 completes the proof. ∎

he above lemmas allow us to rewrite the Ricci curvature formula (2.11) as

Ric(y) = 1
4
Q(y, y) ⋅ {c2 + 2c0(1 − s) + 2c1s − 4c(sψ + 1)ψ′s(1 − s)

+ (ψ2 + 2ψ)cn0s − 2ψcn1(1 − s)} .

hus, we have the following theorem.

heorem 2.9 Let G/H be a homogeneous space that satisûes the conditions (I) and
(II). Deûne a homogeneous Finsler metric F on G/H by (2.3). hen F is an Einstein
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metric if and only if the function ϕ satisûes the following ODE:

(2.12) κϕ = c2 + 2c0(1 − s) + 2c1s − 4c(sψ + 1)ψ′s(1 − s)
+ (ψ2 + 2ψ)cn0s − 2ψcn1(1 − s),

where κ is a constant real number and ψ = ϕ′/(ϕ − sϕ′). In this case, Ric = κF2/4.

At this point, wemake some comments on the regularity of the solutions. Let

∆ = (2c(n0 + n1) − 2c0 − c2)
2 − 8c(2n1 + n0)(c1 − c0).

It is easy to show that if ∆ ≥ 0, then equation (2.12) has solutions of the form
ϕ(s) = 1 + ks, where the coeõcient k is given by

k = 2c0 + c2 − 2c(n0 + n1) ±
√
∆

2c(2n1 + n0)
.

In this case, κ = −2ckn1 + c2 +2c0. Among the above two values of k, the bigger one is
always > −1, so the corresponding function ϕ satisûes the regularity conditions (2.4).
As a result, for each solution of theODE (2.12), if it is suõciently close to this special
solution 1 + ks (in L2 sense), then it is also regular. One can consult [8] for another
treatment on this issue. If ∆ < 0, thenwe are not able to obtain solutions of the speciûc
form 1 + ks, but it is still possible to obtain other regular solutions.

3 Examples

In this section we will present some examples to which the above theorem could be
applied. In the ûrst two examples, m1 is of dimension one, and the resulting Finsler
metrics are of (α, β) type. To see this,we ûrst note that the restriction of the quadratic
form Q on m1 is the square of a linear function β (which is dual to a unit vector in
m1); thus Q(y1 , y1) = β(y)2 and Q(y, y) = α(y)2, where α is the Euclidean norm
associated with Q. It follows that themetrics (2.3) can be expressed by a Riemannian
metric α and a one form β; thus, they are of (α, β) type. he other examples havem1
of dimension greater than one.

3.1 The Stiefel Manifold V2(Rn+2) = SO(n + 2)/SO(n)

Suppose n ≥ 2. Let G = SO(n + 2), H = SO(n), where H is embedded in G at the
upper le� corner. Let Q(u, v) = − tr(uv) for u, v in so(n + 2); then it is well known
that c2 = n. Deûne the subspaces m0,m1 as

m0 = {[ A
−At ] ∣ A ∈ Rn×2} and m1 = {[ 0

a J ] ∣ a ∈ R} ,
where J is a 2 × 2 anti-symmetric matrix whose right upper entry equals 1. One can
show that condition (I) is satisûed by direct matrix computation.

Now we will prove that condition (II) is also satisûed. For y0 in m0 and y1 in m1,
one can write

y0 = [ A
−At ] and y1 = [ 0

a J ].
We have

Q(y0 , y0) = 2 tr(AAt), Q(y1 , y1) = 2a2 .
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Moreover, since [y0 , y1] = [ aAJ
a JA′ ] and J2 = −I, we ûnd that

Q([y0 , y1], [y0 , y1]) = 2a2 tr(AAt) = 1
2
Q(y0 , y0)Q(y1 , y1),

so condition (3) is satisûedwith c = 1/2. Let y = y0+ y1 and h = diag(X , 0) ∈ h,where
X ∈ so(n). hen we have

− ad(y)(h) = [ XA
AtX ], − adh(y) ad(y)(h) = [ AA′X+XAA′ 0 ].

It is seen that the operator P = − adh(y) ad(y) maps X ∈ so(n) to AA′X + XAA′. Let
X i j = E i j − E ji , 1 ≤ i , j ≤ n, where E i j is thematrix whose (i , j) entry is 1 and all the
other entries are 0’s. hen {X i j ∣ 1 ≤ i < j ≤ n} is a basis of so(n). We have

PX i j =
n

∑
k=1
b jkX i k + bkiXk j ,

where b i j is the (i , j) entry of thematrix AA′. It follows that

tr(P) = ∑
1≤i< j≤n

(b j j + b i i) = (n − 1)
n

∑
i=1
b i i = (n − 1) tr(AA′).

So condition (4) is also satisûed with c0 = (n − 1)/2 and c1 = 0.
Notice that n0 = dim(m0) = 2n and n1 = dim(m1) = 1; it is straightforward to show

that ∆ = 4n2 and the ODE (2.12) has a special solution ϕ(s) = 1 + (n − 1)s/(n + 1).
his solution corresponds to aRiemannianmetric found byArvanitoyeorgos [2]. he
other linear solution ϕ(s) = 1 − s is not regular, according to Lemma 2.1. Since (2.12)
is of second order, we conclude that the regular solutions of (2.12) depend on two
parameters; namely, we obtain a two parameter family of regular (α, β) metrics on
the Stiefel manifold V2(Rn+2), n ≥ 2, with constant Ricci curvature and vanishing S

curvature. Due to thenonlinearityof theODE (2.12),we cannotûnd general solutions.
However, we can ûnd a one parameter family of special solutions:

ϕ(s) = (
√

1 + ( n − 1
n + 1

+ є2) s + є
√

s)
2
.

he corresponding metrics are of Randers type, a rather special type of Finsler
metrics.

3.2 The Sphere S2n+1 = SU(n + 1)/SU(n)

Here the embedding of SU(n) in SU(n + 1) is also at the upper le� corner. Let
Q(u, v) = − tr(uv) as above; then c2 = 2n+2. Deûne the subspacesm0,m1 as follows:

m0 = {[ α
−α∗ ] ∣ α ∈ Cn×1} and m1 = {[ aI −na ] ∣ a ∈ C, a + a = 0} .

hus, n0 = 2n and n1 = 1. By directmatrix computation, one can show that conditions
(I) and (II) are satisûed with

c = (n + 1)/n, c0 = (n − 1)/2, c1 = 0.

he ODE (2.12) has a special solution

ϕ(s) = 1
2
( 1 + n − 1

n + 1
s)
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with κ = 8n, which corresponds to the canonical Riemannian metric on S2n+1. hus,
we conclude that theODE (2.12) has other regular solutions aswell,which correspond
to non-Riemannian Finsler metrics. Notice that the other linear solution ϕ(s) = 1− s

is not regular according to Lemma 2.1.
his family of examples is also discussed in [12] via a diòerent method. Among

the solutions, there is a one parameter family of Randers metrics with constant �ag
curvature; see [11].

3.3 The Sphere S4n+3 = Sp(n + 1)/Sp(n)

Let G = Sp(n+ 1) andH = Sp(n), where the embedding ofH in G is at the upper le�
corner. We can choose Q(u, v) = − tr(uv), so c2 = 4n + 8. he subspace m0 consists
matrices of the form [ 0 ξ

−ξ∗ 0 ] andm1 consists matrices of the form [ a 0 ], where a is a
pure imaginary quaternion and ξ ∈ Hn . hus n0 = 4n and n1 = 3.
By direct matrix computation, one can show that conditions (I) and (II) are satis-

ûed with c = 1, c0 = 2n + 1, and c1 = 0. he ODE (2.12) has the following two special
solutions:

ϕ1(s) = 1 + s and ϕ2(s) = 1 − (2n + 1)s
2n + 3

.

he ûrst solution is homothetic to the standard Riemannian metric on S4n+3, and the
second one corresponds to the metric found by G. Jensen [9]. Due to the diõculty
in integrating the nonlinear ODE (2.12), we cannot ûnd other explicit solutions that
correspond to non-Riemannian metrics.

One can consult [8] for other descriptions of this family of examples.

3.4 The Wallach Space F6 = SU(3)/T2

Let G = SU(3) and let H be a maximal torus in G. Set Q(u, v) = − tr(uv) so that
c2 = 6. We can assume that

h = {diag(ai, bi,−(a + b)i) ∣ a, b ∈ R} ,
m0 = {[ α

−α∗ ] ∣ α ∈ C2×1} ,

m1 = {[
c

−c
0
] ∣ c ∈ C} .

It is easy to check that conditions (I) and (II) are satisûed with

c = 1/2, c0 = 2, c1 = 2.

Together with n0 = 4 and n1 = 2, we ûnd that ∆ = 16 and the ODE (2.12) has two
special solutions: ϕ1(s) = 1 and ϕ2(s) = 1+s. he other solutions arenon-Riemannian,
and we cannot make them explicit.

his example can be generalized to SU(n + 2)/S(U(1) × U(1) × U(n)). he de-
termination of the constants c, c0, and c1 is direct viamatrix computation, so we will
omit the details.
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3.5 The Wallach Space F 12 = Sp(3)/3Sp(1)

In this case, we set Q(u, v) = − tr(uv) for u, v in sp(3), so that c2 = 16. We choose
the subspaces h,m0,m1 as follows:

h = {diag(a1 , a2 , a3) ∣ a i ∈ H, a i + a i = 0, i = 1, 2, 3} ,
m0 = {[ α

−α∗ ] ∣ α ∈ H2×1} ,

m1 = {[
c

−c
0
] ∣ c ∈ H} .

By direct matrix computation, we ûnd that conditions (I) and (II) are satisûed with

c = 1/2, c0 = 2, c1 = 2.

Together with n0 = 8 and n1 = 2, we ûnd that ∆ = 64 and the ODE (2.12) has two
special solutions: ϕ1(s) = 1 and ϕ2(s) = 1+s. he other solutions arenon-Riemannian,
and we cannot make them explicit.

his example can be generalized to Sp(n + 2)/(Sp(1) × Sp(1) × Sp(n)). he de-
termination of the constants c, c0, and c1 is direct viamatrix computation, so we will
omit the details.
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